2020高一数学上期末复习题(基础题)
- 格式:docx
- 大小:79.01 KB
- 文档页数:7
期中解答题精选50题(基础版)1.(2020·新疆巴州第一中学)设函数221()1x f x x +=-求证:1()()f f x x =- 【分析】直接将1x代入函数化简即可. 【详解】221()1x f x x +=-,()22221111111x x f f x x x x ⎛⎫+ ⎪+⎛⎫⎝⎭∴===- ⎪-⎝⎭⎛⎫- ⎪⎝⎭,即得证. 2.(2020·宾县第一中学)已知函数()2f x 3x 5x 2=+-.(1)求()3f ,()1f a +的值; (2)若()4f a =-,求a 的值.【答案】(1)40,23116a a ++;(2)23a =-,或1a =- 【分析】(1)直接代入求值即可; (2)令()4f a =-,解出即可. 【详解】解:(1)()2352f x x x =+-,()233353240f ∴=⨯+⨯-=,()()()221315123116f a a a a a +=⨯++⨯+-=++;(2)令()4f a =-,即()23524f a a a =+-=-,解得:23a =-,或1a =-.3.(2020·济南市济阳区第一中学高一期中)已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =--.(1)求函数()()f x x R ∈的解析式;(2)写出函数()()f x x R ∈的增区间(不需要证明)【答案】(1)()222.02,0x x x f x x x x ⎧--≤=⎨->⎩;(2)(),1-∞-和()1,+∞.【分析】(1)当0x >时,0x -<,根据()()f x f x =--可得函数解析式; (2)根据二次函数的性质可得答案. 【详解】()1函数()f x 是定义在R 上的函数∴当0x >时,0x -<,()()f x f x ∴=--又当0x ≤时,()22f x x x =--()()()()2222f x f x x x x x ⎡⎤∴=--=-----=-⎣⎦∴函数()()f x x R ∈的解析式为:()222.02,0x x x f x x x x ⎧--≤=⎨->⎩;()2由二次函数的性质可知函数()f x 的单调递增区间为(),1-∞-和()1,+∞.4.(2020·大同市第四中学校)已知函数22()1x f x x =+.(1)求11(2),(3)23f f f f ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的值;(2)求证:1()f x f x ⎛⎫+ ⎪⎝⎭是定值. 【答案】(1)1,1;(2)证明见解析. 【分析】(1)根据函数解析式代入即可求解. (2)根据解析式,代入整理即可求解.【详解】(1)因为()221x f x x =+,所以()2222112221212112f f ⎛⎫ ⎪⎛⎫⎝⎭+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭, ()2222113331313113f f ⎛⎫ ⎪⎛⎫⎝⎭+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭.(2)()22222222211111111111x x x x f x f x x x x x x ⎛⎫ ⎪+⎛⎫⎝⎭+=+=+== ⎪++++⎝⎭⎛⎫+ ⎪⎝⎭,是定值. 5.(2020·拉萨市第四高级中学高一期中)已知二次函数()2f x ax bx c =++,满足(0)(1)0f f ==,且()f x 的最小值是14-.(1)求()f x 的解析式;(2)设函数2()52g x x x =+-,函数()()()h x f x g x =-,求函数()h x 在区间[2,5]-上的最值. 【答案】(1)2()f x x x =-;(2)最大值14,最小值28-.【分析】(1)由已知条件列方程组,可求出,,a b c 的值,从而可得,,a b c ; (2)由题意得()62h x x =-+,再利用其单调性可求出其在[2,5]-上的最值 【详解】(1)因为(0)(1)0f f ==, 所以(0)0,(1)0f c f a b c ===++=,由二次函数的性质得11112424f a b c ⎛⎫=++=- ⎪⎝⎭,解得,1,1,0a b c ==-= 所以2()f x x x =-(2)依题得:()62h x x =-+ 函数()h x 在区间内[2,5]-单调递减 当2x =-时,()h x 有最大值14 当5x =时,()h x 有最小值28-6.(2020·南宁市第十九中学)已知函数()26x f x x +=-. (1)点()86,在()f x 的图像上吗? (2)当3x =时,求()f x 的值; (3)当()8f x =时,求x 的值.【答案】(1)不在,(2)53-,(3)507【分析】(1)将点的坐标代入解析式中验证即可; (2)将3x =代入函数中直接求解; (3)由()8f x =,可得286x x +=-,从而可求出x 的值 【详解】解:(1)因为()8285686f +==≠-,所以点()86,不在()f x 的图像上, (2)()3253363f +==--, (3)由()8f x =,得286x x +=-,解得507x =7.(2020·云南砚山县第三高级中学高一期中)判断下列函数的奇偶性. (1)21()f x x =; (2)()31f x x =-+;【答案】(1)偶函数;(2)非奇非偶函数.【分析】先求函数的定义域,再利用函数奇偶性的定义判断即可 【详解】(1)因为定义域为:{}0x x ≠ 所以定义域关于原点对称, 又因为2211()()()f x f x x x -===-,所以函数f (x )是偶函数; (2)因为定义域为R ,关于原点对称又因为()31f x x =-+,则()31()f x x f x -=+≠,()31()f x x f x -=+≠-, 所以()f x 是非奇非偶函数;8.(2019·广东高一期中)已知函数f (x 12x +. (1)求函数f (x )的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.【答案】(1)[3,2)(2,)---+∞;(2)()31f -=-;23()38f =;(3)()12f a a +;()111f a a -=+ 【分析】(1)由平方根被开方数大于等于0,分母不为零,同时成立求出定义域; (2)代入解析式,求出()3f -,23f ⎛⎫⎪⎝⎭的值;(3)代入解析式,即可求出结果. 【详解】(1)要使函数有意义,须3033202x x x x x +≥≥-⎧⎧⇒⇒-≤⎨⎨+≠≠-⎩⎩且2x ≠-, 所以函数的定义域为[3,2)(2,)---+∞(2)()12f x x =+,所以()1301,32f -=+=--+213()23823f ==+ (3)0,11a a >∴->-,()12f a a =+ ()111f a a -=+ 9.(2020·云南砚山县第三高级中学高一期中)(1)求解:2340x x --=; (2)解不等式的解集:(9)0x x -> ; 【答案】(1)124,-1x x ==;(2){}|09x x <<. 【分析】(1)利用因式分解法解方程即可; (2)直接解一元二次不等式即可 【详解】(1)2340x x --=(4)(1)0x x -+= 124,-1x x ==(2)不等式化为(9)0x x -<, 09x ∴<<,∴不等式的解集为{}|09x x <<;10.(2019·抚顺市雷锋高级中学高一期中)已知0x >,求函数4y x x=+的最小值,并说明当x 为何值时y 取得最小值.【答案】最小值为4,当2x =时y 取得最小值【分析】根据基本不等式求得函数的最小值,且求得此时x 的值. 【详解】因为0x >,所以4224y x x =+≥⨯=. 当且仅当4x x=时取等号.24x =.因为0x >,所以2x =. 所以2x =为何值时y 取得最小值4.11.(2019·抚顺市雷锋高级中学高一期中)已知一元二次方程22320x x +-=的两个实数根为12,x x .求值:(1)2212x x +; (2)1211+x x . 【答案】(1)174;(2)32.【分析】利用韦达定理可得12123,12x x x x +=-⋅=-,再对所求式子进行变行,即222121212()2x x x x x x +=+-;12121211x x x x x x ++=⋅;两根和与积代入式子,即可得到答案; 【详解】解:因为一元二次方程22320x x +-=的两个实数根为12,x x ,所以由根与系数关系可知12123,12x x x x +=-⋅=-.(1)222121212()2x x x x x x +=+-9172(1)44=-⨯-=;(2)1212123113212x x x x x x -++===⋅-.12.(2019·抚顺市雷锋高级中学高一期中)解一元二次不等式:2560x x -+>. 【答案】(,2)(3,)-∞⋃+∞.【分析】对多项式进行因式分解得256(2)(3)x x x x -+=--,再利用大于取两边,即可得到答案;【详解】解:因为256(2)(3)x x x x -+=--, 所以原不等式等价于(2)(3)0x x -->. 所以所求不等式的解集为(,2)(3,)-∞⋃+∞.13.(2020·河北英才国际学校高一期中)已知23a <<,21b -<<-,求2a b +的范围. 【答案】225a b <+<【分析】根据不等式的性质可得出答案. 【详解】解:23a <<,426a ∴<<,又21b -<<-, 225a b ∴<+<.14.(2021·四川省武胜烈面中学校高一期中)(1)解不等式2210x x --+<. (2)若不等式20ax x b -+<的解集为1,12⎛⎫ ⎪⎝⎭,求实数a ,b 的值; 【答案】(1)不等式的解集为{|1x x <-或12x ⎫>⎬⎭;(2)23a =,13b =.【分析】(1)根据一元二次不等式的解法即可求出; (2)根据函数与方程的思想即可求出.【详解】(1)2210x x --+<即为2210x x +->,而2210x x +-=的两根为11,2-,所以不等式的解集为{|1x x <-或12x ⎫>⎬⎭.(2)由题意可知20ax x b -+=的两根为1,12,所以,1112112a ba⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得23a =,13b =. 15.(2019·福建高一期中)若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【答案】(1)f (x )=x 2-x +1;(2)m <-1.【分析】(1)设f (x )=ax 2+bx +c (a ≠0),则由f (0)=1可求出c ,由f (x +1)-f (x )=2x 可求出,a b ,从而可求出函数的解析式,(2)将问题转化为x 2-3x +1-m >0在[-1,1]上恒成立,构造函数g (x )=x 2-3x +1-m ,然后利用二次函数的性质求出其最小值,使其最小值大于零即可求出实数m 的取值范围 【详解】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1, ∴c =1,∴f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x ,∴2ax +a +b =2x ,∴220a a b =⎧⎨+=⎩,∴11a b =⎧⎨=-⎩,∴f (x )=x 2-x +1.(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =3()2x -2-54-m ,其对称轴为x =32,∴g (x )在区间[-1,1]上是减函数, ∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.16.(2021·巴楚县第一中学高一期中)比较下列各组中两个代数式的大小: (1)256x x ++与2259x x ++; (2)2(3)x -与(2)(4)x x --; 【答案】(1)2256259x x x x ++<++;(2)2(3)(2)(4)x x x ->-- 【分析】利用作差法,分析两式之差的正负判定即可【详解】(1)因为()()2225625930x x x x x ++-++=--<,故2256259x x x x ++<++; (2)因为()()2220(63)(2)(4)9681x x x x x x x --=--++---=>,故2(3)(2)(4)x x x ->--【点睛】本题主要考查了作差法判定两式大小的问题,属于基础题17.(2020·上海财经大学附属中学高一期中)若x ∈R ,试比较26x x +3与24216x x -+的大小. 【答案】2264216.x x x x +≤-+3 【分析】利用作差法比较即可.【详解】因为()()()22226421681640x x x x x x x +--+=-+-=--≤3,所以2264216.x x x x +≤-+318.(2020·咸阳百灵学校)已知M = {x |-3 ≤ x ≤5}, N = {x | a ≤ x ≤ a +1},若N M ⊆,求实数a 的取值范围.【答案】34a -≤≤【分析】先分析集合N ≠∅,再根据N M ⊆建立不等式然后解之即可. 【详解】因为1a a <+,所以集合N ≠∅.因此,N M ⊆时,应满足315a a ≥-⎧⎨+≤⎩,解得34a -≤≤.19.(2020·大同市第四中学校)设集合{|12}A x x =-≤≤,集合{|21}B x m x =<<.若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围;【答案】1,2⎡⎫-+∞⎪⎢⎣⎭.【分析】由“x A ∈”是“x B ∈”的必要条件有B A ⊆,讨论12m <、12m ≥满足条件时m 的范围,最后求并集即可.【详解】若“x A ∈”是“x B ∈”的必要条件,则B A ⊆, {}2|1A x x =-≤≤,①当12m <时,{|21}B x m x =<<,此时121m -≤<,即1122m -≤<;②当12m ≥时,B =∅,有B A ⊆成立;∴综上所述,所求m 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭.20.(2020·南宁市第十九中学)已知{}10A x x =-=,{}210B x x =-=.求:(1)A B ; (2)A B 【答案】(1){}1;(2){}1,1-【分析】先求出集合A ,B ,再根据交集并集的定义即可求出. 【详解】{}{}101A x x =-==,{}{}2101,1B x x =-==-,∴(1){}1A B ⋂=;(2){}1,1A B =-.21.(2020·桂林市临桂区五通中学高一期中)奇函数2()1ax bf x x +=+是定义在区间[]1,1-上的增函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求()f x 解析式;(2)求不等式(1)()0f x f x -+<的解集. 【答案】(1)()21x f x x =+;(2)10,2⎡⎫⎪⎢⎣⎭. 【分析】(1)先根据奇函数可求0b =,再利用1225f ⎛⎫= ⎪⎝⎭可求1a =,进而可得解析式;(2)根据奇函数和增函数把不等式(1)()0f x f x -+<进行转化,结合定义域可求答案. 【详解】(1)∵函数2()1ax bf x x +=+是定义在[]1,1-上的奇函数, ∴()00001bf +==+,即0b =, ∵1225f ⎛⎫= ⎪⎝⎭,∴2112225121a f ⨯⎛⎫== ⎪⎝⎭⎛⎫ +⎪⎝⎭,解得1a =, ∴()21xf x x =+. 经验证知,()21x f x x =+是定义在[]1,1-上的奇函数,所以()21xf x x =+.(2)∵函数()f x 在[]1,1-上为奇函数,且(1)()f x f x -<-,∴(1)()f x f x -<-,又∵函数()f x 是定义在[]1,1-上的增函数,∴111111x x x x-≤-≤⎧⎪-≤-≤⎨⎪-<-⎩,解得102x ≤<.故不等式(1)()0f x f x -+<的解集为10,2⎡⎫⎪⎢⎣⎭.22.(2019·福建高一期中)已知函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且3(3)10f =.(1)确定函数()f x 的解析式;(2)当(1,1)x ∈-时判断函数()f x 的单调性,并证明;(3)解不等式1(1)()02f x f x -+<. 【答案】(1)2()1x f x x =+;(2)()f x 在区间()1,1-上是增函数,证明见解析;(3)20,3⎛⎫⎪⎝⎭.【分析】(1)由奇函数的概念可得b 的值,根据()3310f =可得a 的值,进而得结果; (2)设1211x x -<<<,用作差法分析可得可得()()12f x f x <,由函数单调性的定义即可得证明; (3)将奇偶性和单调性相结合列出不等式组,解出即可. 【详解】(1)∵()()f x f x -=-, ∴221()1ax b ax bx x -+--=+-+,即b b -=,∴0b =.∴2()1axf x x =+, 又()3310f =,1a =, ∴2()1xf x x =+. (2)对区间()1,1-上得任意两个值1x ,2x ,且12x x <,22121221121212222222121212(1)(1)()(1)()()11(1)(1)(1)(1)x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++, ∵1211x x -<<<,∴120x x -<,1210x x ->,2110x +>,2210x +>,∴12())0(f x f x -<,∴12()()f x f x <, ∴()f x 在区间()1,1-上是增函数. (3)∵1(1)()02f x f x -+<, ∴1(1)()2f x f x -<-,1111211211x x x x ⎧-<-<⎪⎪⎪-<-⎨⎪-<<⎪⎪⎩,解得203x <<,∴实数x 得取值范围为20,3⎛⎫⎪⎝⎭.23.(2019·陕西镇安中学高一期中)函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数. 【答案】(1)()21xf x x =+;(2)证明见解析. 【分析】(1)由函数()f x 是定义在()1,1-上的奇函数,则()00f =,解得b 的值,再根据1225f ⎛⎫= ⎪⎝⎭,解得a 的值从而求得()f x 的解析式; (2)设1211x x -<<<,化简可得()()120f x f x -<,然后再利用函数的单调性定义即可得到结果.【详解】解:(1)依题意得()00,12,25ff ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩∴20,1022,1514bab ⎧=⎪+⎪⎪⎨+⎪=⎪+⎪⎩∴1,0,a b =⎧⎨=⎩∴()21x f x x =+ (2)证明:任取1211x x -<<<,∴()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++ ∵1211x x -<<<,∴120x x -<,2110x +>,2210x +>,由1211x x -<<<知,1211x x -<<,∴1210x x ->. ∴()()120f x f x -<.∴()f x 在()1,1-上单调递增.24.(2020·黔西南州同源中学高一期中)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-.(1)画出当0x <时,()f x 函数图象; (2)求出()f x 解析式.【答案】(1)见解析;(2)()()()222,02,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩ .【分析】(1)根据函数奇偶性的性质即可画出当0x <时,函数()f x 的函数图象; (2)根据函数奇偶性的定义即可求出函数解析式. 【详解】解:(1)()f x 是奇函数,且当0x ≥时,2()2f x x x =-.∴函数()f x 的函数图象关于原点对称,则当0x <时,()f x 函数图象:;(2)若0x <,则0x ->, 当0x ≥时,2()2f x x x =-.()()2()2()f x x x f x ∴-=---=-,则当0x <时,2()2f x x x =--.即()()()222,02,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩ .25.(2020·黔西南州同源中学高一期中)已知函数1()f x x x=-. (1)判断函数()f x 的奇偶性,并加以证明; (2)用定义证明函数()f x 在区间[)1,+∞上为增函数.【分析】(1)判断函数的奇偶性,利用奇偶性的定义证明即可; (2)作差判断符号,利用函数的单调性的定义证明即可. 【详解】解:(1)()f x 是奇函数,理由如下:函数1()f x x x=-的定义域为(-∞,0)(0⋃,)+∞,关于原点对称, 且11()()()f x x x f x xx-=-+=--=-,()f x ∴是奇函数;证明:(2)任取1x ,2[1x ∈,)+∞且12x x <,则1212121211()()()()f x f x x x x x x x -=---=-12121x x x x +,120x x -<,1210x x +>,120x x >12()()0f x f x ∴-<,即12()()f x f x <.()f x ∴在[1,)+∞上单调递增.26.(2019·上海市嘉定区封浜高级中学高一期中)若0,0a b >>,试比较33+a b 与22a b b a +的大小.【答案】3322a b a b b a +≥+,当且仅当a b =时等号成立.【分析】运用作差法求出两式的差,结合题意将两式的差与0进行比较即可. 【详解】由题意得,3333222222222))()()()()()()()(()(a b b a a b b a a a b b b a a b a b a b a b a b a b +==-+-=+-=+----+-因为0,0a b >>,所以20,()0a b a b +>-≥,当且仅当a b =时取等号, 所以2()()0a b a b -+≥,即32320())(a a b b b a +-≥+,当且仅当a b =时取等号, 故3322a b a b b a +≥+,当且仅当a b =时等号成立.27.(2021·安徽池州市·高一期中)已知函数()231f ax x ax =+-,a R ∈.(1)当4a =时,求不等式()0f x >的解集; (2)若()0f x ≤在R 上恒成立,求a 的取值范围. 【答案】(1){12x x <-或16x ⎫>⎬⎭;(2)[]12,0-.【分析】(1)解不含参数的一元二次不等式即可求出结果;(2)二次函数的恒成立问题需要对二次项系数是否为0进行分类讨论,即可求出结果.【详解】(1)当4a =时,()212410x f x x =+->,即()()21610x x +->,解得12x <-或16x >, 所以,解集为{12x x <-或16x ⎫>⎬⎭.(2)因为()2310f x ax ax =+-≤在R 上恒成立,①当0a =时,()10f x =-≤恒成立;②当0a ≠时,2120a a a <⎧⎨∆=+≤⎩,解得120a -<≤, 综上,a 的取值范围为[]12,0-.28.(2010·辽宁大连市·)解关于x 的不等式ax 2-(a +1)x +1<0.【分析】根据二次函数开口方向和一元二次方程的根的大小,分0,0,01,1,1,a a a a a <=<<=>讨论求解.【详解】①当a =0时,原不等式即为-x +1<0,解得x >1.②当a <0时,原不等式化为()11x x a ⎛⎫-- ⎪⎝⎭>0,解得1x a <或x >1.③当a >0时,原不等式化为()11x x a ⎛⎫-- ⎪⎝⎭<0.若a =1,即1a=1时,不等式无解;若a >1,即1a <1时,解得1a<x <1; 若0<a <1,即1a>1时,解得1<x <1a.综上可知,当a <0时,不等式的解集为11x x x a ⎧⎫⎨⎬⎩⎭或;当a =0时,不等式的解集为{x |x >1};当0<a <1时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当a =1时,不等式的解集为Ø;当a >1时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭.29.(2020·江苏泰州·)已知关于x 的不等式()2220x a x a -++<.(1)当3a =时,解关于x 的不等式; (2)当a R ∈时,解关于x 的不等式.【答案】(1){}23x x <<;(2)答案不唯一,具体见解析. 【分析】(1)直接求解一元二次不等式即可,(2)原不等式化为()()20x x a --<,然后分2a <,2a =和2a >三种情况解不等式【详解】解:(1)因为不等式为()2220x a x a -++<,所以当3a =时,不等式为2560x x -+<,即()()230x x --<, 则23x <<,故原不等式的解集为{}23x x <<. (2)原不等式为()()20x x a --<, 当2a <时,不等式解集为{}2x a x <<; 当2a =时,不等式解集为∅;当2a >时,不等式解集为{}2x x a <<.综上所述:当2a <时,不等式解集为{}2x a x <<; 当2a =时,不等式解集为∅;当2a >时,不等式解集为{}2x x a <<.30.(2020·杭州之江高级中学高一期中)设函数()()222,f x x ax a a =++-∈R . (1)当1a =时,解关于x 的不等式()()215f x a x a >--+;(2)若[]1,2x ∃∈,使得()0f x >成立,求a 的取值范围.【答案】(1)(,3)(1,)-∞-⋃+∞;(2)(3,)-+∞.【分析】(1)当1a =时,不等式可化简为()()310x x +->,根据一元二次不等式的解法,即可求得答案.(2)[]1,2x ∃∈,使得()0f x >成立的否定为:[]()1,2,0x f x ∀∈≤恒成立,列出方程组,可求得a 的范围,进而可得答案.【详解】(1)当1a =时,()()215f x a x a >--+,整理可得2214x x ++>所以()()310x x +->,解得3x <-或1x >, 故原不等式的解集为(,3)(1,)-∞-⋃+∞.(2)命题:[]1,2x ∃∈,使得()0f x >成立的否定为:[]()1,2,0x f x ∀∈≤恒成立,则(1)0(2)0f f ≤⎧⎨≤⎩,解得3a ≤-, 若原命题成立,则a 的取值范围为(3,)-+∞.31.(2020·江苏)已知不等式2320ax x -+>的解集为{|1x x <或}x b >. (1)求a ,b 的值;(2)当2c ≠时,解关于x 的不等式2()0ax ac b x bc -++<.【答案】(1)12.a b =⎧⎨=⎩,;(2)答案见解析.【分析】(1)根据二次不等式的解集得到1和b 是方程2320ax x -+=的两根,利用韦达定理得到方程组求解;(2)根据(1)的结论不等式2()0ax ac b x bc -++<化为(2)()0x x c --<,分类讨论得到不等式的解集.【详解】解:(1)由题意知,1和b 是方程2320ax x -+=的两根,则312b a b a⎧=+⎪⎪⎨⎪=⎪⎩,,解得12.a b =⎧⎨=⎩,(2)不等式2()0ax ac b x bc -++<, 即为2(2)20x c x c -++<,即(2)()0x x c --<. ①当2>c 时,解集为{}2x x c <<; ②当2c <时,解集为{}2x c x <<;综上,当2>c 时,原不等式的解集为{}2x x c <<; 当2c <时,原不等式的解集为{}2x c x <<;32.(2021·云南砚山县第三高级中学高一期中)已知函数()()()236f x x a x =-+-. (1)若1a =-,求()f x 在[]3,0-上的最大值和最小值;(2)若关于x 的方程()140f x +=在()0,∞+上有两个不相等实根,求实数a 的取值范围. 【答案】(1)最大值是0,最小值是498-;(2)58,23⎛⎫ ⎪⎝⎭. 【分析】(1)由1a =-,得到()2253f x x x =+-,再利用二次函数的性质求解;(2)将方程()140f x +=在()0,∞+上有两个不相等实根,转化为方程()2232380x a x a +--+=有两个不相等正实根求解.【详解】(1)当1a =-时,()()()1236f x x x =++-2253x x =+-2549248x ⎛⎫=+- ⎪⎝⎭,因为二次函数()f x 开口向上,对称轴为54x =-,又因为()f x 在5[3,)4--上递减,在5(,0]4-上递增, 所以()min 54948f x f ⎛⎫=-=- ⎪⎝⎭,又()()30,03f f -==-, 所以()()max 30f x f =-=;(2)因为方程()140f x +=在()0,∞+上有两个不相等实根,所以方程()2232380x a x a +--+=有两个不相等正实根,则()()232838032023802a a aa ⎧⎪∆=---+>⎪-⎪->⎨⎪-+⎪>⎪⎩, 解得5823a <<,所以实数a 的取值范围是58,23⎛⎫ ⎪⎝⎭.33.(2020·曲靖市关工委麒麟希望学校高一期中)如下图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?最大面积为多少?(2)若使每间虎笼面积为242m ,则每间虎笼的长、宽各设计为多少时,可使围成四间笼的钢筋网总长最小?最小值为多少?【答案】(1)当长为9m 2,宽为3m 时,面积最大,最大面积为227m 2;(2)当长为6m ,宽为4m 时,钢筋网总长最小,最小值为48m .【分析】(1)求得每间虎笼面积的表达式,结合基本不等式求得最大值. (2)求得钢筋网总长的表达式,结合基本不等式求得最小值. 【详解】(1)设长为a ,宽为b ,,a b 都为正数,每间虎笼面积为ab ,则463623181823a b a b a b +=⇒+=⇒=+≥ 则272ab ≤,所以每间虎笼面积ab 的最大值为227m 2,当且仅当23a b =即9m,3m 2a b ==时等号成立.(2)设长为a ,宽为b ,,a b 都为正数,每间虎笼面积为24ab =,则钢筋网总长为4648a b +≥===,所以钢筋网总长最小为48m ,当且仅当46,23,6m,4m a b a b a b ====等号成立.34.(2020·上海市第三女子中学高一期中)已知a R ∈,求证:“102a <<”是“111a a>+-”的充分非必要条件.【分析】从充分性和必要性两个方面去进行说明即可.【详解】解:充分性:当102a <<时,()()21111a a a -=-+<,且10a ->,则111a a>+-, 故充分性满足;必要性:当111a a >+-时,()1101a a -+>-,即201a a>-,可得1a <,且0a ≠,故必要性不满足;则“102a <<”是“111a a>+-”的充分非必要条件 35.(2020·福建厦门一中高一期中)已知20:{|}100x p x x +≥⎧⎨-≤⎩,q :{x |1-m ≤x ≤1+m ,m >0}.(1)若m =1,则p 是q 的什么条件?(2)若p 是q 的充分不必要条件,求实数m 的取值范围. 【答案】(1)p 是q 的必要不充分条件;(2)m ∈[9,+∞).【分析】(1)分别求出p 、q 对应的集合,根据集合间的关系即可得出答案;(2)根据p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,列出不等式组,解得即可得出答案.【详解】(1)因为20:{|}100x p x x +≥⎧⎨-≤⎩={x |-2≤x ≤10}, 若m =1,则q :{x |1-m ≤x ≤1+m ,m >0}={x |0≤x ≤2}, 显然{x |0≤x ≤2}≠⊂{x |-2≤x ≤10}, 所以p 是q 的必要不充分条件.(2)由(1),知p :{x |-2≤x ≤10},因为p 是q 的充分不必要条件,所以}{}{21011x x x m x m ≠-≤≤⊂-≤≤+∣∣, 所以012110m m m >⎧⎪-≤-⎨⎪+≥⎩,且12m -≤-和110m +≥不同时取等号,解得m ≥9,即m ∈[9,+∞).36.(2020·玉林市育才中学高一期中)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围. 【答案】{m |m ≤3}.【分析】由B =∅和B ≠∅分类讨论得不等式(或不等式组)解之可得. 【详解】解:A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A . ①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2,由B ⊆A ,得212215m m m ≥⎧⎪+≥-⎨⎪-≤⎩,解得2≤m ≤3.由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.37.(2019·福建高一期中)(1)设{}22,2,6A a a =-,{}22,2,36B a a =-,若{}2,3A B ⋂=,求A B .(2)已知{}26A x x =≤≤,{}23B x a x a =≤≤+,若B A ⊆,求实数a 的取值范围.【答案】(1){}2,3,6,18A B =;(2){}1a a >.【分析】(1)由交集的概念可得223a a -=,求出a 代入验证,再求并集即可; (2)分为B =∅和B ≠∅两种情形,列出不等式解出即可. 【详解】(1)由{}2,3A B ⋂=,∴223a a -=,解得3a =或1a =-, 当3a =时,{}2,3,18B =,此时{}2,3,6,18A B =, 当1a =-时,不合题意. ∴{}2,3,6,18A B =. (2)∵B A ⊆,当B =∅时,23a a >+,∴3a >,当B ≠∅时,222336a a a a ≤⎧⎪≤+⎨⎪+≤⎩,∴13a .综上,{}1a a a ∈>.38.(2020·曲靖市关工委麒麟希望学校高一期中)已知M={x| -2≤x ≤5}, N={x| a+1≤x≤2a -1}.(1)若M ⊆N ,求实数a 的取值范围; (2)若M ⊇N ,求实数a 的取值范围. 【答案】(1)空集;(2){}3a a ≤.【分析】(1)根据子集的性质进行求解即可;(2)根据子集的性质,结合N =∅和N ≠∅两种情况分类讨论进行求解即可. 【详解】(1)由M N ⊆得:12321531212a a a a a a a +≤-≤-⎧⎧⎪⎪⇒-≥≥⎨⎨⎪⎪+≤-≥⎩⎩无解; 故实数a 的取值范围为空集; (2)由M N ⊇得: 当N =∅时,即1212a a a +>-⇒<; 当N ≠∅时,12121232153a a a a a a a +≤-≥⎧⎧⎪⎪+≥-⇒≥-⎨⎨⎪⎪-≤≤⎩⎩, 故23a ≤≤;综上实数a 的取值范围为{}3a a ≤.39.(2019·陕西镇安中学高一期中)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-. (1)若4m =,求A B ;(2)若A B =∅,求实数m 的取值范围.【答案】(1){}27x x -≤≤;(2){2m m <或}4m >.【分析】(1)当4m =时,求出集合B ,利用并集的定义可求得集合A B ;(2)分B =∅、B ≠∅两种情况讨论,结合A B =∅可得出关于实数m 的不等式,综合可求得实数m 的取值范围.【详解】(1)当4m =时,{}57B x x =≤≤,故{}27A B x x ⋃=-≤≤; (2)当121m m +>-时,即当2m <时,B =∅,则A B =∅; 当121m m +≤-时,即当2m ≥时,B ≠∅,因为A B =∅,则212m -<-或15m +>,解得12m <-或4m >,此时有4m >.综上所述,实数m 的取值范围是{2m m <或}4m >.40.(2019·广西大学附属中学高一期中)设全集U =R ,集合{}14A x x =≤<,{}23B x a x a =≤<-.(1)若2a =-,求B A ⋂;(2)若A B A ⋃=,求实数a 的取值范围. 【答案】(1) {}|14x x ≤<;(2)1,2⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)利用集合间的交集运算求解; (2)由A B A ⋃=得B A ⊆,再分B φ=和B φ≠讨论.【详解】(1) 若2a =-,则{}45B x x =-≤<,又{}14A x x =≤<,所以{}|14B A x x =≤<. (2) 若A B A ⋃=,则B A ⊆. 当B φ=时,23a a ≥-,1a ≥; 当B φ≠时,由1,21,34a a a <⎧⎪≥⎨⎪-≤⎩,解得112a ≤<.综上可知,实数a 的取值范围1,2⎡⎫+∞⎪⎢⎣⎭.41.(2020·吉林江城中学)已知集合{}12A x x =-≤<,集合B ={}12x a x a -≤<,(1)B A ⊆,求实数a 的取值范围; (2)若A B =∅,求实数a 的取值范围.【答案】(1){}|011a a a ≤≤≤-或;(2)1|32a a a ⎧⎫≤-≥⎨⎬⎩⎭或.【分析】(1)(2)都是根据题意讨论B φ=和B φ≠两种情况,从而列出关于a 的不等式组,进而求实数a 的取值范围. 【详解】(1)因为B A ⊆,所以当B φ=时,12a a -≥,解得1a ≤-,此时满足题意;当B φ≠时,由题意得112212a a a a -≥-⎧⎪≤⎨⎪-<⎩,解得01a ≤≤,所以实数a 的取值范围为{}|011a a a ≤≤≤-或. (2)因为A B =∅,所以当B φ=时满足题意,即12a a -≥,解得1a ≤-;当B φ≠时,由题意得2112a a a ≤-⎧⎨-<⎩或1212a a a-≥⎧⎨-<⎩,解得112a -<≤-或3a ≥,所以实数a 的取值范围为1|32a a a ⎧⎫≤-≥⎨⎬⎩⎭或.42.(2019·浙江高一期中)已知602x A xx ⎧⎫-=>⎨⎬-⎩⎭,()(){}110B x x a x a =---+≤. (1)当2a =时,求A B ;(2)当0a >时,若A B B ⋃=,求实数a 的取值范围. 【答案】(1){}23A B x x ⋂=<≤;(2)[)5,+∞.【分析】(1)解不等式求得集合,A B ,由并集定义可求得结果; (2)由并集结果可确定A B ⊆,根据包含关系可构造不等式组求得结果. 【详解】(1)由602xx ->-得:26x <<,则{}26A x x =<<; 当2a =时,由()()110x a x a ---+≤得:()()310x x -+≤,则{}13B x x =-≤≤;{}23A B x x ∴⋂=<≤;(2)若A B B ⋃=,则A B ⊆,当0a >时,{}11B x a x a =-≤≤+,又{}26A x x =<<,则1216a a -≤⎧⎨+≥⎩,解得:5a ≥,∴实数a 的取值范围为[)5,+∞.43.(2019·甘肃兰州市·兰州五十一中高一期中)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,求m 的取值范围 【答案】(,1]-∞.【分析】分类讨论:0m ≤和0m >,前者由子集定义即得,后者由包含关系得不等关系后可得.【详解】当0m ≤时,B A =∅⊆, 当0m >时,则13m m -≥-⎧⎨≤⎩,解得01m <≤.综上,m 的取值范围是(,1]-∞.44.(2020·上海市杨思高级中学高一期中)若x ∈R ,不等式2680mx mx m -++>恒成立,求实数m 的取值范围. 【答案】[0,1)【分析】根据x ∈R 时,不等式2680mx mx m -++>恒成立,分0m =和0m ≠两种情况,利用判别式法求解.【详解】因为x ∈R 时,不等式2680mx mx m -++>恒成立, 当0m =时,80>成立,当0m ≠时,则2364(8)0m m m m >⎧⎨∆=-+<⎩, 解得01m <<, 综上:01m ≤<. 则实数m 的取值范围[0,1).45.(2021·乌苏市第一中学高一期中)解下列不等式:(1)2440x x -+-< (2)()210x a x a +-->【答案】(1){}|2x x ≠;(2)当1a =-时原不等式的解集为{|1}x x ≠,当1a >-时原不等式的解集为{|x x a <-,或1}x >,当1a <时原不等式的解集为{|x x a >-,或1}x <.【分析】(1)将一元二次不等式化简,将左边配成完全平方式,即可得出不等式的解集; (2)由题意,一元二次不等式所对应的一元二次方程的两个根为a - 和1,分类讨论a -和1的大小,从而求得它的解集.【详解】解:(1)因为2440x x -+-<,所以2440x x -+>,即()220x ->,所以2x ≠,即原不等式的解集为{}|2x x ≠(2)x 的不等式:2(1)0x a x a +-->,即()(1)0x a x +->,此不等式所对应的一元二次方程2(1)0x a x a +--=的两个根为a -和1. 当1a -=,即1a =-时,此时不等式即2(1)0x ->,它的解集为{|1}x x ≠; 当<1a -,即1a >-时,它的解集为{|x x a <-或1}x >;当1a ->,即1a <时,它的解集为{|x x a >-或1}x <.综上可得:当1a =-时原不等式的解集为{|1}x x ≠,当1a >-时原不等式的解集为{|x x a <-或1}x >,当1a <时原不等式的解集为{|x x a >-或1}x <.46.(2021·乌苏市第一中学高一期中)解下列不等式: (1)23710x x -≤ (2)(1)()0x x a --> 【答案】(1)10{|1}3x x -≤≤;(2)1a ≥时,解集为(,1)(,)a -∞+∞,1a <时,解集为(,)(1,)a -∞+∞.【分析】(1)不等式变形为一边为0,一边二次系数为正,分解因式确定相应二次方程的根后结论二次函数性质得解;(2)根据a 和1的大小分类讨论得解.【详解】(1)不等式化为237100x x --≤,即(1)(310)0x x +-≤,解集为10{|1}3x x -≤≤; (2)当1a ≥时,不等式的解为1x <或x a >,解集为(,1)(,)a -∞+∞; 当1a <时,不等式的解为x a <或1x >,解集为(,)(1,)a -∞+∞.47.(2020·吉林江城中学)(1)若不等式20ax bx c ++>的解集是{}|23x x -<<,求不等式20cx bx a ++>的解集;(2)已知不等式210kx kx ++>恒成立,求k 的取值范围. 【答案】(1)1|2x x ⎧<-⎨⎩或13x ⎫>⎬⎭;(2){}|04k k ≤<.【分析】(1)根据不等式20ax bx c ++>的解集是{}|23x x -<<,得到0a <,=-b a ,6c a =-,代入20cx bx a ++>即可求解;(2)通过讨论0k =和0k >两种情况来求解.【详解】(1)因为不等式20ax bx c ++>的解集是{}|23x x -<<, 所以2-和3是方程20ax bx c ++=的两根,且0a <,所以23,23b ca a-+=--⨯=,即=-b a ,6c a =-,代入不等式20cx bx a ++>得260ax ax a --+>, 因为0a <,所以2610x x +->,解得12x <-或13x >, 所以不等式20cx bx a ++>的解集为1|2x x ⎧<-⎨⎩或13x ⎫>⎬⎭. (2)当0k =时,不等式为10>,恒成立,满足题意; 当0k ≠时,要满足题意,需2040k k k >⎧⎨∆=-<⎩,解得04k <<,所以实数k 的取值范围为{}|04k k ≤<48.(2018·天津河东·高一期中)已知函数()af x x x=+. (1)当a R ∈时,用定义证明()f x 为奇函数.(2)当0a <时,用定义证明()f x 在()0,∞+上单调递增. 【分析】(1)根据奇函数的定义进行证明即可; (2)根据函数的单调性进行证明即可.【详解】(1)定义域:{}|0x x ≠,关于原点对称,()a a f x x x x x ⎛⎫-=-+=-+ ⎪-⎝⎭()f x =-,∴()f x 为奇函数; (2)0a <时,设12,x x 是()0,∞+上任意两个实数,且120x x <<, 则()()12f x f x -1212a a x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()1212a a x x x x ⎛⎫=-+- ⎪⎝⎭()()211212a x x x x x x -=-+()12121a x x x x ⎛⎫=-- ⎪⎝⎭因为120x x <<,所以120x x -<,120x x >,而0a <,所以120ax x ->, ∴()()120f x f x -<, 即()()12f x f x <,故()f x 在()0,∞+单调递增.49.(2020·河南郑州·高一期中)已知函数()f x 是定义域为R 的奇函数,当0x >时,()22f x x x =-.(1)求出函数()f x 在R 上的解析式;(2)画出函数()f x 的图象,并根据图象写出()f x 的单调区间; (3)求使()1f x =时的x 的值.【答案】(1)222,0()0,02,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩;(2)函数图象见解析,单调增区间为(],1-∞-和[)1,+∞,单调减区间为(1,1)-.(3)1x =或1x =-【分析】(1)通过①由于函数()f x 是定义域为R 的奇函数,则(0)0f =;②当0x <时,0x ->,利用()f x 是奇函数,()()f x f x -=-.求出解析式即可.(2)利用函数的奇偶性以及二次函数的性质画出函数的图象,写出单调增区间,单调减区间. (3)利用当0x >时,221x x -=,当0x <时,221x x --=,分别求解方程即可. 【详解】解:(1)①由于函数()f x 是定义域为R 的奇函数,则(0)0f =; ②当0x <时,0x ->,因为()f x 是奇函数,所以()()f x f x -=-. 所以22()()[()2()]2f x f x x x x x =--=----=--.综上:222,0()0,02,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩.(2)函数图象如下所示:由函数图象可知,函数的单调增区间为(],1-∞-和[)1,+∞,单调减区间为(1,1)-. (3)当0x >时,221x x -=解得1x =或1x =因为0x >,所以1x =当0x <时,221x x --= 解得1x =-综上所述,1x =+或1x =-50.(2019·云南昭通市第一中学高一期中)某商店试销一种成本单价为40元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于80元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数100=-+y x 的关系.设商店获得的利润(利润=销售总收入-总成本)为S 元. (1)试用销售单价x 表示利润S ;(2)试问销售单价定为多少时,该商店可获得最大利润?最大利润是多少?此时的销售量是多少?【答案】(1)()214040004080S x x x =-+-≤≤;(2)当销售单价为70元/件时,可获得最大利润900元,此时销售量是30件.【分析】(1)由利润=销售总收入-总成本可得答案;(2)对于()()()2709004080S x x x =--+≤≤配方法即可求得最大值. 【详解】(1)()()()()404040100S x xy y x y x x =-=-=--+ ()214040004080x x x =-+-≤≤.(2)()()()2709004080S x x x =--+≤≤,∴当销售单价为70元/件时,可获得最大利润900元,此时销售量是30件.。
福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)本试卷共5页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一.单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|4}A x x =>,{|2}B x x ,则A B =( )A. (2,)+∞B. (4,)+∞C. (2,4)D. (,4)-∞【答案】B 【解析】 【分析】由交集的定义求解即可. 【详解】{|{|2}4}{|4}x A B x x x x x =>>=>故选:B【点睛】本题主要考查了集合间的交集运算,属于基础题. 2.sin(600)-︒的值是( )A.12B. 12-C.2D. 【答案】C 【解析】 【分析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【详解】解:()()()sin 600sin 720120sin120sin 18060sin60-︒=-︒+︒=︒=︒-︒=︒= 故选C .【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键. 3.下列各函数的值域与函数y x =的值域相同的是( ) A. 2yxB. 2xy =C. sin y x =D.2log y x =【答案】D 【解析】 【分析】分别求出下列函数的值域,即可判断. 【详解】函数y x =的值域为R20y x =≥,20x y =>则A ,B 错误;函数sin y x =的值域为[]1,1-,则C 错误; 函数2log y x =的值域为R ,则D 正确; 故选:D【点睛】本题主要考查了求具体函数的值域,属于基础题.4.已知函数42,0,()log ,0,x x f x x x ⎧=⎨>⎩则((1))f f -=( )A. 2-B. 12-C.12D. 2【答案】B 【解析】 【分析】分别计算(1)f -,12f ⎛⎫ ⎪⎝⎭即可得出答案.【详解】121(1)2f --==,241211log log 12222f -⎛⎫===- ⎪⎝⎭所以1((1))2f f -=- 故选:B【点睛】本题主要考查了已知自变量求分段函数的函数值,属于基础题. 5.函数log ||()(1)||a x x f x a x =>图象的大致形状是( )A. B.C. D.【答案】A 【解析】 【分析】判断函数函数()f x 为奇函数,排除BD 选项,取特殊值排除C ,即可得出答案. 【详解】log ||log ||()()||||a a x x x x f x f x x x ---==-=--所以函数()f x 为奇函数,故排除BD.log ||()10||a a a f a a ==>,排除C故选:A【点睛】本题主要考查了函数图像的识别,属于基础题.6.已知0.22log 0.2,2,sin 2a b c ===,则( )A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B【解析】 【分析】分别求出a ,b ,c 的大概范围,比较即可.【详解】因为22log 0.2log 10<=,0sin 21<<,0.20221>= 所以a c b <<. 故选:B【点睛】本题主要考查了指数,对数,三角函数的大小关系,找到他们大概的范围再比较是解决本题的关键,属于简单题.7.已知以原点O 为圆心的单位圆上有一质点P ,它从初始位置01(,22P 开始,按逆时针方向以角速度1/rad s 做圆周运动.则点P 的纵坐标y 关于时间t 的函数关系为 A. sin(),03y t t π=+≥ B. sin(),06y t t π=+≥ C. cos(),03y t t π=+≥D. cos(),06y t t π=+≥【答案】A 【解析】当时间为t 时,点P 所在角的终边对应的角等于3t π+, 所以点P 的纵坐标y 关于时间t 的函数关系为sin(),03y t t π=+≥.8.已知函数()f x 为定义在(0,)+∞的增函数,且满足()()()1f x f y f xy +=+.若关于x 的不等式(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+恒成立,则实数a 的取值范围为( ) A. 1a >- B. 14a >-C. 1a >D. 2a >【答案】D 【解析】 【分析】将题设不等式转化为2(cos )(cos )f x f a x <+,根据函数()f x 的单调性解不等式得出2cos cos x a x <+,通过换元法,构造函数2()g x t t =-,[]1,1t ∈-求出最大值,即可得到实数a 的取值范围.【详解】(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+(1sin )(1sin )(cos )(1)f x f x f a x f ∴-++<++因为()()()2(1sin )(1sin )1sin 1sin 1(cos)1f x f x fx x f x -++=-++=+,(cos )(1)(cos )1f a x f f a x ++=++所以2(cos )(cos )f x f a x <+在(0,)x ∈+∞恒成立故2cos cos x a x <+在(0,)x ∈+∞恒成立,即2cos cos x x a -<在(0,)x ∈+∞恒成立 令[]cos ,1,1x t t =∈-,则22()cos cos g x x x t t =-=-所以函数2()g x t t =-在11,2⎡⎤-⎢⎥⎣⎦上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,(1)2(1)0g g -=>= 所以2a > 故选:D【点睛】利用函数的单调性解抽象不等式以及不等式的恒成立问题,属于中档题.二.多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设11,,1,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域是R ,且为奇函数的α值可以是( )A. 1-B.12C. 1D. 3【答案】CD 【解析】 【分析】求出对应α值函数y x α=的定义域,利用奇偶性的定义判断即可.【详解】当α的值为11,2-时,函数y x α=的定义域分别为()(),00,-∞+∞,[)0,+∞当1α=时,函数y x =的定义域为R ,令()f x x =,()()f x x f x -=-=-,则函数y x =为R 上的奇函数当3α=时,函数3y x =的定义域为R ,令3()f x x =,3()()f x x f x -=-=-,则函数3y x=为R 上的奇函数故选:CD【点睛】本题主要考查了判断函数的奇偶性,属于基础题. 10.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象上所有的点( ) A. 向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍B. 向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍C. 横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度D. 横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度【答案】AD 【解析】 【分析】由正弦函数的伸缩变换以及平移变换一一判断选项即可. 【详解】将函数sin y x =的图象上所有的点向右平行移动5π个单位长度,得到函数n 5si y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故A 正确;将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,得到函数sin 10y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 210y x π⎛⎫=- ⎪⎝⎭的图象,故B 错误;将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动5π个单位长度,得到25sin 2y x π⎛⎫=-⎪⎝⎭的图象,故C 错误; 将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动10π个单位长度,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故D 正确;故选:AD【点睛】本题主要考查了正弦函数的伸缩变换以及平移变换,属于基础题.11.对于函数()sin(cos )f x x =,下列结论正确的是( ) A. ()f x 为偶函数B. ()f x 的一个周期为2πC. ()f x 的值域为[sin1,sin1]-D. ()f x 在[]0,π单调递增【答案】ABC 【解析】 【分析】利用奇偶性的定义以及周期的定义判断A ,B 选项;利用换元法以及正弦函数的单调性判断C 选项;利用复合函数的单调性判断方法判断D 选项. 【详解】函数()f x 的定义域为R ,关于原点对称()()()()sin cos sin cos ()f x x x f x -=-==,则函数()f x 偶函数,故A 正确;()()()sin co 22s sin cos ()f x x x f x ππ+=+==⎡⎤⎣⎦,则函数()f x 的一个周期为2π,故B正确;令[]cos ,1,1t x t =∈-,则()sin f x t =,由于函数sin y t=[]1,1-上单调递增,则()sin 1()sin1sin1()sin1f x f x -≤≤⇒-≤≤,故C 正确;当[]0,x π∈时,函数cos t x =为减函数,由于[]cos 0,1t x =∈,则函数sin y t =在0,1上为增函数,所以函数()f x 在[]0,π单调递减,故D 错误; 故选:ABC【点睛】本题主要考查了判断函数的奇偶性,周期性,求函数值域,复合函数的单调性,属于中档题.12.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( ) A. ()g x 为奇函数B. 若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C. ()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D. 若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【解析】 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫-⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅= 所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题. 三、填空题:本大题共4题,每小题5分,共20分.13.函数()1xf x a =+(0a >且1a ≠)的图象恒过点__________【答案】()0,2 【解析】分析:根据指数函数xy a =过()0,1可得结果.详解:由指数函数的性质可得xy a =过()0,1,所以1xy a =+过()0,2,故答案为()0,2.点睛:本题主要考查指数函数的简单性质,属于简单题. 14.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【答案】6π 【解析】 【分析】由扇形面积公式求出扇形半径,根据扇形弧长公式即可求解.【详解】设扇形的半径为r 由扇形的面积公式得:216212r ππ=⨯,解得2r该扇形的弧长为2126ππ⨯=故答案为:6π 【点睛】本题主要考查了扇形面积公式以及弧长公式,属于基础题. 15.函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为______;【答案】[2] 【解析】 【分析】由x 的范围,确定23x π-的范围,利用换元法以及正弦函数的单调性,即可得出答案.【详解】0,2x π⎡⎤∈⎢⎥⎣⎦,22,333x πππ⎡⎤∴-∈-⎢⎥⎣⎦令22,333t x πππ⎡⎤=-∈-⎢⎥⎣⎦,函数()2sin g t t =在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,在2,23ππ⎡⎤⎢⎥⎣⎦上单调递减2si ()(n 33)g ππ--==2si 2()2n 2g ππ==, 222sin (3)3g ππ==所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为[2]故答案为:[2]【点睛】本题主要考查了正弦型函数的值域,属于中档题. 16.已知函数1()f x x=,()2sin g x x =,则函数()f x 图象的对称中心为_____,函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为____. 【答案】 (1). (0,0) (2). 0 【解析】 【分析】判断函数()f x ,()g x 为奇函数,即可得出函数()f x ,()g x 图象的对称中心都为原点; 根据对称性即可得出所有交点的横坐标与纵坐标之和. 【详解】1()()f x f x x-=-=-,则函数()f x 为奇函数,即函数()f x 图象的对称中心为(0,0) ()()2sin 2sin ()g x x x g x -=-=-=-,则函数()g x 为奇函数,即函数()g x 的对称中心为(0,0)所以函数()y f x =的图象与函数()y g x =的图象所有交点都关于原点对称 即所有交点的横坐标之和为0,纵坐标之和也为0则函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为0 故答案为:(0,0);0【点睛】本题主要考查了函数奇偶性的应用以及对称性的应用,属于中档题.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知α为锐角,且3cos 5α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求cos sin(2)2παπα⎛⎫-+-⎪⎝⎭的值. 【答案】(1)-7(2)4425【解析】 【分析】(1)利用平方关系以及商数关系得出tan α,再利用两角和的正切公式求解即可; (2)利用诱导公式以及二倍角的正弦公式求解即可. 【详解】解:(1)因为α为锐角,且3cos 5α=. 所以24sin 1cos 5αα, 所以sin 4tan cos 3ααα==, 所以41tan tan34tan 7441tan tan 1143παπαπα++⎛⎫+===- ⎪⎝⎭--⨯. (2)因为cos sin 2παα⎛⎫-=⎪⎝⎭, sin(2)sin 2παα-=,所以cos sin(2)sin sin 22παπααα⎛⎫-+-=+ ⎪⎝⎭sin 2sin cos ααα=+4432555=+⨯⨯ 4425= 【点睛】本题主要考查了两角和的正切公式,诱导公式,二倍角的正弦公式,属于中档题. 18.已知集合{}|2216xA x =<<,{|sin 0,(0,2)}B x x x π=>∈. (1)求AB ;(2)集合{|1}C x x a =<<()a ∈R ,若AC C =,求a 的取值范围.【答案】(1){|04}A B x x ⋃=<<(2)4a 【解析】 【分析】(1)利用指数函数以及正弦函数的性质化简集合,A B ,再求并集即可;(2)由题设条件得出C A ⊆,分别讨论集合C =∅和C ≠∅的情况,即可得出答案.【详解】解:(1)依题意{|14}A x x =<<,{|0}B x x π=<<,所以{|04}A B x x ⋃=<<. (2)因为AC C =,所以C A ⊆.①当C =∅时,1a ,满足题意;②当C ≠∅时,1a >,因为C A ⊆,得4a ≤,所以14a <; 综上,4a .【点睛】本题主要考查了集合的并集运算以及根据集合间的包含关系求参数范围,属于中档题.19.已知函数()2sin (sin cos )f x x x x =⋅+. (1)求()f x 的最小正周期; (2)求()f x 的单调区间.【答案】(1)最小正周期为π.(2)单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【解析】 【分析】利用倍角公式以及辅助角公式化简函数()f x ,根据周期公式得出第一问;根据正弦函数的单调增区间和减区间求()f x 的单调区间,即可得出第二问. 【详解】解:因为2()2sin 2sin cos f x x x x =+⋅22sin sin 2x x =+1cos2sin2x x =-+ sin2cos21x x =-+214x π⎛⎫=-+ ⎪⎝⎭(1)所以函数()f x 的最小正周期为22T ππ==.(2)由222,242k x k k πππππ-+-+∈Z ,得3222,44k x k k ππππ-++∈Z , 即3,88k xk k ππππ-++∈Z , 所以()f x 的单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,同理可得,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【点睛】本题主要考查了求正弦型函数的最小正周期以及单调区间,属于中档题. 20.已知2()1x af x x bx +=++是定义在[1,1]-上的奇函数. (1)求a 与b 的值;(2)判断()f x 的单调性,并用单调性定义加以证明; (3)若[0,2)απ∈时,试比较(sin )f α与(cos )f α的大小.【答案】(1)0a =. 0b =.(2)()f x 在[1,1]-单调递增.见解析 (3)见解析 【解析】 【分析】(1)根据奇函数的性质得出(0)0f =,(1)(1)f f -=-,求解方程,即可得出a 与b 的值; (2)利用函数单调性的定义证明即可;(3)分别讨论α的取值使得sin cos αα=,sin cos αα<,sin cos αα>,结合函数()f x 的单调性,即可得出(sin )f α与(cos )f α的大小.【详解】解:(1)因为()f x 是定义在[1,1]-上的奇函数,所以(0)0f =,得0a =.又由(1)(1)f f -=-,得到1122b b -=--+,解得0b =. (2)由(1)可知2()1xf x x =+,()f x 在[1,1]-上为增函数.证明如下:任取12,[1,1]x x ∈-且设12x x <, 所以()()1212221211x x f x f x x x -=-++()()22121212221211x x x x x x x x +--=++ ()()()()122112221211x x x x x x x x -+-=++()()()()21122212111x x x x xx --=++由于12x x <且12,[1,1]x x ∈-,所以210x x ->,且2110x x -<,又2110x +>,2210x +>,所以()()()()211222121011x x x x xx --<++,所以()()12f x f x <,从而()f x 在[1,1]-单调递增. (3)当4πα=或54πα=时,sin cos αα=,所以(sin )(cos )f f αα=;当04πα<或524παπ<<时,sin cos αα<, 又因为sin [1,1]α∈-,cos [1,1]α∈-,且()f x 在[1,1]-上为增函数,所以(sin )(cos )f f αα<当544ππα<<时,sin cos αα>,同理可得(sin )(cos )f f αα>; 综上,当4πα=或54πα=时,(sin )(cos )f f αα=;当50,,244ππαπ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭时,(sin )(cos )f f αα<;当5,44ππα⎛⎫∈ ⎪⎝⎭时,(sin )(cos )f f αα>.【点睛】本题主要考查由函数的奇偶性求参数,判断函数的单调性以及利用单调性比较函数值大小,属于中档题.21.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: .(1)设港口在x 时刻的水深为y 米,现给出两个函数模型:sin()(0,0,)y A x h A ωϕωπϕπ=++>>-<<和2(0)y ax bx c a =++≠.请你从两个模型中选择更为合适的函数模型来建立这个港口的水深与时间的函数关系式(直接选择模型,无需说明理由);并求出7x =时,港口的水深.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),问该船何时能进入港口,何时应离开港口?一天内货船可以在港口呆多长时间?【答案】(1)选择函数模型Asin()y x h ωϕ=++更适合. 水深为3米 (2)货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港.一天内货船可以在港口呆的时间为8小时. 【解析】 【分析】(1)观察表格中水深的变化具有周期性,则选择函数模型Asin()y x h ωϕ=++更适合,由表格数据得出,,,A h ωϕ的值,将7x =代入解析式求解即可; (2)由题意 5.5y 时,船可以进港,解不等式2.5sin4.255.56x π+,得出x 的范围,由x的范围即可确定进港,出港,一天内在港口呆的时间. 【详解】解:(1)选择函数模型Asin()y x h ωϕ=++更适合因为港口在0:00时刻的水深为4.25米,结合数据和图象可知 4.25h =6.75 1.752.52A -==因为12T =,所以22126T πππω===, 所以 2.5sin 4.256y x πϕ⎛⎫=++⎪⎝⎭, 因为0x =时, 4.25y =,代入上式得sin 0ϕ=,因为πϕπ-<<,所以0ϕ=, 所以 2.5sin4.256y x π=+.当7x =时,712.5sin4.25 2.5 4.25362y π⎛⎫=+=⨯-+= ⎪⎝⎭, 所以在7x =时,港口的水深为3米(2)因为货船需要的安全水深是4 1.5 5.5+=米, 所以 5.5y 时,船可以进港, 令2.5sin4.255.56x π+,则1sin62xπ, 因为024x <,解得15x 或1317x ,所以货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港. 因为(51)(173)8-+-=,一天内货船可以在港口呆的时间为8小时. 【点睛】本题主要考查了三角函数在生活中的应用,属于中档题. 22.已知函数3(1)log (1)f x a x +=+,且(2)1f =. (1)求()f x 的解析式;(2)已知()f x 的定义域为[2,)+∞. (ⅰ)求()41xf +的定义域;(ⅱ)若方程()()412xxf f k k x +-⋅+=有唯一实根,求实数k 取值范围.【答案】(1)2()log f x x =(2)(ⅰ)[0,)+∞.(ⅱ)1k = 【解析】 【分析】(1)利用换元法以及(2)1f =,即可求解()f x 的解析式;(2)(ⅰ)解不等式412x +≥,即可得出()41xf +的定义域;(ⅱ)根据()41xf +,()2x f k k ⋅+的定义域得出1k ,结合函数()f x 的解析式将方程化为()2(1)2210x x k k -⋅+⋅-=,利用换元法得出2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,讨论k的值,结合二次函数的性质即可得出实数k 的取值范围.【详解】解:(1)令1(0)t x t =+>,则3()log f t a t =,所以3()log f x a x =, 因为3(2)log 21f a ==,所以231log 3log 2a ==, 所以3232()log log 3log log f x a x x x ==⨯= (2)(ⅰ)因为()f x 的定义域为[2,)+∞, 所以412x +≥,解得0x , 所以()41xf +的定义域为[0,)+∞.(ⅱ)因为0,22,x x k k ⎧⎨⋅+⎩,所以221xk +在[0,)+∞恒成立, 因为221x y =+在[0,)+∞单调递减,所以221x y =+最大值为1,所以1k .又因为()()412xxf f k k x +-⋅+=,所以()()22log 41log 2xxk k x +-⋅+=, 化简得()2(1)2210xx k k -⋅+⋅-=,令2(1)xt t =,则2(1)10k t k t -⋅+⋅-=在[1,)+∞有唯一实数根, 令2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,当1k =时,令()0g t =,则1t =,所以21x =,得0x =符合题意,所以1k =; 当1k >时,2440k k ∆=+->,所以只需(1)220g k =-,解得1k ,因为1k >,所以此时无解; 综上,1k =.【点睛】本题主要考查了利用换元法求函数解析式以及根据函数的零点确定参数的范围,属于较难题.。
2020-2021学年甘肃省临夏州临夏中学高一(上)期末数学试卷一、单选题(共60分)1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3}2.(5分)函数f(x)=的图象可能是()A.B.C.D.3.(5分)若x>0,y>0,n∈N*,则下列各式中,恒等的是()A.lgx•lgy=lgx+lgy B.lgx2=(lgx)2C.D.4.(5分)函数y=x2﹣2x﹣3的零点是()A.1,﹣3B.3,﹣1C.1,2D.(3,0),(﹣1,0)5.(5分)函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)6.(5分)函数的零点一定位于下列哪个区间()A.B.C.D.7.(5分)已知,则()A.a<b<c B.b<c<a C.c<a<b D.a<c<b8.(5分)已知幂函数f(x)=kx a的图象过点(2,),则k+a=()A.1B.﹣1C.2D.﹣29.(5分)长方体ABCD﹣A1B1C1D1中,若AB=5,AD=4,AA1=3,且此长方体内接于球O,则球O的表面积为()A.B.C.50πD.200π10.(5分)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.11.(5分)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M,N分别是A1D1,A1B1的中点,过直线BD的平面α∥平面AMN,则平面α截该正方体所得截面的面积为()A.B.C.D.12.(5分)已知函数f(x)=ln(x+2)+ln(4﹣x),则下列说法错误的是()A.f(x)在区间(﹣2,1)上单调递增B.f(x)在区间(1,4)上单调递减C.f(x)的图象关于直线x=1对称D.f(x)的图象关于点(1,0)对称二、填空题(共20分)13.(5分)若直线a∥平面α,直线b⊂平面α,则直线a与b的位置关系为.14.(5分)设g(x)=,则g(g())=.15.(5分)已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于.16.(5分)给出下列结论:①;②y=x2+1,x∈[﹣1,2],y的值域是[2,5];③幂函数图象一定不过第四象限:④函数f(x)=a x+1﹣2(a>0,a≠1)的图象过定点(﹣1,﹣1).其中正确的序号是.三、解答题(共70分)17.(10分)(1)计算:;(2)计算:.18.(12分)已知函数的定义域A,g(x)=﹣x2+1的值域为B,C={x|2a≤x≤a+3}.(1)求A∩B;(2)若B∪C=B,求实数a的取值范围.19.(12分)如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD =2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.20.(12分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,E.F分别为A1B,A1C 的中点,D为B1C1上的点,且A1D⊥B1C.(1)求证:EF∥平面ABC;(2)求证:平面A1FD⊥平面BCC1B1;(3)若三棱柱所有棱长都为a,求二面角A1﹣B1C﹣C1的平面角的正切值.21.(12分)如图,在直三棱柱ABC﹣DEF中,AC=BC=2,,,AD=4,M、N分别为AD、CF的中点.(1)求证:AN⊥平面BCM;(2)设G为BE上一点,且,求点G到平面BCM的距离.22.(12分)已知函数为奇函数.(1)求实数a的值;(2)判断函数f(x)的单调性,并用函数单调性的定义证明;(3)解不等式f(lnx)>0.2020-2021学年甘肃省临夏州临夏中学高一(上)期末数学试卷参考答案与试题解析一、单选题(共60分)1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={1,2,3},B={x|x≥2},∴A∩B={2,3}.故选:B.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.(5分)函数f(x)=的图象可能是()A.B.C.D.【分析】判定函数为奇函数排除B,C;分别求出f()与f(1)的值排除D.【解答】解:函数f(x)的定义域为{x|x≠0},又f(﹣x)=,∴f(x)为奇函数,排除B,C;又f()=>0,f(1)=0,∴排除D.故选:A.【点评】本题考查函数的图象及图象变换,考查函数奇偶性的判定及其应用,是基础题.3.(5分)若x>0,y>0,n∈N*,则下列各式中,恒等的是()A.lgx•lgy=lgx+lgy B.lgx2=(lgx)2C.D.【分析】根据对数的运算性质判断每个选项的等式是否恒等即可.【解答】解:A.lgx+lgy=lg(xy)≠lgx•lgy,∴该式不恒等;B.lgx2=2lgx≠(lgx)2,∴该式不恒等;C.,∴该式恒等,该选项正确;D.,∴该式不恒等.故选:C.【点评】本题考查了对数的运算性质,考查了计算能力,属于基础题.4.(5分)函数y=x2﹣2x﹣3的零点是()A.1,﹣3B.3,﹣1C.1,2D.(3,0),(﹣1,0)【分析】函数y=x2﹣2x﹣3的零点即对应方程的根,故只要解二次方程即可.【解答】解:y=x2﹣2x﹣3=(x﹣3)(x+1)=0,x=3或x=﹣1,所以函数y=x2﹣2x ﹣3的零点是3或﹣1故选:B.【点评】本题考查函数的零点的概念和求法.属基本概念、基本运算的考查.5.(5分)函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)【分析】根据函数成立的条件,即可求函数的定义域.【解答】解:要使函数有意义,则,即,解得:2≤x<3或3<x<4,故函数的定义域为[2,3)∪(3,4).故选:D.【点评】本题主要考查函数定义域的求法,根据函数成立的条件是解决此类问题的关键.6.(5分)函数的零点一定位于下列哪个区间()A.B.C.D.【分析】判断函数是连续函数,利用零点判断定理,判断选项即可.【解答】解:函数是连续函数,f(2)=+2﹣2=>0,f()=+2=<0,可得f(2)f()<0,由零点判断定理可知函数的零点在(,2).故选:C.【点评】本题考查函数的零点判断定理的应用,是基础题.7.(5分)已知,则()A.a<b<c B.b<c<a C.c<a<b D.a<c<b【分析】根据指数函数和对数函数的单调性即可得出a,b,c的大小关系.【解答】解:∵log20.2<log21=0,20.2>20=1,0<0.20.3<0.20=1,∴a<c<b.故选:D.【点评】本题考查了对数函数和指数函数的单调性,指数函数的值域,考查了计算能力,属于简单题.8.(5分)已知幂函数f(x)=kx a的图象过点(2,),则k+a=()A.1B.﹣1C.2D.﹣2【分析】由幂函数的定义和解析式求出k的值,把已知点代入求出a的值,可得答案.【解答】解:∵f(x)=k•x a是幂函数,∴k=1,幂函数f(x)=x a的图象过点(2,),∴2a=,则a=﹣2,则k+a=﹣1,故选:B.【点评】本题考查了幂函数的定义与解析式的应用,属于基础题.9.(5分)长方体ABCD﹣A1B1C1D1中,若AB=5,AD=4,AA1=3,且此长方体内接于球O,则球O的表面积为()A.B.C.50πD.200π【分析】由长方体的对角线公式,算出长方体对角线AC1的长,从而得到长方体外接球的直径,结合球的表面积公式即可得到,该球的表面积.【解答】解:∵长方体ABCD﹣A1B1C1D1中,AB=5,AD=4,AA1=3,∴长方体的对角线,∵长方体ABCD﹣A1B1C1D1的各顶点都在同一球面上,∴球的一条直径为,可得半径,因此,该球的表面积为,故选:C.【点评】本题主要考查球与多面体的切接问题,空间想象能力的培养,球的表面积的计算等知识,属于基础题.10.(5分)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【分析】由题意设出球的半径,圆M的半径,二者与OM构成直角三角形,求出圆M的半径,然后可求球的表面积,截面面积,再求二者之比.【解答】解:设球的半径为R,圆M的半径r,由图可知,R2=R2+r2,∴R2=r2,∴S球=4πR2,截面圆M的面积为:πr2=πR2,则所得截面的面积与球的表面积的比为:.故选:A.【点评】本题是基础题,考查球的体积、表面积的计算,仔细体会,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口.11.(5分)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M,N分别是A1D1,A1B1的中点,过直线BD的平面α∥平面AMN,则平面α截该正方体所得截面的面积为()A.B.C.D.【分析】作出平面AMN的过直线BD的平行平面a,求解即可【解答】解:取B1C1的中点E,C1D1的中点F,连接EF,BE,DF,B1D1,则EF∥B1D1,B1D1∥BD,所以EF∥BD,故EFBD在同一平面内,连接ME,因为M,E分别为A1D1B1C1的中点,所以ME∥AB,且ME=AB,所以四边形ABEM是平行四边形,所以AM∥BE,又因为BE⊂平面BDFE,AM不在平面BDFE内,所以AM∥平面BDFE,同理AN∥平面BDFE,因为AM∩AN=A,所以平面AMN∥平面BDFE,即平面a截该正方体所得截面为平面BDFEBD=,EF==,DF=,梯形BDFE如图:过E,F作BD的垂线,则四边形EFGH为矩形,∴FG===,故四边形BDFE的面积为=.故选:B.【点评】本题考查正方体截面面积的求法,平面平行的判定,等知识,综合考查证明和计算,属于基础题.12.(5分)已知函数f(x)=ln(x+2)+ln(4﹣x),则下列说法错误的是()A.f(x)在区间(﹣2,1)上单调递增B.f(x)在区间(1,4)上单调递减C.f(x)的图象关于直线x=1对称D.f(x)的图象关于点(1,0)对称【分析】先求出函数的定义域,再根据复合函数的单调性判断单调区间,根据f(1+x)=f(1﹣x)判断函数对称轴,判断f(2﹣x)=﹣f(x)是否成立,从而判断函数是否关于(1,0)对称.【解答】解:由f(x)=ln(x+2)+ln(4﹣x),可得:,解得﹣2<x<4,因为f(x)=ln(x+2)+ln(4﹣x)=ln[(x+2)(4﹣x)]=ln(﹣x2+2x+8),令t(x)=﹣x2+2x+8,开口向下,对称轴为x=1,所以函数t(x)在(﹣2,1)上单调递增,在(1,4)上单调递减,根据复合函数的单调性可得f(x)在(一2,1)上单调递增,在(1,4)上单调递减,故A,B正确;因为f(1﹣x)=ln(3﹣x)+ln(3+x),f(1+x)=ln(3+x)+ln(3﹣x),所以f(1+x)=f(1﹣x),所以函数f(x)的图象关于x=1对称,故C正确,因为f(2﹣x)=ln4+ln(x+2),﹣f(x)=﹣ln(x+2)﹣ln(4﹣x),因为f(2﹣x)≠﹣f(x),所以f(x)的图象不关于点(1,0)对称,故D错误.故选:D.【点评】本题考查了复合函数的单调性,“同增异减”,利用判定函数的对称轴,注意复合函数的定义域是研究单调区间的前提,属于中档题.二、填空题(共20分)13.(5分)若直线a∥平面α,直线b⊂平面α,则直线a与b的位置关系为平行或异面.【分析】以长方体为截体,列举出所有情况,由此能判断线a与b的位置关系.【解答】解:直线a∥平面α,直线b⊂平面α,如图,在正方体AC1中,A1B1∥平面ABCD,AB⊂平面ABCD,AB∥A1B1;A1B1∥平面ABCD,BC⊂平面ABCD,A1B1与BC是异面直线.则直线a与b的位置关系为平行或异面.故答案为:平行或异面.【点评】本题考查空间中线线间的位置关系的判断等基础知识,考查空间思维能力,是基础题.14.(5分)设g(x)=,则g(g())=.【分析】根据分段函数的解析式,先求出g()的值,再求g(g())的值.【解答】解:∵g(x)=,∴g()=ln=﹣ln2<0,∴g(g())=g(﹣ln2)=e﹣ln2==2﹣1=.故答案为:.【点评】本题考查了求分段函数的函数值的问题,解题时应对自变量进行分析,是基础题.15.(5分)已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于3π.【分析】根据圆角轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【解答】解:∵圆锥的轴截面是正三角形ABC,边长等于2∴圆锥的高AO=×,底面半径r=×2=1∴这个圆锥的表面积:S=πrl+πr2=π×1×2+π×12=3π.故答案为:3π.【点评】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等等基础知识,考查运算求解能力,是基础题.16.(5分)给出下列结论:①;②y=x2+1,x∈[﹣1,2],y的值域是[2,5];③幂函数图象一定不过第四象限:④函数f(x)=a x+1﹣2(a>0,a≠1)的图象过定点(﹣1,﹣1).其中正确的序号是③④.【分析】由题意,①可根据指数的运算判断;②可由二次函数的性质判断;③由幂函数的性质判断;④由指数函数的性质判断.【解答】解:①不正确,因为等号左边是正数,右边是负数;②∵y=x2+1,x∈[﹣1,2],∴y在x=0时取到最小值1,故函数的值域不是[2,5],此结论错误;③幂函数图象一定不过第四象限,由幂函数的性质知,此结论正确:④对于函数f(x)=a x+1﹣2(a>0,a≠1),令x+1=0解得x=﹣1,此时函数f(x)的值是﹣1,故函数的图象过定点(﹣1,﹣1),此结论正确.综上得,③④结论正确.故答案为:③④.【点评】本题考查命题真假的判断,解答的关键是熟练掌握所判断的命题的背景知识及命题真假判断的原理,本题属于简单题,三、解答题(共70分)17.(10分)(1)计算:;(2)计算:.【分析】(1)利用指数性质、运算法则直接求解.(2)利用对数、指数性质、运算法则直接求解.【解答】解:(1)=+100+﹣3+=100.(2)=﹣﹣2+1=﹣.【点评】本题考查指数式、对数式化简求值,考查对数、指数性质、运算法则等基础知识,考查运算求解能力,是基础题.18.(12分)已知函数的定义域A,g(x)=﹣x2+1的值域为B,C={x|2a≤x≤a+3}.(1)求A∩B;(2)若B∪C=B,求实数a的取值范围.【分析】(1)求出集合A,B,利用交集定义求出A∩B.(2)由B∪C=B,知C⊆B,当C=∅时,则2a>a+3,当C≠∅时,则,由此求出实数a的取值范围.【解答】解:(1)函数的定义域A,g(x)=﹣x2+1的值域为B,由题,可得,解得﹣1≤x<2且x≠1,∴函数f(x)的定义域A={x|﹣1≤x<2且x≠1},∵对任意x∈R,x2≥0,所以﹣x2+1≤1,∴函数g(x)的值域B={y|y≤1},∴A∩B={x|﹣1≤x<1}.(2)C={x|2a≤x≤a+3},由B∪C=B,知C⊆B,当C=∅时,则2a>a+3,解得a>3;当C≠∅时,则,解得a≤﹣2.综上,实数a的取值范围为{a|a>3或a≤﹣2}.【点评】本题考查集合的运算,考查交集定义、函数性质等基础知识,考查运算求解能力,是基础题.19.(12分)如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD =2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.【分析】四边形ABCD绕AD旋转一周形成的几何体是一个圆台挖去一个圆锥所得的组合体,S表面=S圆台底面+S圆台侧面+S圆锥侧面,V=V圆台﹣V圆锥,进而得到答案.【解答】(12分)解:四边形ABCD绕AD旋转一周形成的几何体是一个圆台挖去一个圆锥所得的组合体,S表面=S圆台底面+S圆台侧面+S圆锥侧面=π×52+π×(2+5)×5+π×2×2=(4+60)π.V=V圆台﹣V圆锥=π(+r1r2+)h﹣πr2h′=π(25+10+4)×4﹣π×4×2=π【点评】本题考查的知识点是旋转体,圆台和圆锥的体积和表面积,难度中档.20.(12分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,E.F分别为A1B,A1C 的中点,D为B1C1上的点,且A1D⊥B1C.(1)求证:EF∥平面ABC;(2)求证:平面A1FD⊥平面BCC1B1;(3)若三棱柱所有棱长都为a,求二面角A1﹣B1C﹣C1的平面角的正切值.【分析】(1)由EF∥BC,即可证EF∥平面ABC;(2)由A1D⊥平面BCC1B1,即可证平面A1FD⊥平面BCC1B1;(3)由二面角的平面角的作法可得:∠A1HD是二面角A1﹣B1C﹣C1的平面角,再运算即可得解.【解答】(1)证明:因为E,F分别为A1B,A1C的中点,所以EF∥BC,又EF⊄平面ABC,BC⊂平面ABC,故EF∥平面ABC;(2)证明:∵BB1⊥平面A1B1C1,A1D⊂平面A1B1C1,∴BB1⊥A1D,∵A1D⊥B1C,B1C∩BB1=B1,∴A1D⊥平面BCC1B1,又A1D⊂平面A1FD,∴平面A1FD⊥平面BCC1B1;(3)解:此时,D为B1C1的中点,过点D作B1C垂线,垂足为H,连接A1H,∵A1D⊥B1C,DH⊥B1C,A1D∩DH=D,∴B1C⊥平面A1DH,B1C⊥A1H,则∠A1HD是二面角A1﹣B1C﹣C1的平面角,∴,,,故二面角A1﹣B1C﹣C1的平面角的正切值为.【点评】本题考查了线面平行,面面垂直的证明和二面角的计算,属于中档题.21.(12分)如图,在直三棱柱ABC﹣DEF中,AC=BC=2,,,AD=4,M、N分别为AD、CF的中点.(1)求证:AN⊥平面BCM;(2)设G为BE上一点,且,求点G到平面BCM的距离.【分析】(1)根据AC2+BC2=AB2得AC⊥BC,并且得出四边形ACMN为正方形,进而即可求证;(2)先算出点M到平面GBC的距离即为AC=2,由,可求出,设点G到平面BCM的距离为h,则,进而求出点G到平面BCM的距离.【解答】解:(1)证明:在直三棱柱ABC﹣DEF中,AC=BC=2,,AD=4,M、N分别为AD、CF的中点,∵AC=BC=2,,∴AC2+BC2=AB2,即AC⊥BC,又ABC﹣DEF是直三棱柱,∴BC⊥平面ACFD,则BC⊥AN,∵M、N分别为AD、CF的中点,且AD=4,AC=2,∴四边形ACNM为正方形,则CM⊥AN,又BC∩CM=C,∴AN⊥平面BCM;(2)由(1)知,即AC⊥BC,又ABC﹣DEF是直三棱柱,∴AC⊥平面BCFE,∴MA∥FC,则点M到平面GBC的距离即为AC=2,∴=,由(1)知,BC⊥CM,且,∴,设点G到平面BCM的距离为h,则,∴,则,即点G到平面BCM的距离为.【点评】本题考查了线面垂直的证明和点到平面的距离计算,属于中档题.22.(12分)已知函数为奇函数.(1)求实数a的值;(2)判断函数f(x)的单调性,并用函数单调性的定义证明;(3)解不等式f(lnx)>0.【分析】(1)由定义在R上的奇函数f(0)=0,即可求得a值;(2)判断f(x)在R上是增函数,利用单调性的定义即可证明;(3)由f(lnx)>0,可得,解之即可得解.【解答】解:(1)∵e x+1≠0的解集是R,∴f(x)的定义域是R.又∵f(x)是奇函数,∴f(0)=0.∴f(0)=a﹣1=0,即a=1.经检验知,当a=1时,f(﹣x)=﹣f(x),符合题意.(2)由(1)知,经判断可知f(x)在R上是增函数.任取x1,x2∈R,且x1<x2,则f(x1)﹣=,∵y=e x为增函数,x1<x2,∴0.∴>0,>0 <0.∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴f(x)在R上是增函数.(3)由,可得,∴,解得x>1,∴原不等式的解集为(1,+∞).【点评】本题主要考查函数的奇偶性与单调性的综合,考查利用单调性的定义证明函数的单调性,考查不等式的解法,属于中档题.。
2020-2021学年南通一中高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分) 1.函数f(x)=8x 的值域是( )A. (−∞,+∞)B. (−∞,0)C. (0,+∞)D. (−∞,0)∪(0,+∞)2.已知sin(π+α)=−12,那么cosα的值为( )A. ±12B. 12C. √32D. ±√323.对于正弦函数y =sinx 的图象,下列说法错误的是( )A. 向左右无限伸展B. 与y =cosx 的图象形状相同,只是位置不同C. 与x 轴有无数个交点D. 关于y 轴对称4.设e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ ,若A ,B ,D 共线,则k 的值为( )A. −94B. −49C. −38D. 不存在5.如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°,则sin(α−β)=( )A. 4+3√310B. 4√3+310C. 4−3√310D. 4√3−3106.将最小正周期为3π的函数f(x)=cos(ωx +φ)−sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π4个单位,得到偶函数图象,则满足题意的φ的一个可能值为( )A. 7π12B. −5π12C. −π4D. π47.的最大值为( )A.B.C. D.8.已知扇形的面积为4,弧长为4,求这个扇形的圆心角是( )A. 4B. 2°C. 2D. 4°9.设A,B,C ∈(0,π2),且cosA +cosB =cosC ,sinA −sinB =sinC ,则C −A =( ).A. −π6B. −π3C. π3D. π3或−π310. 如图,在△ABC 中,∠A =π2,AB =3,AC =5,AF ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ ,CE ⃗⃗⃗⃗⃗ =25CA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,则DE ⃗⃗⃗⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ 的值为( ) A. 34 B. 12 C. −2 D. −1211. 定义域为R 的函数y =f(x),若对任意两个不相等的实数x 1,x 2,都有x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),则称函数为“H 函数”,现给出如下函数:①y =−x 3+x +1②y =3x −2(sinx −cosx)③y =e x +1④f(x)={ln|x|,x ≠00,x =0其中为“H 函数”的有( )A. ①②B. ③④C. ②③D. ①②③12. 设向量a ⃗ =(−1,2),b ⃗ =(λ,−1),且|a ⃗ −b ⃗ |=√a ⃗ 2+b⃗ 2,则λ等于( ) A. 2 B. ±2 C. −2 D. 0二、单空题(本大题共4小题,共20.0分)13. 设0<θ<π2,向量a ⃗ =(sin2θ,cosθ),b ⃗ =(cosθ,1),若a ⃗ //b ⃗ ,则cos2θ=______. 14. 已知(a +1)−23<(3−2a)−23,则a 的取值范围 . 15. 抛物线的准线与轴交于点,点在抛物线对称轴上,过可作直线交抛物线于点、,使得,则的取值范围是 .16. 在下列四个命题中,正确的命题有______.①若实数x ,y 满足x 2+y 2−2x −2y +1=0,则y−4x−2的取值范围为[43,+∞);②点M 是圆(x −3)2+(y −2)2=2上一动点,点N(0,−2)为定点,则|MN|的最大值是7;③若圆(x −3)2+(y +5)2=r 2(r >0)上有且只有两个点到直线4x −3y =2的距离为1,则4<r <6;④已知直线ax +by +c −1=0(bc >0)经过圆x 2+y 2−2y −5=0的圆心,则4b +1c 的最小值是10. 三、解答题(本大题共6小题,共70.0分)17. 已知向量a ⃗ 与b ⃗ 的夹角为2π3,|a ⃗ |=2,|b ⃗ |=3,记m ⃗⃗⃗ =3a ⃗ −2b ⃗ ,n ⃗ =2a ⃗ +k b ⃗(I) 若m ⃗⃗⃗ ⊥n ⃗ ,求实数k 的值;(II) 当k =−43时,求向量m ⃗⃗⃗ 与n ⃗ 的夹角θ.18. 已知函数f(x)=cosωx(sinωx +√3cosωx)(ω>0). (1)求函数f(x)的值域;(2)若方程f(x)=√32在区间[0,π]上恰有两个实数解,求ω的取值范围.19. 设函数f(x)=log 3(9x)⋅log 3(3x),19≤x ≤9,若t =log 3x. (1)求t 的取值范围. (2)求f(x)的值域.20. 如图,在菱形ABCD 中,若|AB ⃗⃗⃗⃗⃗ |=2√3,∠BAD =60°,BE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ ,CF ⃗⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ .(1)若AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ ,求λ,μ,x ,y 的值; (2)求AE ⃗⃗⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗ .21. 已知函数f(x)=3xx+2,x ∈[0,4). (1)判别f(x)的单调性,并证明; (2)求函数f(x)的最值.22. 设函数y =f(x)的定义域为A ,区间I ⊆A.如果∃x 1,x 2∈I ,使得f(x 1)f(x 2)<0,那么称函数y =f(x)为区间I 上的“变号函数”.(1)判断下列函数是否为区间I上的“变号函数”,并说明理由.,+∞);①p(x)=1−3x,I=[13);②q(x)=sinx−cosx,I=(0,π2,1]上的“变号函数”.求实数a的取值范围.(2)若函数r(x)=ax2+(1−2a)x+1−a为区间[−12参考答案及解析1.答案:D解析:解:令y =8x ,则解析式中y 的取值范围即为函数的值域 则原函数的解析式可变形为x =8y , 要使该表达式有意义,分母y ≠0. ∴y ∈(−∞,0)∪(0,+∞) 故选:D .根据已知中函数的解析式,我们可使用“反表示法”求函数的值域,即根据已知函数的解析式,写出用y 表示x 的形式,令表达式有意义,即可求出满足条件的y 的取值范围,即原函数的值域. 本题考查的知识点是函数的值域,函数的值域的求法是函数中的难点之一,其中根据函数的解析式形式,选择适当的方法是求值域的问题.2.答案:D解析:利用诱导公式求出sinα,再利用同角三角函数关系式求出cosα即可. 本题考查诱导公式,同角三角函数关系式的应用.属于基础题.解:sin(π+α)=−12,则sinα=12,cosα=±√32.故选D .3.答案:D解析:解:y =sinx 是周期函数,图象可以向左右无限伸展,故A 正确,y =sin(x +π2)=cosx ,则与y =cosx 的图象形状相同,只是位置不同,故B 正确, 与x 轴有无数个交点,故C 正确,y =sinx 是奇函数,图象关于原点对称,故D 错误, 故选:D .根据y =sinx 的图象和性质分别进行判断即可.本题主要考查三角函数图象和性质,结合三角函数的图象是解决本题的关键.比较基础.4.答案:D解析:解:e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,且AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ ,若A ,B ,D 共线, 则BD ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,即(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ =λe 1⃗⃗⃗ +2λe 2⃗⃗⃗ ,∴{3−k =λ−(2k +1)=2λ, 解得k 的值不存在. 故选:D .根据平面向量的线性运算法则,利用共线定理和向量相等列出方程组,即可求出k 的值不存在. 本题考查了平面向量的线性运算与共线定理和向量相等的应用问题,是基础题目.5.答案:B解析:解:以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°, 可得sinα=45,cosα=−35,sin(α−β)=sinαcos30°−cosαsin30°=45×√32+35×12=3+4√310. 故选:B .利用任意角的三角函数的定义,求出α、β的三角函数值,然后利用两角差的正弦函数求解. 本题考查三角函数的定义的应用,两角差的正弦函数,考查计算能力.6.答案:B解析:本题主要考查由函数y =Acos(ωx +φ)的部分图象求解析式,函数y =Acos(ωx +φ)的图象变换规律,正弦函数、余弦函数的图象的奇偶性,属于基础题.由周期求得ω,可得函数f(x)的解析式,再根据函数y =Acos(ωx +φ)的图象变换规律,可得结论. 解:由于函数f(x)=cos(ωx +φ)−sin(ωx +φ)=√2cos(ωx +φ+π4)的最小正周期为3π=2πω,求得ω=23,∴函数f(x)=√2cos(23x +φ+π4).再把f(x)的图象向左平移π4个单位,得到偶函数y =√2cos[23(x +π4)+φ+π4] =√2cos(23x +5π12+φ),则满足题意的φ的一个可能值为−5π12, 故选B .7.答案:C解析:试题分析:因为函数,所以因此结合不等式的性质,得到,可知函数的最大值为4.选C.考点:本题主要考查三角函数的性质中值域的求解运用。
福建省福州市第一中学【最新】高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α的终边与单位圆的交点为P ⎛ ⎝⎭,则sin cos αα-=( )A .BC .5D . 2.一钟表的秒针长12cm ,经过25s ,秒针的端点所走的路线长为( ) A .10cmB .14cmC .10cm πD .14cm π3.函数cos 23y x π⎛⎫=-⎪⎝⎭的单调递减区间是( ) A .()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()27,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 4.已知平面直角坐标系中,ABC ∆的顶点坐标分别为()4,6A 、()2,1B -、()4,1C -,G 为ABC ∆所在平面内的一点,且满足()13AG AB AC =+,则G 点的坐标为( ) A .()2,2B .()1,2C .()2,1D .()2,45.sin4,4cos ,tan4的大小关系是( ) A .sin4tan4cos4<< B .tan4sin4cos4<< C .cos4sin4tan4<<D .sin4cos4tan4<<6.将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,得到函数22sin y x =-的图象,那么ϕ可以取的值为( )A .6πB .4π C .3π D .2π 7.已知定义在R 上的奇函数()f x 满足()()0f x f x π++=,且当()0,x π∈时,()sin f x x =,则233f π⎛⎫=⎪⎝⎭( )A .12-B .12C . D二、多选题8.下列关于函数()tan 24f x x π⎛⎫=+⎪⎝⎭的相关性质的命题,正确的有( ) A .()f x 的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭B .()f x 的最小正周期是πC .()f x 的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈⎪⎝⎭ D .()f x 的对称中心是(),028k k Z ππ⎛⎫-∈⎪⎝⎭ 9.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BC C .a b⊥D .()6a b BC +⊥10.以下函数在区间0,2π⎛⎫⎪⎝⎭上为单调增函数的有( )A .sin cos y x x =+B .sin cos y x x =-C .sin cos y x x =D .sin cos xy x=11.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形三、填空题12.已知()()sin 2cos 0παπα-++=,则1sin cos αα=________.13.已知tan 2α=,()tan αβ+=tan β=_________. 14.已知非零向量a 、b 满足2a =,24a b -=,a 在b 方向上的投影为1,则()2b a b ⋅+=_______.四、双空题15.已知O 为ABC ∆的外心,6AB =,10AC =,AO x AB y AC =+,且263x y +=;当0x =时,cos BAC ∠=______;当0x ≠时,cos BAC ∠=_______.五、解答题16.在平面直角坐标系中,已知()1,2a =-,()3,4b =.(Ⅰ)若()()3//a b a kb -+,求实数k 的值;(Ⅱ)若()a tb b -⊥,求实数t 的值.17.已知函数2sin 23y x π⎛⎫=+⎪⎝⎭.(Ⅰ)用“五点法”作出该函数在一个周期内的图象简图;(Ⅱ)请描述如何由函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+⎪⎝⎭的图象. 18.某实验室一天的温度(单位:C )随时间t (单位:h )的变化近似满足函数关系:()16cos1212f t t t ππ=-,[)0,24t ∈.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于17C ,则在哪个时间段实验室需要降温? 19.已知函数()()2sin 10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭,()f x 图象上两相邻对称轴之间的距离为2π;_______________; (Ⅰ)在①()f x 的一条对称轴3x π=-;②()f x 的一个对称中心5,112π⎛⎫⎪⎝⎭;③()f x 的图象经过点5,06π⎛⎫⎪⎝⎭这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线[]()0,x t t π=∈与()f x 和()cos g x x x =的图象分别交于P 、Q 两点,求线段PQ 长度的最大值及此时t 的值.注:如果选择多个条件分别解答,按第一个解答计分.20.在等腰梯形ABCD 中,已知//AB DC ,4AB =,2BC =,60ABC ∠=,动点E 和F 分别在线段BC 和DC 上(含端点),且BE mBC =,DF nDC =且(m 、n 为常数),设AB a =,BC b =.(Ⅰ)试用a 、b 表示AE 和AF ; (Ⅱ)若1m n +=,求AE AF ⋅的最小值. 21.已知函数()()()()22f x x m x m R =-+∈.(Ⅰ)对任意的实数α,恒有()sin 10f α-≤成立,求实数m 的取值范围; (Ⅱ)在(Ⅰ)的条件下,当实数m 取最小值时,讨论函数()()2cos 15F x f x a =+-在[)0,2x π∈时的零点个数.参考答案1.A 【解析】 【分析】利用三角函数的定义得出sin α和cos α的值,由此可计算出sin cos αα-的值. 【详解】由三角函数的定义得cos α=,sin α=,因此,sin cos αα-=故选:A. 【点睛】本题考查三角函数的定义,考查计算能力,属于基础题. 2.C 【分析】计算出秒针的端点旋转所形成的扇形的圆心角的弧度数,然后利用扇形的弧长公式可计算出答案. 【详解】秒针的端点旋转所形成的扇形的圆心角的弧度数为2552606ππ⨯=, 因此,秒针的端点所走的路线长()512106cm ππ⨯=. 故选:C. 【点睛】本题考查扇形弧长的计算,计算时应将扇形的圆心角化为弧度数,考查计算能力,属于基础题. 3.D 【分析】解不等式()2223k x k k Z ππππ≤-≤+∈,即可得出函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间. 【详解】解不等式()2223k x k k Z ππππ≤-≤+∈,得()263k x k k Z ππππ+≤≤+∈,因此,函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间为()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 故选:D. 【点睛】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题. 4.A 【分析】设点G 的坐标为(),x y ,根据向量的坐标运算得出关于x 、y 的方程组,解出这两个未知数,可得出点G 的坐标. 【详解】设点G 的坐标为(),x y ,()6,5AB =--,()0,7AC =-,()4,6AG x y =--,()()()1160,572,433AG AB AC =+=-+--=--,即4264x y -=-⎧⎨-=-⎩,解得22x y =⎧⎨=⎩,因此,点G 的坐标为()2,2. 故选:A. 【点睛】本题考查向量的坐标运算,考查计算能力,属于基础题. 5.D 【分析】作出4弧度角的正弦线、余弦线和正切线,利用三角函数线来得出sin4、4cos 、tan4的大小关系. 【详解】作出4弧度角的正弦线、余弦线和正切线如下图所示,则sin MP α=,cos OM α=,tan AT α=,其中虚线表示的是角54π的终边, 544π>,则0MP OM AT <<<,即sin4cos4tan4<<. 故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题. 6.B 【分析】写出平移变换后的函数解析式,将函数22sin y x =-的解析式利用二倍角公式降幂,化为正弦型函数,进而可得出ϕ的表达式,利用赋特殊值可得出结果. 【详解】将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,所得图象对应的函数的解析式为()sin 221y x ϕ=+-,22sin cos 21sin 212y x x x π⎛⎫=-=-=+- ⎪⎝⎭,()222k k Z πϕπ∴=+∈,解得()4k k Z πϕπ=+∈,当0k =时,4πϕ=.故选:B. 【点睛】本题考查利用三角函数图象变换求参数,解题的关键就是结合图象变换求出变换后所得函数的解析式,考查计算能力,属于中等题. 7.C 【分析】先推导出函数()y f x =的周期为2π,可得出2333f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,然后利用函数()y f x =的奇偶性结合函数的解析式可计算出结果.【详解】函数()y f x =是R 上的奇函数,且()()0f x f x π++=,()()f x f x π∴+=-,()()()2f x f x f x ππ∴+=-+=,所以,函数()y f x =的周期为2π,则23sin 33332f f f ππππ⎛⎫⎛⎫⎛⎫=-=-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:C. 【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题. 8.AC 【分析】分别求出函数()y f x =的定义域、最小正周期、单调递增区间和对称中心坐标,即可判断出四个选项的正误. 【详解】对于A 选项,令()242x k k Z πππ+≠+∈,解得()28k x k Z ππ≠+∈, 则函数()y f x =的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,A 选项正确; 对于B 选项,函数()y f x =的最小正周期为2π,B 选项错误; 对于C 选项,令()2242k x k k Z πππππ-<+<+∈,解得()32828k k x k Z ππππ-<<+∈, 则函数()y f x =的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,C 选项正确; 对于D 选项,令()242k x k Z ππ+=∈,解得()48k x k Z ππ=-∈, 则函数()y f x =的对称中心为(),048k k Z ππ⎛⎫-∈ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】本题考查正切型函数的基本性质,考查计算能力,属于基础题. 9.ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC a b AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题. 10.BD 【分析】先利用辅助角、二倍角以及同角三角函数的商数关系化简各选项中的函数解析式,然后利用正弦函数和正切函数的单调性判断各选项中函数在区间0,2π⎛⎫⎪⎝⎭上的单调性,由此可得出结论. 【详解】对于A 选项,sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,3,444x πππ⎛⎫+∈ ⎪⎝⎭, 所以,函数sin cos y x x =+在区间0,2π⎛⎫⎪⎝⎭上不单调;对于B 选项,sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,,444x πππ⎛⎫-∈- ⎪⎝⎭,所以,函数sin cos y x x =-在区间0,2π⎛⎫⎪⎝⎭上单调递增; 对于C 选项,1sin cos sin 22y x x x ==,当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈, 所以,函数sin cos y x x =在区间0,2π⎛⎫⎪⎝⎭上不单调; 对于D 选项,当0,2x π⎛⎫∈ ⎪⎝⎭时,sin tan cos x y x x ==,所以,函数sin cos x y x =在区间0,2π⎛⎫⎪⎝⎭上单调递增. 故选:BD. 【点睛】本题考查三角函数单调性的判断,解题的关键就是将三角函数解析式化简,并利用正弦、余弦和正切函数的单调性进行判断,考查推理能力,属于中等题. 11.BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确; 对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos CA B=->,cos cos cos 0A B C ∴<,对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确. 故选:BCD. 【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题. 12.52【分析】利用诱导公式化简等式()()sin 2cos 0παπα-++=,可求出tan α的值,将所求分式变形为221sin cos sin cos sin cos αααααα+=,在所得分式的分子和分母中同时除以2cos α,将所求分式转化为只含tan α的代数式,代值计算即可. 【详解】()()sin 2cos 0παπα-++=,sin 2cos 0αα∴-=,tan 2α∴=,因此,22221sin cos tan 1215sin cos sin cos tan 22αααααααα+++====.故答案为:52. 【点睛】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出tan α的值,考查计算能力,属于基础题. 13.4【分析】利用两角差的正切公式可计算出()tan tan βαβα=+-⎡⎤⎣⎦的值. 【详解】由两角差的正切公式得()()()tan tan tan tan 1tan tan αβαβαβααβα+-=+-==⎡⎤⎣⎦++=. 【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.14.18 【分析】利用向量数量积的几何意义得出2a b ⋅=,在等式24a b -=两边平方可求出b 的值,然后利用平面向量数量积的运算律可计算出()2b a b ⋅+的值. 【详解】2a =,a 在b 方向上的投影为1,212a b ⋅=⨯=,24a b -=,222222216244444242a b a a b b a a b b b =-=-⋅+=-⋅+=⨯-⨯+,可得22b =,因此,()22222818b a b a b b ⋅+=⋅+=+⨯=. 故答案为:18. 【点睛】本题考查平面向量数量积的计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题. 15.35 59【分析】(1)由0x =可得出O 为AC 的中点,可知AC 为ABC ∆外接圆的直径,利用锐角三角函数的定义可求出cos BAC ∠;(2)推导出外心的数量积性质212AO AB AB ⋅=,212AO AC AC ⋅=,由题意得出关于x 、y 和AB AC ⋅的方程组,求出AB AC ⋅的值,再利用向量夹角的余弦公式可求出cos BAC ∠的值. 【详解】当0x =时,由263x y +=可得12y =,12AO xAB y AC AC ∴=+=, 所以,AC 为ABC ∆外接圆的直径,则2ABC π∠=,此时3cos 5AB BAC AC ∠==; 如下图所示:取AB 的中点D ,连接OD ,则⊥OD AB ,所0DO AB ⋅=,()212AO AB AD DO AB AD AB AB ∴⋅=+⋅=⋅=,同理可得212AO AC AC ⋅=. 所以,()()221212263AO AB xAB y AC AB AB AO AC xAB y AC AC AC x y ⎧⋅=+⋅=⎪⎪⎪⋅=+⋅=⎨⎪+=⎪⎪⎩,整理得361810050263x y AB AC xAB AC y x y ⎧+⋅=⎪⋅+=⎨⎪+=⎩,解得356x =,2756y =,1003AB AC ⋅=,因此,5cos 9AB AC BAC AB AC ⋅∠==⋅. 故答案为:35;59. 【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出212AO AB AB ⋅=,212AO AC AC ⋅=,并以此建立方程组求解,计算量大,属于难题.16.(Ⅰ)13-;(Ⅱ)15-.【分析】(Ⅰ)求出向量3a b -和a kb +的坐标,然后利用共线向量的坐标表示得出关于k 的方程,解出即可;(Ⅱ)由()a tb b -⊥得出()0a tb b -⋅=,利用向量数量积的坐标运算可得出关于实数t 的方程,解出即可. 【详解】 (Ⅰ)()1,2a =-,()3,4b =,()()()331,23,40,10a b ∴-=--=-,()()()1,23,431,42a kb k k k +=-+=+-,()()3//a b a kb -+,()10310k ∴-+=,解得13k =-; (Ⅱ)()()()1,23,413,24a tb t t t -=--=---,()a tb b -⊥,()()()3134242550a tb b t t t ∴-⋅=⨯-+⨯--=--=,解得15t =-. 【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.17.(Ⅰ)图象见解析;(Ⅱ)答案不唯一,见解析. 【分析】 (Ⅰ)分别令23x π+取0、2π、π、32π、2π,列表、描点、连线可作出函数2sin 23y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图象简图;(Ⅱ)根据三角函数图象的变换原则可得出函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象的变换过程.【详解】(Ⅰ)列表如下:函数2sin 23y x π⎛⎫=+⎪⎝⎭在一个周期内的图象简图如下图所示:(Ⅱ)总共有6种变换方式,如下所示: 方法一:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法二:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法三:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象向左平移6π个单位,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法四:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法五:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法六:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象向左平移3π个单位,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象.【点睛】本题考查利用五点作图法作出正弦型函数在一个周期内的简图,同时也考查了三角函数图象变换,考查推理能力,属于基础题.18.(Ⅰ)4C ;(Ⅱ)从中午12点到晚上20点. 【分析】(Ⅰ)利用辅助角公式化简函数()y f t =的解析式为()162sin 126f t t ππ⎛⎫=-+ ⎪⎝⎭,由此可得出实验室这一天的最大温差; (Ⅱ)由[)0,24t ∈,得出13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭,令()17f t >,得到1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,解此不等式即可得出结论. 【详解】(Ⅰ)()16cos162sin 1261212f t t t t ππππ⎛⎫+ ⎪-=-⎝=-⎭,[)0,24t ∈. 因此,实验室这一天的最大温差为4C ; (Ⅱ)当[)0,24t ∈时,13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭, 令()162sin 17126f t t ππ⎛⎫=-+> ⎪⎝⎭,得1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,所以71161266t ππππ<+<,解得1220t <<,因此,实验室从中午12点到晚上20点需要降温. 【点睛】本题考查三角函数模型在生活中的应用,涉及正弦不等式的求解,考查运算求解能力,属于中等题.19.(Ⅰ)选①或②或③,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)当0t =或t π=时,线段PQ 的长取到最大值2. 【分析】(Ⅰ)先根据题中信息求出函数()y f x =的最小正周期,进而得出2ω=. 选①,根据题意得出()232k k Z ππϕπ-+=+∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选②,根据题意得出()56k k Z πϕπ+=∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选③,根据题意得出51sin 32πϕ⎛⎫+=-⎪⎝⎭,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式;(Ⅱ)令()()()h x f x g x =-,利用三角恒等变换思想化简函数()y h x =的解析式,利用正弦型函数的基本性质求出()h t 在[]0,t π∈上的最大值和最小值,由此可求得线段PQ 长度的最大值及此时t 的值. 【详解】(Ⅰ)由于函数()y f x =图象上两相邻对称轴之间的距离为2π,则该函数的最小正周期为22T ππ=⨯=,222T ππωπ∴===,此时()()2sin 21f x x ϕ=++. 若选①,则函数()y f x =的一条对称轴3x π=-,则()232k k Z ππϕπ-+=+∈,得()76k k Z πϕπ=+∈,22ππϕ-<<,当1k =-时,6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭; 若选②,则函数()y f x =的一个对称中心5,112π⎛⎫⎪⎝⎭,则()56k k Z πϕπ+=∈, 得()56k k Z πϕπ=-∈,22ππϕ-<<,当1k =时,6π=ϕ, 此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;若选③,则函数()y f x =的图象过点5,06π⎛⎫⎪⎝⎭,则552sin 1063f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得51sin 32πϕ⎛⎫+=- ⎪⎝⎭,22ππϕ-<<,7513636πππϕ∴<+<, 51136ππϕ∴+=,解得6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭.综上所述,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)令()()()2sin 21cos 6h x f x g x x x x π⎛⎫=-=++- ⎪⎝⎭122cos 212cos 21022x x x x ⎛⎫=++=+≥ ⎪ ⎪⎝⎭,()cos21PQ h t t ∴==+, []0,t π∈,[]20,2t π∴∈,当20t =或22t π=时,即当0t =或t π=时,线段PQ 的长取到最大值2. 【点睛】本题考查利用三角函数的基本性质求解析式,同时也考查了余弦型三角函数在区间上最值的计算,考查计算能力,属于中等题. 20.(Ⅰ)AE a mb =+,12n AF a b +=+;(Ⅱ)6. 【分析】(Ⅰ)过点D 作//DM BC ,交AB 于点M ,证明出2AM BM CD ===,从而得出2AB CD =,然后利用向量加法的三角形法则可将AE 和AF 用a 、b 表示;(Ⅱ)计算出2a 、a b ⋅和2b 的值,由1m n +=得出1n m =-,且有01m ≤≤,然后利用向量数量积的运算律将AE AF ⋅表示为以m 为自变量的二次函数,利用二次函数的基本性质可求出AE AF ⋅的最小值. 【详解】(Ⅰ)如下图所示,过点D 作//DM BC ,交AB 于点M ,由于ABCD 为等腰梯形,则2AD BC ==,且60BAD ABC ∠=∠=,//AB DC ,即//CD BM ,又//DM BC ,所以,四边形BCDM 为平行四边形,则2DM BC AD ===,所以,ADM ∆为等边三角形,且2AM =,2CD BM AB AM ∴==-=,2AB CD ∴=, AE AB BE AB mBC a mb =+=+=+,()()111122n AF AB BC CF AB BC n CD a b n a a b +=++=++-=+--=+; (Ⅱ)2216a AB ==,1cos1204242a b AB BC ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,224b BC ==, 由题意可知,01m ≤≤,由1m n +=得出1n m =-, 所以,1112222n m mAF a b a b a b +-+-=+=+=+, ()()22222222m m m m AE AF a mb a b a a b a b mb---⎛⎫∴⋅=+⋅+=+⋅+⋅+ ⎪⎝⎭()222812224m m m =-+=-+,令()()2224f m m =-+,则函数()y f m =在区间[]0,1上单调递减,所以,()()min 16f m f ==,因此,AE AF ⋅的最小值为6. 【点睛】本题考查利用基底表示向量,同时也考查了平面向量数量积最值的计算,考查运算求解能力,属于中等题.21.(Ⅰ)[)0,+∞;(Ⅱ)见解析.【分析】(Ⅰ)由[]sin 12,0α-∈-可知,区间[]2,0-是不等式()0f x ≤解集的子集,由此可得出实数m 的不等式,解出即可;(Ⅱ)由题意可知,0m =,则()224f x x x =+,令()0F x =,可得出()152cos a f x -=,令[]2cos 2,2t x =∈-,对实数a 的取值范围进行分类讨论,先讨论方程()15a f t -=的根的个数及根的范围,进而得出方程2cos t x =的根个数,由此可得出结论.【详解】(Ⅰ)1sin 1α-≤≤,2sin 10α∴-≤-≤,对任意的实数α,恒有()sin 10f α-≤成立,则区间[]2,0-是不等式()0f x ≤解集的子集,02m ∴≥,解得0m ≥, 因此,实数m 的取值范围是[)0,+∞;(Ⅱ)0m ≥,由题意可知,0m =,()()22224f x x x x x =+=+, 令()0F x =,得()152cos a f x -=,令[]2cos 2,2t x =∈-,则()15a f t -=,作出函数15y a =-和函数()y f t =在[]2,2t ∈-时的图象如下图所示:作出函数2cos t x =在[)0,2x π∈时的图象如下图所示:①当152a -<-或1516a ->时,即当1a <-或17a >时,方程()15a f t -=无实根, 此时,函数()y F x =无零点;②当152a -=-时,即当17a =时,方程()15a f t -=的根为1t =-,而方程2cos 1x =-在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ③当2150a -<-<时,即当1517a <<时,方程()15a f t -=有两根1t 、2t ,且()12,1t ∈--,()21,0t ∈-,方程12cos x t =在区间[)0,2π上有两个实根,方程22cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有四个零点;④当150a -=时,即当15a =时,方程()15a f t -=有两根分别为2-、0,方程2cos 2x =-在区间[)0,2π上只有一个实根,方程2cos 0x =在区间[)0,2π上有两个实根,此时,函数()y F x =有三个零点;⑤当01516a <-<时,即当115a -<<时,方程()15a f t -=只有一个实根1t ,且()10,2t ∈,方程12cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ⑥当1516a -=时,即当1a =-时,方程()15a f t -=只有一个实根2,方程2cos 2x =在区间[)0,2π上只有一个实根,此时,函数()y F x =只有一个零点. 综上所述,当1a <-或17a >时,函数()y F x =无零点;当1a =-时,函数()y F x =只有一个零点;当115a -<<或17a =时,函数()y F x =有两个零点;当15a =时,函数()y F x =有三个零点;当1517a <<时,函数()y F x =有四个零点.【点睛】本题考查利用二次不等式求参数,同时也考查了复合型二次函数的零点个数的分类讨论,解题时要将函数分解为内层函数和外层函数来分析,考查数形结合思想与分类讨论思想的应用,属于难题.。
2020-2020学年浙江省杭州市高一(上)期末数学试卷一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣ C.D.﹣3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1]D.(,1]6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.38.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.29.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤513.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0]B.(﹣∞,1]C.(﹣∞,2]D.(﹣∞,3]二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N=,∁U M=.16.(3分)()+()=;log412﹣log43=.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是.19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a 的值为.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为.三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k 的取值范围.23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.2020-2020学年浙江省杭州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣【解答】解:因为sin120°=sin(90°+30°)=cos30°=.故选C.2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣ C.D.﹣【解答】解:∵sinα=,且α为第二象限的角,∴cosα=﹣=﹣.故选:D.3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)【解答】解:∵集合A={x∈R|x2﹣4x<0}={x|0<x<4},B={x∈R|2x<8}={x|x<3},∴A∩B={x|0<x<3}=(0,3).故选:A.4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)【解答】解:∵函数f(x)=log3x+x﹣3,定义域为:x>0;函数是连续函数,∴f(2)=log32+2﹣3<0,f(3)=log33+3﹣3=1>0,∴f(2)•f(3)<0,根据函数的零点的判定定理,故选:C.5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1]D.(,1]【解答】解:要使函数有意义,则log0.5(3x﹣2)≥0,即0<3x﹣2≤1,得<x≤1,即函数的定义域为(,1],故选:D6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.【解答】解:患者服用某种药物后心率立刻明显减慢,则函数的图象应呈下降趋势,之后随着药力的减退,心率再次慢慢升高,则函数的图象应一直呈上升趋势,但上升部分的图象比下降的图象要缓,排除AB,根据正常人的心率约为65,可排除D,只有C符合,故选:C7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.3【解答】解:∵函数f(x)=,∴f(5)=f(3)=f(1)=2.故选:C.8.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.2【解答】解:∵函数y=f(2x)+2x是偶函数,∴设g(x)=f(2x)+2x,则g(﹣x)=f(﹣2x)﹣2x=g(x)=f(2x)+2x,即f(﹣2x)=f(2x)+4x,当x=1时,f(﹣2)=f(2)+4=1+4=5,故选:A9.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【解答】解:f(﹣x)=|sin(﹣x)+cos(﹣x)|+|sin(﹣x)﹣cos(﹣x)|=|﹣sinx+cosx|+|﹣sinx﹣cosx|=|six+cosx|+|sinx﹣cosx|=f(x),则函数f(x)是偶函数,∵f(x+)=|sin(x+)+cos(x+)|+|sin(x+)﹣cos(x+)|=|cosx﹣sinx|+|cosx+sinx|=|sinx+cosx|+|sinx﹣cosx|=f(x),∴函数f(x)的周期是,故选:D10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【解答】解:如图所示,∵>π﹣2>1>0,∴sin2=sin(π﹣2)>sin1,∵,∴sin1=sin(π﹣1)>sin3.综上可得:sin2>sin1>sin3.故选B.11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:∵y=cos(2x﹣)=cos(﹣2x)=sin(2x+)=sin[2(x+)],∴将函数y=sin2x的图象向左平移个单位即可得到函数y=cos(2x﹣)的图象.故选:B.12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤5【解答】解:函数在(﹣∞,+∞)上是增函数,可得:,解得:1<a≤3.故选:B.13.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.【解答】解:根据定义作出函数f(x)的图象如图:(蓝色曲线),其中A(1,1),B(3,3),即f(x)=,当f(x)=时,当x≥3或x≤1时,由3﹣|x﹣3|=,得|x﹣3|=,即x C=或x G=,当f(x)=时,当1<x<3时,由x2﹣3x+3=,得x E=,由图象知若f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为x E﹣x C=﹣=,故选:B.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0]B.(﹣∞,1]C.(﹣∞,2]D.(﹣∞,3]【解答】解:对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m⇔m≤f (x)max,x∈[1,4].令u(x)=﹣ax,∵a>0,∴函数u(x)在x∈[1,4]单调递减,∴u(x)max=u(1)=4﹣a,u(x)min=1﹣4a.①a≥4时,0≥4﹣a>1﹣4a,则f(x)max=4a﹣1≥15.②4>a>1时,4﹣a>0>1﹣4a,则f(x)max={4﹣a,4a﹣1}max>3.③a≤1时,4﹣a>1﹣4a≥0,则f(x)max=4﹣a≥3.综上①②③可得:m≤3.∴实数m的取值范围为(﹣∞,3].故选:D.二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5} ,∁U M={1,5,6} .【解答】解:集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5};∁U M={1,5,6},故答案为:{2,3,4,5},{1,5,6}16.(3分)()+()=3;log412﹣log43=1.【解答】解:()+()==;log412﹣log43=.故答案为:3,1.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.【解答】解:由正切函数的周期公式得函数的周期T=;由f(x)>1得tan(2x﹣)>1,得+kπ<2x﹣<+kπ,得+<x<+,k∈Z,即不等式的解集为;故答案为:,;18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是(﹣4,﹣2)∪(0,2).【解答】解:设h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g (x)=﹣h(x),∴h(x)是奇函数,由图象可知:当﹣4<x<﹣2时,f(x)>0,g(x)<0,即h(x)>0,当0<x<2时,f(x)<0,g(x)>0,即h(x)<0,∴h(x)<0的解为(﹣4,﹣2)∪(0,2).故答案为(﹣4,﹣2)∪(0,2)19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a 的值为﹣1.【解答】解:∵x∈(﹣a,+∞),∴当﹣a<x<1﹣a时,y=ln(x+a)<0,当x>1﹣a时,y=ln(x+a)>0,又(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,①若a>0,y=ax+2与y=ln(x+a)均为定义域上的增函数,在x∈(﹣a,+∞)上,可均大于0,不满足题意;②若a=0,则2lnx)≤0对x∈(0,+∞)不恒成立,不满足题意;∴a<0.作图如下:由图可知,当且仅当方程为y=ln(x+a)的曲线与方程为y=ax+2的直线相交于点A,即满足时,(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,解方程得,解得a=﹣1.故答案为:﹣1.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为16.【解答】解:∵令t=f(x),则y=g(x)=f2(x)﹣af(x)+2a=t2﹣at+2a,∵g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,故t2﹣at+2a=0有两个根t1,t2,且t1+t2=a,t1t2=2a,且f(x1),f(x2),f(x3),f(x4)恰两两相等,为t2﹣at+2a=0的两根,不妨令f(x1)=f(x2)=t1,f(x3)=f(x4)=t2,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]=(2﹣t1)•(2﹣t1)•(2﹣t2)•(2﹣t2)=[(2﹣t1)•(2﹣t2)]2=[4﹣2(t1+t2)+t1t2]2=16.故答案为:16三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.【解答】(1)解:由得,,所以;(2)证明:定义域是[0,+∞),设任意的x2>x1≥0,则,∵,∴f(x2)>f(x1),函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k 的取值范围.【解答】解:(1)周期T=π,所以ω=2,当时,,(2分)得,又﹣π<φ<0,所以取k=﹣1,得(2分)所以,(1分)由,得,k∈Z所以函数y=f(x)的单调递增区间是得(k∈Z),(2分)(2)当时,,所以,(2分)所以log2k=﹣f(x)∈[﹣1,2],得.(3分)23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.【解答】解:(1)阴影部分的面积为:50+70+90+60=270,表示汽车在4小时内行驶的路程为270 km.(4分)(2)∵这辆汽车在行驶该段路程前里程表的读数是8018km,汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式为:(4分)图象如下图:(4分)24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.【解答】解:(1)方法一:当a=﹣1时,(2 分)由f(x)=1得或(2 分)解得x=0,1,﹣2,即解集为{0,1,﹣2}.(2分)方法二:当a=﹣1时,由f(x)=1得:(x﹣1)|x+1|﹣(x﹣1)=0(x﹣1)(|x+1|﹣1)=0(3分)∴得x=1或|x+1|=1∴x=1或x=0或x=﹣2即解集为{0,1,﹣2}.(3分)(2)当x≥a时,令x2﹣(a+2)x﹣a=0,∵,∴△=a2+8a+4=(a+4)2﹣12>0得,(2分)且先判断2﹣a,与大小:∵,即a<x1<x2,故当x≥a时,f(x)存在两个零点.(2分)当x<a时,令﹣x2+ax﹣3a=0,即x2﹣ax+3a=0得∵,∴△=a2﹣12a=(a﹣6)2﹣36>0得,同上可判断x3<a<x4,故x<a时,f(x)存在一个零点.(2分)综上可知当时,f(x)存在三个不同零点.且设,易知g(a)在上单调递增,故g(a)∈(0,2)∴x1+x2+x3∈(0,2).(2分)。
2020-2021学年合肥市高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分)1.已知集合A={x|x=2n,n∈N∗},B={x|x=2n,n∈N∗},则下列不正确的是()A. A⊆BB. A∩B=AC. B∩(∁z A)=ΦD. A∪B=B2.已知f(x)是以5为周期的奇函数,f(−3)=4且sinα=√32,则f(4cos2α)=()A. 4B. −4C. 2D. −23.设tan1234°=a,那么sin(−206°)+cos(−206°)的值为()A. 1+a√1+a2B. −1+a√1+a2C. a−1√1+a2D. 1−a√1+a24.设|a⃗|=1,|b⃗ |=2,且a⃗、b⃗ 夹角为23π,则|2a⃗+b⃗ |等于()A. 2B. 4C. 12D. 2√35.如图,有一个“鼓形”烧水壶正在接水.水壶底部较宽,口部较窄,中间部分鼓起.已知单位时间内注水量不变,壶中水面始终为圆形,当注水t=t0时,壶中水面高度ℎ达到最高ℎ0.在以下图中,最能近似的表示壶中水面高度ℎ与注水时间t的关系是()A. B.C. D.6.下面有命题:①y=|sinx−12|的周期是π;②y=sinx+sin|x|的值域是[0,2];③方程cosx=lgx有三解;④ω为正实数,y=2sinωx在[−π3,2π3]上递增,那么ω的取值范围是(0,34];⑤在y=3sin(2x+π4)中,若f(x1)=f(x2)=0,则x1−x2必为π的整数倍;⑥若A 、B 是锐角△ABC 的两个内角,则点P(cosB −sinA,sinB −cosA 在第二象限; ⑦在△ABC 中,若AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ >0,则△ABC 钝角三角形.其中真命题个数为( )A. 2B. 3C. 4D. 57.已知sin(α+π3)+sinα=√33,则sin(2α−π6)的值是( )A. 79B. −79C. 29D. −298.已知函数f(x)=|log 3x|,若函数y =f(x)−m 有两个不同的零点a ,b ,则( )A. a +b =1B. a +b =3mC. ab =1D. b =a m9.函数f(x)=ax 2+(2+a)x +1是偶函数,则函数的单调递增区间为( )A. [0,+∞)B. (−∞,0]C. (−∞,+∞)D. [1,+∞)10. 化简cos50°+cos70°−cos10°的结果为( )A. 0B. 2cosl0°C. −2cosl0°D. 2sinl0°11. 已知函数f(x)={log 3(x +2)+a,x ≥1e x −1,x <1,若f[f(ln2)]=2a ,则f(a)等于( )A. 12B. 43C. 2D. 412. 已知向量=(),=(1,)且,其中,则等于( )A.B.C.D.二、单空题(本大题共4小题,共20.0分)13. 已知向量|a ⃗ |=√5,b ⃗ =(1,0),c ⃗ =(3,4),若a ⃗ ⋅b ⃗ =1,(a ⃗ +λb ⃗ )//c ⃗ ,则实数λ= ______ . 14. 计算2sin50°−√3sin20°cos20°=______.15. 在长方形区域{(x,y)|0≤x ≤2,0≤y ≤1}中任取一点P ,则点P 恰好取自曲线y =cosx(0≤x ≤π2)与坐标轴围成的区域内的概率为______ .16. 14、已知是定义在上的函数,并满足,当时,,则。
专练07解答题-基础1.已知集合{}|1A x x =≥,集合{}|33,B x a x a a R =-≤≤+∈.(1)当4a =时,求A B ;(2)若B A ⊆,求实数a 的取值范围.【答案】(1)[)1,-+∞(2)(],2-∞【分析】(1)当4a =时,[]1,7B =-,根据并集定义,即可求得A B ;(2)因为B A ⊆,分别讨论B =∅和B ≠∅两种情况,即可求得实数a 的取值范围.【详解】(1)当4a =时,[]1,7B =-∴又[)1,A =+∞,则[)1,A B ⋃=-+∞(2)因为{}|1A x x =≥, B A⊆当B =∅时,33a a ->+,解得0a <当B ≠∅时,3331a a a -≤+⎧⎨-≥⎩,解得02a ≤≤综上所述,实数a 的取值范围为(],2-∞.【点睛】本题考查了并集运算和子集运算.本题的解题关键是掌握当B A ⊆时,分别讨论B =∅和B ≠∅两种情况,考查了分析能力和计算能力,属于基础题.2.化简求值:(1)())211032330.0021028---⎛⎫+--+ ⎪⎝⎭;(2)+.【答案】(1)1679-;(2)32.【分析】根据指数幂的运算法则,以及根式与指数幂的互化公式,直接计算,即可得出结果.【详解】(1)())2110323 30.0021028---⎛⎫+--+ ⎪⎝⎭2132********-⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭)410219=+-++1679=-;(2)=-531222=-+32=.【点睛】本题主要考查指数幂以及根式的化简求值,属于基础题型.3.已知α为第二象限角,且4sin 3cos 0+=αα.(Ⅰ)求tan α与sin α的值;(Ⅱ)sin 2cos 2sin cos αααα++与tan 2α的值.【答案】(Ⅰ)33tan ,sin 45αα=-=;(Ⅱ)524;27--.【分析】(Ⅰ)根据同角的三角函数关系即可求出tan α与sin α的值;(Ⅱ)利用齐次式弦化切与二倍角公式求值.【详解】解:(Ⅰ)∵4sin 3cos 0+=αα,∴3tan 4α=-,4cos sin 3αα=-,又22sin cos 1αα+=,且α为第二象限角,∴3sin 5α=;(Ⅱ)sin 2cos tan 22sin cos 2tan 1αααααα++=++325432214-+==--⨯+,22tan tan 21tan ααα=-2322447314-⨯==-⎛⎫-- ⎪⎝⎭.【点睛】本题主要考查同角的三角函数关系,属于基础题.4.已知a ,b ,c ,d 为实数,求证:()()()22222ac bd a b c d +≤++.【答案】证明见详解【分析】由作差法,将两式作差整理,得到()()()()2222220ac bd a b c d ad bc +-++=--≤,即可证明结论成立.【详解】因为a ,b ,c ,d 为实数,()()()()()222222222222222222ac bd a b c d a c acbd b d a c a d b c b d +-++=++-+++()2222220acbd a d b c ad bc =--=--≤显然成立;所以()()()22222ac bd a b c d +≤++.【点睛】本题主要考查不等式的证明,根据作差法证明即可,属于基础题型.5.已知函数()x x f x e e -=-.(1)判断函数()f x 的奇偶性,并证明;(2)证明函数()f x 在R 上单调递增;(3)若()()1210f m f m -++≤,求实数m 的取值范围.【答案】(1)函数()f x 是奇函数;证明见解析;(2)证明见解析;(3)(],2-∞-.【分析】(1)利用函数的奇偶性定义即可判断.(2)利用函数的单调性定义以及证明函数单调性的步骤:“任取、作差、变形、定号”即可证明.(3)利用奇偶性将不等式转化为()()121f m f m -≤--,再利用单调性可得121m m -≤--,解不等式即可求解.【详解】(1)函数()f x 的定义域是R ,因为()()()x x x x f x e e e e f x ---=-=--=-,即()()f x f x -=-,所以函数()f x 是奇函数.(2)证明:任取12,x x R ∈,且12x x <,则()()112212x x x x f x f x e e e e ---=--+()121212x x x x x x e e e e e +-=-+()121211x x x x e e e +⎛⎫=-+ ⎪⎝⎭1212,0x x x x e e <∴-<()()120f x f x ∴-<,∴()f x 在R 上单调递增.(3)由(1)(2)知函数()f x 是奇函数,所以()()()12121f m f m f m -≤-+=--.又函数()f x 是R 上的增函数,所以121m m -≤--,解得2m ≤-.故实数m 的取值范围是(],2-∞-.【点睛】本题考查函数奇偶性、单调性的证明,考查根据奇偶性、单调性求解,考查了学生对概念的理解和运用能力,属于基础题.6.已知函数()1sin 23f x x π⎛⎫=- ⎪⎝⎭.(1)求函数()f x 的单调区间;(2)求函数()f x 取得最大值时的x 集合.【答案】(1)5114,433k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)5|4,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【分析】(1)由条件利用正弦函数的单调性,求得函数的单调区间.(2)利用正弦函数的定义域和值域,求得函数取得最大值,以及此时的自变量x 的值.【详解】(1)()f x 在R 上的增区间满足:1222232k x k πππππ-+≤-≤+,k Z ∈,∴1522626k x k ππππ-+≤≤+,解得:54433k x k ππππ-+≤≤+,k Z ∈,所以单调递增区间为54,433k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,单调递增区间为5114,433k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈.(2)()max 12sin 223x f x π⎛⎫=-= ⎪⎝⎭,令:12232x k πππ-=+,k Z ∈,解得:543x k ππ=+,k Z ∈,函数()f x 取得最大值的x 集合为:5|4,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.【点睛】本题主要考查正弦函数的单调性、正弦函数的定义域和值域,属于基础题.7.在平面直角坐标系xOy 中,锐角α的顶点在坐标原点O ,始边与x 轴非负半轴重合,终边与单位圆交于点A ,且点A 的纵坐标为45.(1)求cos a 和sin α;(2)求tan 2α的值.【答案】(1)43sin ,cos 55αα==(2)247-【分析】(1)根据三角函数的定义求sin α,再根据同角的平方关系求cos a ;(2)由同角的商关系求出tan α,再用二倍角公式的正切公式求tan 2α.【详解】解:(1)由题意可知,4sin 5α=,∵角α为锐角,∴3cos 5α==;(2)由(1)知sin 4tan cos 3ααα==,则22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭.【点睛】本题主要考查三角函数的定义,考查同角的三角函数关系,考查二倍角的正切公式,属于基础题.8.已知对数函数()f x 过点()8,3.(1)求函数()f x 的解析式,并写出函数()f x 的定义域;(2)若()()11f x f x ->+,求x 的取值范围.【答案】(1)2()log f x x =,定义域为(0,)+∞;(2)(1,0)-【分析】(1)设()log a f x x =,代入点()8,3计算即可;(2)利用对数函数的单调性及定义域列不等式组求解即可.【详解】解:(1)设()log a f x x =,log 83,2a a =∴= ,所以2()log f x x =,定义域为(0,)+∞;(2)由已知得1010,1011x x x x x ->⎧⎪+>⇒-<<⎨⎪->+⎩,所以x 的取值范围是(1,0)-.【点睛】本题考查待定系数法求对数函数的解析式,考查对数函数单调性的应用,是基础题.9.(1)已知f 1x x ⎛⎫- ⎪⎝⎭=x 2+21x ,求f (x );(2)已知一次函数f (x )满足f (f (x ))=4x -1,求f (x );【答案】(1)f (x )=x 2+2;(2)1()23f x x =-或()21f x x =-+.【分析】(1)利用配凑法可求函数的解析式.(2)利用待定系数法可求函数的解析式.【详解】(1)(配凑法)∵2221112f x x x x x x ⎛⎫⎛⎫-=+=-+ ⎪ ⎪⎝⎭⎝⎭,∴()22f x x =+.(2)(待定系数法)∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0),则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b .∵f (f (x ))=4x -1,∴241a ab b ⎧=⎨+=⎩-,解得213a b =⎧⎪⎨=-⎪⎩或21a b =-⎧⎨=⎩,1()2()213f x x f x x ∴=-=-+或.【点睛】本题考查函数的解析式的求法,常用的方法有待定系数法、配凑法、函数方程组法等,注意根据题设的特征选择合适的方法,本题属于基础题.10.已知1x ,2x 是方程240x mx -+=的两个根,且()1212lg 2lg lg x x x x +=+,求m 的值.【答案】16m =【分析】由根与系数关系,先得到12x x m +=,124x x =,再由对数运算,即可求出结果.【详解】由题意可得,12x x m +=,124x x =,2160m ∆=->,即216m >;又()1212lg 2lg lg x x x x +=+,所以()412lg lg log 2lg lg 4m m m x x ===,因此16m =,满足216m >,故16m =.【点睛】本题主要考查对数的运算,熟记对数运算法则即可,属于基础题型.11.已知函数1222,1()log (1),1x x f x x x -⎧-=⎨+>⎩ ,且()3f a =,求(6)f a -的值.【答案】74-【分析】根据()3f a =,对a 分类讨论先求出a 的值,再代入求出(6)f a -.【详解】解:当1a ≤时,1()223a f a -=-=,2log 511a ∴=+>,舍去,当1a >时,2()log (1)3f a a =+=,7a ∴=,符合题意,(6)f a ∴-(1)f =-1122--=-27224-=-=-.【点睛】本题主要考查分段函数的函数值的求法,属于基础题.12.(1)已知1x >,求11x x +-的最小值;(2的最大值.【答案】(1)3;(2)5.【解析】【分析】(1)将代数式变形为()111111x x x x +=-++--,然后利用基本不等式可求出所求代数式的最小值;(2)根据代数式有意义得出010x ≤≤,分0x =或10x =、010x <<两种情况讨论,利用基本不等式可求出所求代数式在010x <<时的最大值,综合可得出结论.【详解】(1)1x >Q ,10x ∴->,()11111311x x x x ∴+=-++≥=--,当且仅当111x x -=-时,即当2x =时等号成立,11x x ∴+-的最小值为3;(2)由()100x x -≥知010x ≤≤.当0x =或100=;当010x <<时,100x ->1052x x +-≤=.当且仅当10x x =-,即当5x =时等号成立.的最大值为5.【点睛】本题考查利用基本不等式求最值,在应用基本不等式时,要注意“一正二定三相等”三个条件的成立,考查计算能力,属于基础题.13.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,(1)求a 的值;(2)求不等式22510ax x a -+->的解集.【答案】(1)2-;(2)1|32x x ⎧⎫-<<⎨⎬⎩⎭.【分析】(1)根据不等式的解集可得对应的一元二次方程的两根,由韦达定理可解得结果;(2)代入a 的值,解一元二次不等式可得结果.【详解】(1)依题意可得:252ax x +-=0的两个实数根为12和2,由韦达定理得:1522a+=-,解得:2a =-;.(2)则不等式22510ax x a -+->,可化为22530x x --+>.所以22530x x +-<,所以(21)(3)0x x -+<,所以132x -<<,故不等式22510ax x a -+->的解集1|32x x ⎧⎫-<<⎨⎬⎩⎭..【点睛】本题考查了一元二次不等式的解法,属于基础题.14.已知函数()4,0log ,0ax x f x x x +≤⎧=⎨>⎩且点()4,2在函数()f x的图象上.(1)求函数()f x 的解析式,并在图中的直角坐标系中画出函数()f x 的图象;(2)求不等式()1f x <的解集;(3)若方程()20f x m -=有两个不相等的实数根,求实数m 的取值范围.【答案】(1)()24,0log ,0x x f x x x +≤⎧=⎨>⎩,图像见解析(2)()(),30,2-∞-U (3)(],2-∞【分析】(1)将点()4,2代入()log a f x x =中,即可求解的值,进而求得函数()f x 的解析式,画出函数f (x )的图象.(2)分为0,0x x ≤>两种情况分别求解不等式()1f x <,再取并集即可得不等式()1f x <的解集.(3)欲求满足方程()20f x m -=有两个不相等的实数根的取值范围,可使函数()y f x =与2y m =有两个不同的交点,画出二者的图象即可判断出实数m 的取值范围.【详解】解:(1)由()f x 的图象经过点()4,2,可得log 42a =,即24a =,解得2a =,则()24,0log ,0x x f x x x +≤⎧=⎨>⎩,函数()f x 的图象如下图:(2)()1f x <即为041x x ≤⎧⎨+<⎩或20log 1x x >⎧⎨<⎩,即3x <-或02x <<,则解集为()(),30,2-∞-U ;(3)()20f x m -=有两个不相等的实数根,即有()y f x =的图象和直线2y m =有两个交点,由图象可得24m ≤,即2m ≤,可得m 的取值范围是(],2-∞.【点睛】本题主要考查函数的概念与图象、对数与对数函数、函数与方程以及一次函数和二次函数.15.如图是函数()sin 0,0,2y A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的图像,求A 、ω、ϕ的值,并确定其函数解析式.【答案】3A =,2ω=,3πϕ=,3sin 23y x π⎛⎫=+ ⎪⎝⎭.【分析】本题首先可以根据周期T π=计算出2ω=,然后根据最大值为3以及最小值为3-得出3A =,最后将点,312π⎛⎫ ⎪⎝⎭代入函数中即可求出3πϕ=并得出函数解析式.【详解】因为周期566T πππ⎛⎫=--= ⎪⎝⎭,所以222T ππωπ===,()sin 2φy A x =+,因为最大值为3,最小值为3-,所以3A =,()3sin 2y x ϕ=+,将点,312π⎛⎫ ⎪⎝⎭代入()3sin 2y x ϕ=+中,得π33sin φ6骣琪=+琪桫,解得()23k k Z πϕπ=+∈,因为2πϕ<,所以3πϕ=,3sin 23y x π⎛⎫=+ ⎪⎝⎭.【点睛】本题考查根据三角函数图像求函数解析式,可根据函数的周期、最值以及点的坐标来求解,考查数形结合思想,考查计算能力,是简单题.16.已知函数()2cos cos 1x x x f x =++,x ∈R .(1)求函数()y f x =的单调递增区间;(2)求0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()y f x =的值域.【答案】(1)(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)51,2⎡⎤⎢⎥⎣⎦【分析】(1)先根据降幂公式以及辅助角公式化简三角函数,令()222262k x k k ππππ-≤+≤π+∈Z 即可得出答案;(2)由02x π≤≤得72666x πππ≤+≤,由此即可求出答案.【详解】解:2cos cos 1y x x x =++13cos 2sin 2222x x =++3sin 262x π⎛⎫=++ ⎪⎝⎭;(1)令()222262k x k k ππππ-≤+≤π+∈Z ,得()36k x k k πππ-≤≤π+∈Z ,所以函数()y f x =的单调递增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)由02x π≤≤得72666x πππ≤+≤,∴1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,从而函数()y f x =的值域为51,2⎡⎤⎢⎣⎦.【点睛】本题主要考查三角函数的化简以及性质,属于基础题.17.我市某商场销售小饰品,已知小饰品的进价是每件3元,且日均销售量y 件与销售单价x 元可以用(314)y kx b x =+<<这一函数模型近似刻画.当销售单价为4元时,日均销售量为400件,当销售单价为8元时,日均销售量为240件.试求出该小饰品的日均销售利润的最大值及此时的销售单价.【答案】当该小饰品销售单价定位8.5元时,日均销售利润的最大,为1210元.【分析】根据已知条件,求出,k b ,利润(3)(),(314)Q x kx b x =-+<<,转化为求二次函数的最大值,即可求解.【详解】解:由题意,得4004,2408,k b k b =+⎧⎨=+⎩解得40,560.k b =-⎧⎨=⎩所以日均销售量y 件与销售单价x 元的函数关系为40560(314)y x x =-+<<.日均销售利润(3)(40560)Q x x =--+()2401742x x =--+21712140,31424x x ⎡⎤⎛⎫=---<<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.当172x =,即8.5x =时,max 121(40)12104Q ⎛⎫=-⨯-= ⎪⎝⎭.所以当该小饰品销售单价定位8.5元时,日均销售利润的最大,为1210元.【点睛】本题考查函数实际应用问题,确定函数解析式是关键,考查二次函数的最值,属于基础题18.一个扇形的所在的圆的半径为5,该扇形的弧长为5(1)求该扇形的面积;(2)求该扇形中心角的弧度数.【答案】(1)252;(2)1.【分析】(1)根据扇形面积公式直接计算;(2)根据扇形弧度数公式l r α=计算求值.【详解】解:(1) =5r ,5l =,1125S 55222lr ∴==⨯⨯=;(2)1l rα==【点睛】本题考查弧度制,扇形面积,重点考查基本公式,属于基础题型.19.化简下列各式:(1)22.531050.064π-⎡⎤⎛⎫⎢⎥-- ⎪⎢⎥⎝⎭⎣⎦;(2)已知11x x -=,且0x >,求122121x x x x x x x ---+-的值.【答案】(1)0;(2)1【分析】(1)利用指数的运算性质即可求解.(2)11x x -=,且0x >,可得21x x =+,将原式因式分解、通分、化简即可求解.【详解】(1)212.5312300.55327130.0640.06411080.42π--⎡⎤⎛⎫⎛⎫⎡⎤⎢⎥---=--= ⎪ ⎪⎣⎦⎝⎭⎢⎥⎝⎭⎣⎦=(2)由11x x-=,且0x >,可得21x x =+,112211222112211x x x x x x x x x x x x x x x x ⎛⎫⎛⎫+- ⎪⎪-⎝⎭⎝⎭--=--++--122211111x x x x x x x x x x --=-==++⎛⎫=+ ⎪⎝⎭+20.已知函数22()(sin cos )2cos f x x x x =++.(1)求函数()y f x =周期及其单调递增区间;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()y f x =的最大值和最小值.【答案】(1)最小正周期为π,单调递增区间为3[,]88k k k Z ππππ-++∈;(2)最大值为,最小值为1.【分析】(1)首先根据三角恒等变换可得()224f x x π⎛⎫=++ ⎪⎝⎭,根据周期公式即可求出周期;然后再令222,242k x k k Z πππππ-+≤+≤+∈,即可求出函数的单调递增区间;(2)由题意可知52,444x πππ⎡⎤+∈⎢⎥⎣⎦,进而sin 242x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,由此即可求出函数的最值.【详解】因为22()(sin cos )2cos 2sin 2cos 2224f x x x x x x x π⎛⎫=++=++=++ ⎪⎝⎭所以()224f x x π⎛⎫=++ ⎪⎝⎭;所以()f x 的最小正周期为2=2ππ;令222,242k x k k Z πππππ-+≤+≤+∈,所以3,88k x k k Z ππππ-+≤≤+∈所以()f x 的单调递增区间为3[,]88k k k Z ππππ-++∈;(2)50,2,2444x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦ ,,所以sin 242x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦所以()1,f x ⎡∈⎣,所以()f x 的最大值为1;【点睛】本题主要考查了三角恒等变换和正弦函数的相关性质,属于基础题.。
2020-2021学年上海市杨浦区控江中学高一上学期期末数学试题一、单选题1.函数111y x =-+的值域是( ) A .(,1)-∞B .(1,)+∞C .(,1)(1,)-∞⋃+∞D .(,)-∞+∞【答案】C 【分析】由反比例函数的性质可知101x ≠+,从而推出所求函数的值域. 【详解】解:由反比例函数的性质可知:101y x =≠+,则1111y x =-≠+,故值域为()(),11,+-∞⋃∞. 故选:C.2.若,0a b c a b c >>++=,则下列各式正确的是( )A .ab bc >B .ac bc >C .a b b c >D .ab ac > 【答案】D【分析】已知a b c >>,且0a b c ++=,于是可以推出得到最大数0a >和最小数0c <,而b 为正、负、零均有可能,所以每个选项代入不同的b ,逐一验证.【详解】a b c >>且0a b c ++=.当0a ≤时,0c b a <<,则0a b c ++<,与已知条件0a b c ++=矛盾,所以必有0a >,同理可得0c <.A 项,当1a =,0b =,1c =-时,ab bc =,故A 项错误;B 项,()0ac bc c a b -=-<,即ac bc <,故B 项错误;C 项,0b =时,a b c b =,故C 项错误;D 项,()0ab ac a b c -=->,即ab ac >,故D 项正确.故选:D3.已知函数1,0()0,01,0x f x x x >⎧⎪==⎨⎪-<⎩,若2()()F x x f x =⋅,则()F x 是( )A .奇函数,在(,)-∞+∞上为严格减函数B .奇函数,在(,)-∞+∞上为严格增函数C .偶函数,在(,0)-∞上严格减,在(0,)+∞上严格增D .偶函数,在(,0)-∞上严格增,在(0,)+∞上严格减【答案】B【分析】由()()f x f x -=-可知()f x 为奇函数,利用奇偶函数的概念即可判断设2()()F x x f x =⋅的奇偶性,从而得到答案.【详解】1,01,0()0,00,0()1,01,0x x f x x x f x x x ⎧->>⎧⎪⎪-===-==-⎨⎨⎪⎪<-<⎩⎩()f x ∴为奇函数,又2()()F x x f x =⋅22()()()()()F x x f x x f x F x ∴-=-⋅-=-⋅=-()F x ∴是奇函数,可排除C,D.又222,0()()0,0,0x x F x x f x x x x ⎧>⎪=⋅==⎨⎪-<⎩()F x ∴在(,)-∞+∞上单调递增.故选:B4.设0a b c >>>,则()221121025a ac c ab a a b ++-+-取得最小值时,a 的值为( ) AB .2C .4 D.【答案】A 【分析】转化条件为原式211()(5)()ab a a b a c ab a a b =+++-+--,结合基本不等式即可得解. 【详解】()221121025a ac c ab a a b ++-+- 2211()()21025()ab a a b ab a a b a ac c ab a a b =+++----+-+- 2211()1025()ab a a b a ac c ab a a b =+++-+-+-211()(5)()ab a a b a c ab a a b =+++-+--04≥=, 当且仅当1()15ab a a b a c =⎧⎪-=⎨⎪=⎩,即a =2b =5c =时,等号成立. 故选:A.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.二、填空题5.已知全集{}{}210,27U x x A x x =<≤=<<,则A =_________.【答案】[]7,10【分析】根据补集的定义写出补集即可.【详解】解:{}{}210,27U x x A x x =<≤=<<,则A ={}|710x x ≤≤.故答案为:[]7,10.6.设实数a 满足2log 4a =,则a =_________.【答案】16【分析】根据对数式与指数式的互化即可求解.【详解】因为2log 4a =,所以4216a ==,故答案为:167.已知幂函数235()(1)mm f x m x --=-的图像不经过原点,则实数m =_________.【答案】2【分析】先由幂函数的定义求出m ,再检验得解.【详解】依题意得11m -=,解得2m =.此时()771f x x x -==,其图像不经过原点,符合题意, 因此实数m 的值为2.故答案为: 28.函数2()21f x x ax =--在区间[]1,3上为严格减函数的充要条件是_________.【答案】3a ≥【分析】根据二次函数的性质,建立对称轴与所给区间的关系即可求解.【详解】因为函数2()21f x x ax =--在区间[]1,3为严格减函数,所以二次函数对称轴3x a =≥,故答案为:3a ≥9.函数22()log (1)f x x =-的定义域为_________.【答案】(1,1)-【分析】根据对数的真数大于0求解即可.【详解】()()22log 1f x x =-, 210x ∴->,解得11x -<<所以函数()()2log 1a f x x =-的定义域为()1,1-, 故答案为:()1,1-10.设函数f (x )200x x x x -≤⎧=⎨⎩,,>,若f (α)=9,则α=_____. 【答案】﹣9或3 【分析】对函数值进行分段考虑,代值计算即可求得结果.【详解】由题意可得09αα≤⎧⎨-=⎩或209αα⎧⎨=⎩>, ∴α=﹣9或α=3故答案为:﹣9或3【点睛】本题考查由分段函数的函数值求自变量,属简单题.11.若函数()(1)x f x a a =>在[]1,2-上的最大值为4,则其最小值为_________.【答案】12【分析】根据指数函数的单调性即可求解.【详解】因为函数()(1)x f x a a =>在[]1,2-单调递增,所以24a =,解得2a =,当1x =-,1min 1()(1)22f x f -=-==, 故答案为:1212.在同一平面直角坐标系中,函数()y g x =的图像与3x y =的图像关于直线y x =对称,而函数()y f x =的图像与()y g x =的图像关于y 轴对称,若()1f a =-,则a 的值是______. 【答案】13- 【分析】根据函数的对称性求出()f x 的解析式,代入a 求解即可.【详解】解:因为函数()y g x =的图像与3x y =的图像关于直线y x =对称,则()3log g x x =, 又函数()y f x =的图像与()y g x =的图像关于y 轴对称,则()3()log f x x =-,()3()log 1f a a =-=-,则13a =-. 故答案为:13- 【点睛】知识点点睛:(1)()y g x =与x y a =图像关于直线y x =对称,则()log a g x x =;(2)()y f x =与()y g x =关于y 轴对称,则()()f x g x =-;(3)()y f x =与()y g x =关于x 轴对称,则()()f x g x =-;13.如果关于x 的方程53x x a -++=有解,则实数a 的取值范围是_________.【答案】[)8,+∞【分析】根据绝对值的几何意义求得53x x -++最小值为8,即可求出实数a 的取值范围.【详解】因为53x x -++表示数轴上的x 对应点到-3和5对应点的距离之和,其最小值为8, 故当8a ≥时,关于x 的方程53x x a -++=有解,故实数a 的取值范围为[8,)+∞,故答案为:[8,)+∞.14.若定义在R 上的奇函数()f x 在(0,)+∞上是严格增函数,且(4)0f -=,则使得()0xf x >成立的x 的取值范围是_________.【答案】(,4)(4,)-∞-⋃+∞【分析】由函数的奇偶性和零点,分别求出()0f x >和()0f x <的解集,再分别讨论当0x >和0x <时()0xf x >的解集即可求出结果.【详解】解:因为()f x 为奇函数,且有(4)0f -=,则()f x 在(,0)-∞上是也严格递增,且(4)0f =,所以()0f x >的解集为:()()4,04,-+∞;()0f x <的解集为:()(),40,4-∞-,则当0x >时,()0xf x >的解为()4,+∞,当0x <时,()0xf x >的解为(),4-∞-故()0xf x >成立的x 的取值范围是()(),44,-∞-+∞. 故答案为:()(),44,-∞-+∞【点睛】思路点睛:类似求()0xf x >或求()0f x x >的解集的问题,往往是根据函数的奇偶性和单调性先求出()0f x >或()0f x <的解,再结合x 的范围进行求解.15.函数()lg(221)x x f x a -=++-的值域是R ,则实数a 的取值范围是___________.【答案】](,1-∞-【分析】函数()lg(221)x x f x a -=++-的值域为R ,即()221x x g x a -=++-能取遍一切正实数,利用均值不等式求解即可.【详解】设()221x x g x a -=++-,由()lg(221)x x f x a -=++-的值域为R ,知()221x x g x a -=++-可以取所有的正值,又()22111x x g x a a a -=++-≥-=+,当且仅当0x =时等号成立,故()g x 的值域为[1,)a ++∞,所以只需满足[)()1,0,a ++∞⊇+∞即可,即1a ≤-故答案为:](,1-∞-【点睛】关键点点睛:求出()221x x g x a -=++-的值域,由题意知()221x x g x a -=++-能取遍一切正实数,转化为()g x 的值域包含()0,∞+是解题的关键,属于中档题.16..若直角坐标平面内两点,P Q 满足条件:①,P Q 都在函数()y f x =的图象上;②,P Q 关于原点对称,则称点对(,)P Q 是函数()y f x =的一个“友好点对”(点对(,)P Q 与(,)Q P 看作同一个“友好点对”).已知函数2241,0(){2,0x x x x f x x e++<=≥,则()f x 的“友好点对”有 个. 【答案】2【详解】解:根据题意:“友好点对”,可知,只须作出函数y=2x 2+4x+1(x <0)的图象关于原点对称的图象,看它与函数y="2" /e x (x≥0)交点个数即可.如图,观察图象可得:它们的交点个数是:2.即f (x )的“友好点对”有:2个.故答案为2三、解答题17.已知函数2()21f x ax ax =++.(1)若实数1a =,请写出函数()3f x y =的单调区间(不需要过程);(2)已知函数()y f x =在区间[3,2]-上的最大值为2,求实数a 的值.【答案】(1)增区间是(1,)-+∞,减区间是(,1)-∞-;(2)18a =或1a =-. 【分析】(1)求出()f x 的单调区间,然后根据复合函数的单调性写出()3f x y =的单调区间即可;(2)根据二次函数的性质,讨论0a <,0a =,0a >不同范围下()f x 的最值,解出a .【详解】解:(1)1a =时,()221f x x x =++,在(),1-∞-上单调递减,在()1,-+∞上单调递增;则()3f x y =的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞.(2)()()222111f x ax ax a x a =++=++-,对称轴为1-, 当0a <时,()f x 在1x =-处取得最大值,()112f a -=-=,解得:1a =-当0a =时,()1f x =不成立;当0a >时,()f x 在()3,1--上单调递减,在()1,2-上单调递增,且对称轴为1x =-,()max f x =()2f ()2912f a a =+-=,解得:18a =综上所述:1a =-或18a =. 【点睛】本题考查复合函数的单调性以及二次函数的最值,属于基础题.思路点睛:(1)复合函数的单调性:分别判断内层函数和外层函数的单调性,根据同增异减的原则写出单调区间即可;(2)()221f x ax ax =++的最高次项系数为a ,不一定为二次函数,需讨论a 与0的关系; 18.设函数()|2|,()2f x x a g x x =-=+.(1)当1a =时,求不等式()()f x g x ≤的解集;(2)求证:1,,222b b f f f ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12. 【答案】(1)1,33⎡⎤-⎢⎥⎣⎦;(2)证明见解析.【分析】(1)利用绝对值的意义,分类讨论,即可求不等式()()f x g x ≤的解集;(2)利用反证法证明即可.【详解】(1)当a =1时,|2x -1|≤x +2, 化简可得12122x x x ⎧≤⎪⎨⎪-≤+⎩或12212x x x ⎧<⎪⎨⎪-≤+⎩ 解得1132x -≤≤或132x <≤ 综上,不等式的解集为)1|33x x ⎧⎫-≤≤⎨⎬⎩⎭.(2)证明:假设1,,222b bf f f⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都小于12,则1122112211122a ba ba⎧-<+<⎪⎪⎪-<-<⎨⎪⎪-<-<⎪⎩,前两式相加得-12<a<12与第三式12<a<32矛盾.因此假设不成立,故1,,222b bf f f⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.【点睛】关键点点睛:证明至少、至多类命题时,考虑反证法是解题的关键,首先要根据题意恰当反设,正常推理,寻求矛盾是重点,属于中档题.19.研究表明:在一节40分钟的网课中,学生的注意力指数y与听课时间x(单位:分钟)之间的变化曲线如图所示,当[0,16]x∈时,曲线是二次函数图像的一部分;当[16,40]x∈时,曲线是函数0.880log()y x a=++图像的一部分,当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数()y f x=的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)【答案】(1)20.81(12)84,(0,16]()4log(15)80,(16,40]x xf xx x⎧--+∈⎪=⎨⎪-+∈⎩;(2)14分钟.【分析】(1)根据题意,分别求得(0,16]x∈和(16,40]x∈上的解析式,即可求解;(2)当(0,16]x∈和(16,40]x∈时,令()68f x<,求得不等式的解集,即可求解.【详解】(1)当(0,16]x∈时,设函数2()(12)84(0)f x b x b=-+<,因为2(16)(1612)8480f b =-+=,所以14b =-,所以21()(12)844f x x =--+, 当(16,40]x ∈时,0.8()log ()80f x x a =++, 由0.8(16)log (16)8080f a =++=,解得15a =-,所以0.8()log (15)80f x x =-+, 综上,函数的解析式为20.81(12)84,(0,16]()4log (15)80,(16,40]x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩. (2)当(0,16]x ∈时,令21()(12)84684f x x =--+<,即2(12)64x ->,解得4x <或20x >(舍去),所以[0,4]x ∈,当(16,40]x ∈时,令0.8()log (15)8068f x x =-+<,得12150.829.6x -≥+≈,所以[30,40]x ∈,所以学生处于“欠佳听课状态”的时间长为40403014-+-=分钟.20.已知1()log 1a mx f x x -=-(0a >、1a ≠)是奇函数. (1)求实数m 的值;(2)判断函数()f x 在(1,)+∞上的单调性,并给出证明;(3)当(,2)x n a ∈-时,()f x 的值域是(1,)+∞,求实数a 与n 的值.【答案】(1)1m =-;(2)1a >时()f x 在(1,)+∞上严格减;01a <<时.()f x 在(1,)+∞上严格增;(3)21a n ==.【分析】(1)根据奇函数的定义可知f (﹣x )+f (x )=0,建立关于m 的等式关系,解之即可;(2)先利用函数单调性的定义研究真数的单调性,讨论a 的取值,然后根据复合函数的单调性进行判定;(3)先求函数的定义域,讨论(n ,a ﹣2)与定义域的关系,然后根据单调性建立等量关系,求出n 和a 的值.【详解】(1)∵函数()11amx f x log x -=-(a >0,a ≠1)是奇函数. ∴f (﹣x )+f (x )=0 即11log log 011aa mx mx x x +-+=---, 所以11log 011a mx mx x x +-⋅=---, 即222111m x x-=- 解得1m =±,当1m =时,1()log log (1)1a a xf x x -==--无意义,舍去. 故1m =-.(2)由(1)及题设知:()11ax f x log x +=-, 设11221111x x t x x x +-+===+---, ∴当x 1>x 2>1时,()()()211212122221111x x t t x x x x --=-=---- ∴t 1<t 2.当a >1时,log a t 1<log a t 2,即f (x 1)<f (x 2). ∴当a >1时,f (x )在(1,+∞)上是减函数. 同理当0<a <1时,f (x )在(1,+∞)上是增函数.(3)由题设知:函数f (x )的定义域为(1,+∞)∪(﹣∞,﹣1),∴①当n <a ﹣2≤﹣1时,有0<a <1.由(1)及(2)题设知:f (x )在为增函数,由其值域为(1,+∞)知11121an log n a +⎧=⎪-⎨⎪-=-⎩(无解); ②当1≤n <a ﹣2时,有a >3.由(1)及(2)题设知:f (x )在(n ,a ﹣2)为减函数,由其值域为(1,+∞)知1113a n a log a =⎧⎪-⎨=⎪-⎩得2a =+n =1.【点睛】方法点睛:利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数.21.若函数()f x 的定义域为D ,集合M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()f x 为M 上的t -增长函数.(1)已知函数()g x x =,函数2()h x x =,判断()g x 和()h x 是否为区间[]1,0-上的32-增长函数,并说明理由;(2)已知函数()f x x =,且()f x 是区间[]4,2--上的n -增长函数,求正整数n 的最小值;(3)如果()f x 是定义域为R 的奇函数,当0x ≥时,22()f x x a a =--,且()f x 为R 上的4-增长函数,求实数a 的取值范围.【答案】(1)()g x x =是,2()h x x =不是,理由见解析;(2)9;(3)(1,1)a ∈-. 【分析】(1)利用给定定义推理判断或者反例判断而得; (2)把恒成立的不等式等价转化,再求函数最小值而得解;(3)根据题设条件,写出函数f (x )的解析式,再分段讨论求得,最后证明即为所求. 【详解】(1)g (x )定义域R ,3333[1,0],(),()()()02222x x R g x g x x x ∀∈-+∈+-=+-=>,g (x )是, 取x =-1,311(1)()1(1)224h h h -+==<=-,h (x )不是, 函数()g x x =是区间[]1,0-上的32-增长函数,函数2()h x x =不是;(2)依题意,2[4,2],()()||||20x f x n f x x n x nx n ∀∈--+>⇔+>⇔+>, 而n>0,关于x 的一次函数22nx n +是增函数,x =-4时22min (2)8nx n n n +=-, 所以n 2-8n>0得n>8,从而正整数n 的最小值为9;(3)依题意,2222222,?(),?2,?x a x a f x x a x a x a x a ⎧+≤-⎪=--<<⎨⎪-≥⎩,而,(4)()x R f x f x ∀∈+>, f (x )在区间[-a 2,a 2]上是递减的,则x ,x +4不能同在区间[-a 2,a 2]上,4>a 2-(-a 2)=2a 2, 又x ∈[-2a 2,0]时,f (x )≥0,x ∈[0,2a 2]时,f (x )≤0,若2a 2<4≤4a 2,当x =-2a 2时,x +4∈[0,2a 2],f (x +4)≤f (x )不符合要求, 所以4a 2<4,即-1<a<1.因为:当4a 2<4时,①x +4≤-a 2,f (x +4)>f (x )显然成立;②-a 2<x +4<a 2时,x <a 2-4<-3a 2,f (x +4)=-(x +4)>-a 2,f (x )=x +2a 2<-a 2,f (x +4)>f (x ); ③x +4>a 2时,f (x +4)=(x +4)-2a 2>x +2a 2≥f (x ),综上知,当-1<a<1时,()f x 为R 上的4-增长函数, 所以实数a 的取值范围是(-1,1).【点睛】(1)以函数为背景定义的创新试题,认真阅读,分析转化成常规函数解决;(2)分段函数解析式中含参数,相应区间也含有相同的这个参数,要结合函数图象综合考察,并对参数进行分类讨论.。
2020高一数学上期末复习题(基础题)
一.选择题(共21小题)
1.设集合A={﹣2,﹣1,0,1},B={﹣1,0,1,2},则A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1,2}C.{0,1,2}
D.{﹣1,0,1}
2.已知角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点P (3,﹣4),则sinα的值是()
A.B.C.D.
3.半径为3,弧长为π的扇形的面积为()
A.B.C.3πD.9π
4.函数f(x)=e x+x的零点所在一个区间是()
A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)
5.2log510+log50.25=()
A.0B.1C.2D.4
6.下列关于函数f(x)=sin2x+1的表述正确的是()
A.函数f(x)的最小正周期是2π
B.当时,函数f(x)取得最大值2
C.函数f(x)是奇函数
D.函数f(x)的值域为[0,2]
7.半径为3,圆心角为的扇形的弧长为()
A.B.C.D.
8.下列四组函数中,f(x)与g(x)相等的是()
A.f(x)=1,g(x)=x0B.f(x)=lnx2,g(x)=2lnx
C.f(x)=x,g(x)=()2D.f(x)=x,g(x)=
9.若函数y=log a(x+3)(a>0,且a≠1)的图象恒过定点P,则点P的坐标是()A.(﹣2,0)B.(0,2)C.(0,3)D.(﹣3,0)
10.已知tanα=3,则的值是()
A.B.1C.﹣1D.﹣
11.函数y=a x+1﹣3(a>0,且a≠1)的图象一定经过的点是()A.(0,﹣2)B.(﹣1,﹣3)C.(0,﹣3)D.(﹣1,﹣2)12.已知=,则tanθ的值为()
A.﹣4B.﹣C.D.4
13.函数f(x)=log3|x﹣2|的大致图象是()
A.B.C.D.
14.函数f(x)=tan(x+)的单调递增区间为()
A.(2k﹣,2k+),k∈Z B.(2k﹣,2k+),k∈Z
C.(4k﹣,4k+),k∈Z D.(4k﹣,4k+),k∈Z
15.将函数f(x)=sin x的图象上所有点的横坐标缩短为原来的倍(纵坐标不变),再向右个单位,得到函数g(x)的图象,则函数g(x)的图象的一条对称轴为()A.x=B.x=C.x=﹣D.x=﹣
16.已知tan x=2,则sin2x﹣sin x cos x﹣cos2x的值为()
A.B.﹣C.D.
17.已知函数f(x)=sin(3x+φ)的图象的一个对称中心是,则φ的可能取值为()
A.B.﹣C.D.﹣
18.已知函数f(x)=x+tan x+1,若f(a)=﹣3,则f(﹣a)的值为()A.0B.3C.4D.5
19.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则ω,φ的值分别是()
A.2,﹣B.C.D.
20.函数f(x)=log3x+x﹣3的零点所在的区间是()
A.(0,2)B.(1,2)C.(2,3)D.(3,4)
21.已知集合A={x|x2+2x<0},B={x|a<x<a+1},且B⊆A,则实数a的取值范围是()A.a<﹣2或a>﹣1B.﹣2<a<﹣1C.a≤﹣2或a≥﹣1D.﹣2≤a≤﹣1二.填空题(共9小题)
22.设角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,若角α的终边上一点P 的坐标为(1,﹣),则cosα的值为.
23.已知函数f(x)=,则f[f()]=.
24.cos=.
25.已知幂函数f(x)=x a(a为常数)的图象经过点(3,),则a的值是.26.设函数,则f(f(2))的值为.
27.汽车从A地出发直达B地,途中经过C地.假设汽车匀速行驶,5h后到达B地.汽车与C地的距离s(单位:km)关于时间t(单位:h)的函数关系如图所示,则汽车从A 地到B地行驶的路程为km.
28.如表表示y是x的函数,则该函数的定义域是,值域是.
x0<x<11≤x<22≤x<33≤x≤4
y1234 29.计算(log29)•(log34)=.
30.已知集合A={x|﹣2≤x≤5},B={x|m+1<x<2m﹣1},若B⊆A,则实数m的取值范围是.
三.解答题(共10小题)
31.已知,且.
(Ⅰ)求tanα的值;
(Ⅱ)求cosα﹣sinα的值.
32.已知函数f(x)=a x﹣1(a>0,且a≠1)满足.
(Ⅰ)求a的值;
(Ⅱ)解不等式f(x)>0.
33.计算:(1)()0++();
(2)2lg5+lg+2.
34.已知函数f(x)=.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)用函数单调性的定义证明函数f(x)在(0,+∞)上是减函数.
35.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示.(1)求函数f(x)的解析式;
(2)若将函数y=f(x)的图象上所有点的纵坐标不变,横坐标伸长到原来的2倍,得到y=g(x)函数的图象.求当x∈[0,π]时,函数y=g(x)的单调递增区间.
36.已知定义域为R的奇函数f(x)=1﹣,a∈R.
(Ⅰ)求a的值;
(Ⅱ)用函数单调性的定义证明函数f(x)在R上是增函数.
37.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)在[0,π]上取最小值时对应的角度为θ,求半径为2,圆心角为θ的扇形的面积.
38.已知角α的终边经过点P(﹣4,3).
(1)求cos2α的值;
(2)求的值.
39.已知集合A={x|﹣3<x<2},B={x|1<2x<8},C={x|1﹣m<x<m+3}.(1)求A∩(∁R B);
(2)若C∩(A∪B)=C,求实数m的取值范围.
40.已知集合,B={x|x<1或x>2},U=R.(1)求A∪B;
(2)求A∩(∁U B).
2020乐山高一上期末复习题(基础题)
参考答案选择填空
一.选择题(共21小题)
1.D;2.A;3.B;4.B;5.C;6.D;7.C;8.D;9.A;10.C;11.D;12.A;13.D;14.A;15.C;16.A;17.B;18.D;19.A;20.C;21.D;二.填空题(共9小题)
22.;23.3;24.﹣;25.;26.1;27.500;28.(0,4];{1,2,3,4};29.4;30.(﹣∞,3];。