2017年广西高一数学竞赛“创新杯”决赛试卷(含参考答案)
- 格式:docx
- 大小:437.20 KB
- 文档页数:6
创新杯数学竞赛试题一、选择题(5’×10=50’) 以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的字母填在下面的表格中。
明阳教育1.与30以内的奇质数的平均数最接近的数是A.12 B.13 C.14 D.152.把10个相同的小正方体按如图所示的位置堆放,它的外表含有若干个小正方形,如图将图中标有字母A的一个小正方体搬去,这时外表含有的小正方形个数与搬动前相比A.不增不减 B.减少1个C.减少2个 n.减少3个3.一部电视剧共8集,要在3天里播完,每天至少播一集,则安排播出的方法共有________种。
A.21 B.22 C.23 D.244.甲、乙、丙三人出同样多的钱买同样的笔记本,最后甲、乙都比丙多得3本,甲、乙都给了丙2.4元,那么每本笔记本的价格是________元.A.0.8 B.1.2 C.2.4 D.4.85.用0,1,2,…,9这十个数字组成一个四位数,一个三位数,一个两位数与一个一位数,每个数字只许用一次,使这四个数的和等于2007,则其中三位数的最小值是:C,1736+204+58+9=2007A.201 B.203 C.204 D.2056.有2007盏亮着的灯,各有一个拉线开关控制着,拉一下拉线开关灯会由亮变灭,再拉一下又由灭变亮,现按其顺序将灯编号为1,2,…,2007,然后将编号为2的倍数的灯线都拉一下,再将编号为3的倍数的灯线都拉一下,最后将编号为5的倍数的灯线都拉一下,三次拉完后亮着的灯有_________盏.A.1004 B.1002 C.1000 D.9987.已知一个三位数的百位、十位和个位分别是a,b,c,而且a×b×c=a+b+c,那么满足上述条件的三位数的和为A.1032 B,1132 C.1232 D.13328.某次数学考试共5道题,全班52人参加,共做对181题.已知每人至少做对1题;做对1道题的有7人,做对2道题的人和做对3道题的人一样多,做对5道题的有6人,那么做对4道题的人数是A.29 B.31 C.33 D.359.一个三角形将平面分成2个部分,2个三角形最多将平面分成8个部分,…,那么5个三角形最多能将平面分成的部分数是A.62 B.92 C.512 D.102410.一条单线铁路上有5个车站A,B,C,D,E,它们之间的路程如图所示.两辆火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.那么应安排在某个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车的时间是二、填空题(5’×12二60’)11.观察5*2=5十55二60,7*4=7+77+777+7777=8638,推知9* 5的值是_111105_____·12.如图,将宽2米的一些汽车停在长度为30米的未划停车格的路边,最好的情况下可停___15____部车,最差的情况下可停____8_____部车.13.如图,一个圆被四条半径分成四个扇形,每个扇形的周长为7.14cm,那么该圆的面积为______12.56_____cm2(圆周率π取3.14).14.按以下模式确定,在第n个正方形内应填人的数是(n+1)( n+2)( n+3)-3n-7_________________,其中,n是非零的自然数.15.篮子里装有不多于500个苹果,如果每次二个,每次三个,每次四个,每次五个,每次六个地取出来,篮子中都剩下一个苹果,而如果每次七个地取出,那么没有苹果剩下,篮子中共有苹果_____301_____个.16.一个国家的居民不是骑士就是无赖,骑士不说谎,无赖永远说谎.我们遇到该国居民A,B,C,A说:“如果C是骑士,那么B是无赖.”C 说:“A和我不同,一个是骑士,一个是无赖.”那么这三个人中____B______是骑士,____AC____是无赖.17.甲、乙两人对同一个数做带余数除法,甲将它除以8,乙将它除以9,现知甲所得的商数与乙所得的余数之和为13,那么甲所得的余数是___4______·明阳18.如图,以△ABC的两条边为边长作两个正方形BDEC和ACFG,已知S△ABC:S四边形BDEC=2:7,正方形BDEC和正方形ACFG的边长之比为3:5,那么△CEF与整个图形面积的最简整数比是_____9:137______·19.一个口袋中装有3个一样的球,3个球上分别写有数字2,3和4.若第一次从袋子中取出一个球,记下球上的数字a,并将球放回袋中.第二次又从袋子中取出一个球,记下球上的数字b.然后算出它们的积.则所有不同取球情况所得到的积的和是____53____20.如图,A,B是圆的一条直径的两端,小张在A点,小王在B点,同时出发逆时针而行,第一周内,他们在C点相遇.在D点第二次相遇.已知C点离A点80米,D点离B点60米.则这个圆的周长是____360_____米.明阳教育21.九个连续的自然数,它们都大于80,那么其中质数至多有___4___个.22.把从1开始的奇数1,3,5,…,排成一行并分组,使得第n组有n个数,即(1),(3,5),(7,9,11),(13,15,17,19),…那么2007位于第___45____组,是这一组的第___27___个数.三、解答题(共40分)23.(20分)如图,A,B两地相距1500米,实线表示甲上午8时由A地出发往B地行走,到达B地后稍作休息,又从B地出发返回A地的步行情况;又虚线表示乙上午8时从B地出发向A地行走,到了A地,立即返回B地的步行情况.(1)观察此图,解下列问题:①甲在B地休息了多长时间?算一算,休息前、后步行的速度各是多少?15分,75、75②乙从B地到A地,又从A地到B地的步行速度各是多少?50、50(2)甲、乙二人在途中相遇两次,结合图形、算一算,第一次,第二次相遇的时刻各是几点几分?8:12,8:4524.(20分)如上图,将2008个方格排成一行,在最左边的方格中放有一枚棋子,甲、乙二人交替地移动这枚棋子,甲先乙后,每人每次可将棋子向右移动若干格,但移动的格数不能是合数,将棋子移到最右边格子的人获胜.(1)按每人每次移动的格子数分类,有哪4类走法?共以下4类走法:1、两人移动的棋子格数为即不是质数,也不是合数的数字:12、个位数字为2的质数:23、个位数字为5的质数:54、个位数字为1、3、7、9的质数。
高一数学竞赛试题高一数学竞赛试题时间:时间:8:30-11:00 8:30-11:00 8:30-11:00 总分:总分:总分:150150分一、填空题(本大题共15小题,每小题5分,共75分)分)1、如图,、如图,P P 为⊙O 外一点,过P 点作⊙O 的两条切线,切点分别为A ,B ,过PA 的中点Q 作割线交⊙O 于C ,D 两点,若QC QC==1,CD CD==3,则PB PB==________________。
2、若函数()()2ln f x x x a x=++为偶函数,则a = 。
3、函数()()2ax bf x x c +=+的图像如图所示,则a 0 0,,b 0 0,,c 0 0。
4、已知()221x f x x=+,则()()()()111123...2015...232015f f f f f f f æöæöæö+++++++=ç÷ç÷ç÷èøèøèø。
5、函数则()()222log 2log 3f x x x =-+的单调递减区间为的单调递减区间为 。
6、若方程2104xxeae -+=有负实数根,则a 的取值范围是的取值范围是。
7、设函数()31,12,1x x x f x x -<ì=í³î,则满足()()()2f af f a =的a 的取值范围是的取值范围是 。
8、设集合}{1,2,3......6A =,则集合A 的所有非空子集元素和的和为的所有非空子集元素和的和为 。
9、设函数()y f x =的图像与2x ay +=的图像关于y x =-对称,且()()241f f -+-=,则a = 。
1010、已知实数、已知实数,x y 满足()()()()3312011*********x x y y ì-+-=-ïí-+-=ïî,则x y += 。
2017年高中数学联赛一二试及详解高清word版
D
二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.
三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.
四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.
2017年全国高中数学联赛A卷
一试答案
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
2017年全国高中数学联赛A卷
二试答案一.
二、
三.
四。
2017年广西高一“创新杯”预赛试题参考答案及评分标准一、选择题(每小题6分,共36分.)1、(卢瑞庚老师供题)若2(3)()15x x n x mx ++=+-,则m 等于A. 2-B. 2C. 5-D. 5解析:根据多项式展开,对应系数比较得2,5-=-=m n ,故选A.2、(卢瑞庚老师供题)设集合},214|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==,则 A .N M ⊆ B .M N ⊆ C .N M = D .Φ=N M解析:对M :,412412+=+=k k x 对N :42214+=+=k k x ,故选A. 3、(苏华东老师供题)函数2,y x x =+1-≤x ≤3的值域是A. [0,12]B.1[,12]4-C. 1[,12]2- D . 3[,12]4解析:x x y +=2的对称轴为,21-=x 从图像上分析,当21-=x 时,函数有最小值,41)21(-=-f 当3=x 时,函数有最大值,12)3(=f 故函数的值域为1[,12]4-,选B . 4、(王强芳老师供题)计算2016220182016201720162017222⨯+⨯--的值等于 A.1 B.1- C.2 016 D.2 017解析:设2016x =,则原式=222(1)211(1)(2)221x x x x x x x x +-+==+-+++,选A. 5、(赵继源老师供题)若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则201520172016a b c ++的值为A .2015 B.2016 C.2017 D.0解析:最大的负整数是-1, a =-1;绝对值最小的有理数是0,b =0;倒数等于它本身的自然数是1,c =1. 201520172016a b c ++=201520171201701-+⨯+()=0,选D. 6、(赵继源老师供题)如图,四边形ABCD 中,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为 A.23 B.4 C.52 D.4.5(第6题图)解析:如图,以CD 为边作等边△CDE ,连接AE . 由于AC = BC ,CD = CE ,BCD BCA ACD ∠=∠+∠=DCE ACD ACE ∠+∠=∠.所以 △BCD ≌△ACE , BD = AE .因为30ADC ∠=︒,所以90ADE ∠=︒.在Rt △ADE 中,53AE AD ==,,于是DE =224AE AD -=,所以CD = DE = 4.选B.二、填空题(每小题9分,共54分)7、(凌玲老师供题)课程改革后,向100名老师调查对新旧版本教材的态度,有如下结果:赞成旧版本的人数是全体的五分之二,其余的不赞成;赞成新版本的比赞成旧版本的多30人;对新旧版本都赞成了老师比对新旧版本都不赞成的老师的3倍多2人.则对新旧版本都赞成了老师人数为____________.解析:设只赞成旧版本的老师a 人,只赞成新版本的老师b 人,新旧版本都赞成的老师c 人,新旧版本都不赞成的老师d 人,依题意:有40()()3032100a c b c a c c d a b c d +=⎧⎪+-+=⎪⎨=+⎪⎪+++=⎩407023100a c b c c d a b c d =-⎧⎪=-⎪⎪⇒-⎨=⎪⎪+++=⎪⎩即:c =14.答案:14. 8、(黎福庆老师供题)设m =5,那么m +1m 的整数部分是 . 解析:m +1m =555+, 2<5<2.3,2<m +1m =555+<3,答案:2. 9、(李艳娥老师供题)关于x 的方程:43240x x +-=的根是解析:原方程化成:2(2)3240x x +-=, (21)(24)0x x ∴-+= 得21x =或24x =-(舍去),于是x=0.10、(唐光明老师供题)若0=++c b a ,则)11()11()11(ba c a cbc b a +++++的值为 解析:3)111()111()111()11()11()11(-++++++++=+++++cb ac c b a b c b a a b a c a c b c b a 33)111)((-=-++++=cb ac b a .答案:-3 11、(李艳娥老师供题)已知a 、b 是两个不相等的质数,103a b +=,则ab = .解析:由103a b +=为奇数可知a 和b 中有一个为奇数另一个为偶数,故必有一个为2,另一个为101,ab =2×101=202. 12、(黎福庆老师供题)如图,将△APB 绕点B 按逆时针方向旋转90°后得到△A′P′B . 若BP =2,那么PP′的长为.(第12题图)解析:∵△APB 绕点B 按逆时针方向旋转90°后得到△A′P′B ,∴BP =BP ′,∠PBP′=90°.∴△BPP ′为等腰直角三角形,∴PP ′=2BP =22.答案:22. 三、解答题(每小题20分,共60分)13、(黎福庆老师供题)若等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程2610x x n -+-=的两根,求n 的值.解:∵三角形是等腰三角形,∴①a =2,或b =2,②a =b 两种情况……………………5分 ① 当a =2,或b =2时,∵a ,b 是关于x 的一元二次方程2610x x n -+-=的两根,∴x =2,把x =2代入2610x x n -+-=得,22﹣6×2+n ﹣1=0,解得:n =9. …………10分 当n =9时,方程的两根是2和4,而2,4,2不能组成三角形,故n =9不合题意. ………………………………………………………………………15分 ②当a =b 时,方程2610x x n -+-=有两个相等的实数根,∴△=2(6)4(1)0n ---=,解得:n =10..当n =10时,方程的根是3,而3,3,4能组成等腰三角形.综合上述n 的值为10. …………………………………………………………………20分14、(唐光明老师供题)如图,在△ABC 中,∠ACB =90º,CD ⊥AB 于D ,DE ⊥AC 于E ,EF ⊥AB 于F ,求证:AD 2=AF ·AB .证明:∵CD ⊥AB ,EF ⊥AB ,∴ EF //CD . …………………5分∴ ACAE AD AF =.……………………………………..………10分 ∵DE ⊥AC ,∠ACB =90º , ∴DE //BC . ∴ACAE AB AD =…………………………………….…..……15分 ∴ AF AD AD AB=. ∴ AD 2=AF ·AB …………….…….………….……………20分 15、(赵继源老师供题)如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.已知a b c (,,)和111a b c (,,)均为三角形数,且a b c ≤≤,求a c的取值范围. 解: 依题意得:.......(1)111......(2)a b c b c a+>⎧⎪⎨+>⎪⎩,……………………………………………5分 所以a c b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得 ca a c a +-<1, ………………………………………………………………10分 A BC D E F (第14题图)即ac a c a c -<-.化简得0322<+-c ac a ,两边除以2c 得 0132<+-⎪⎭⎫ ⎝⎛c a c a 所以253253+<<-c a .……………………………………15分 另一方面:a b c ≤≤,所以1≤c a 综合得1253≤<-c a …………………………20分。
创新数学大赛试题一、选择题(共5题,每题2分)1. 若一个等差数列的前三项分别是2x-1、3x+1和7x-5,那么x的值是多少?A. 1B. 2C. 3D. 42. 下列哪个图形的对称中心是其对角线的交点?A. 正方形B. 正五边形C. 正六边形D. 正八边形3. 若a、b、c是等比数列,且a^2 + b^2 + c^2 = 5,ab + bc + ca = 4,那么a + b + c的值是多少?A. 3B. 5C. 7D. 不能确定4. 一个圆的半径是5cm,另一个圆的直径是10cm,两个圆的面积比是多少?A. 1:2B. 1:4C. 2:1D. 4:15. 一个立方体的体积是64立方厘米,那么其对角线的长度是多少厘米?(保留根号)A. 4√3B. 8C. 8√3D. 16二、填空题(共5题,每题2分)6. 一个等比数列的前四项分别是1、2、4、_______,公比为2。
7. 如果一个圆的周长是15π,那么它的面积是_______。
8. 一个三棱锥的底面边长为6cm,高为5cm,侧面三角形的面积是_______。
9. 一个矩阵的行列式为0,那么这个矩阵是_______的。
10. 若一个二次函数y = ax^2 + bx + c的顶点坐标是(1, 2),那么a、b、c中至少有一个是_______。
三、解答题(共3题,每题10分)11. 证明:若一个整数n能被其自身的数字之和整除,则n的各位数字之和能被9整除。
12. 解方程组:\[\begin{cases}2x + 3y = 8 \\4x - 5y = 7\end{cases}\]13. 一个圆的半径为7cm,求由圆心到圆上一点,再由该点到圆上另一点所形成的两条线段的最小长度之和。
四、综合题(共2题,每题15分)14. 一个长方体的长、宽、高分别是a、b、c,已知 a + b + c = 20,且abc = 60。
求长方体的体积V。
15. 一个等差数列的前三项分别是3、5、7,若将其前n项的和表示为S_n,求S_n的最小值。
首届“创新杯”全国中学数学知识竞赛高一年级试题考生注意:1.本试卷满分为150分,考试时间为120分钟。
2.用钢笔或圆珠笔答在答题纸上。
一、选择题(每小题6分,共36分)1.足协向100名球迷调查对甲A转成中超以及减少参赛队伍的态度,其中75人赞成甲A转成中超,80人赞成减少参赛队伍,那么对于既赞成甲A转成中超,又赞成减少参赛队伍的统计中,下列说法正确的是【】.A.最多人数是55B.最少人数是55人C.最多人数是75D.最少人数是75人2.一个会议室的面积为am2,其窗子的面积为bm2,且a>b,如果把称为这个会议室的亮度,现在会议室和窗子同时增加cm2,则其亮度将【】.A增加 B.减少 C.不变 D.不确定3.高一年级举行排球赛,有可能夺冠的为A、B、C三个班,关于A、B、C到底谁是冠军,甲、乙、丙三同学进行了猜测,甲说:“一定是A班得冠”,乙说:“B班不可能得冠军”,丙说:“A班不可能得冠军”,结果出来后证实,甲、乙、丙三同学中有且仅有一个人判断是正确的,那么,谁是冠军呢?【】.A.A班B.B班C.C班D.不能确定4.神五飞天,举国欢庆,据科学有计算,运载神舟五号飞船的长征四号系列为箭,在点火后1分钟通过的路程为2千米,以后每分钟通过的路程增加2千米,在达到离地面240千米的高度时,火箭与飞船分离,则这一过程,大概需要()分钟【】.A.10B. 13C. 15D. 205.给定Rt△ABC,其中∠B=90°,若Rt△ABC所在平面有一点M,使△ABM和△BCM 都是直角三角形,则称M为“正角点”,这样的“正角点”有【】.A.1个B.2个C.3个D.无数多个6.函数f(x)=x2+bx+c(b,c为整数),集合S={f(k)|k∈Z},对于某个m∈Z,如果存在m1,m2∈Z使得f(m1)·f(m2)=f(m),则称f(m)为集合S中的“希望数”,则集合S中的“希望数”的数目是【】.A.有限个,比1多B.无穷多个C.不存在D. 1二、填空题(每小题9分,共54)。
高中数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。
A. 0B. 4C. -4D. 8答案:A3. 一个等差数列的前三项分别为1, 4, 7,求第四项的值。
A. 10B. 11C. 13D. 15答案:A4. 计算复数z = 1 + i的模。
A. √2B. 2C. 1D. √3答案:A二、填空题(每题5分,共20分)5. 已知等比数列的公比为2,首项为1,求第5项的值。
答案:326. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的点积。
答案:-67. 计算函数y = x^3 - 6x^2 + 11x - 6在x = 2处的导数值。
答案:18. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。
答案:(2, 3)三、解答题(每题10分,共60分)9. 求证:对于任意正整数n,n^2 + 3n + 2总是能被3整除。
证明:设n = 3k, 3k + 1, 3k + 2,其中k为整数。
当n = 3k时,n^2 + 3n + 2 = 9k^2 + 9k + 2 = 3(3k^2 + 3k + 1),能被3整除。
当n = 3k + 1时,n^2 + 3n + 2 = 9k^2 + 6k + 1 + 9k + 3 + 2 =3(3k^2 + 5k + 2),能被3整除。
当n = 3k + 2时,n^2 + 3n + 2 = 9k^2 + 12k + 4 + 9k + 6 + 2 = 3(3k^2 + 7k + 4),能被3整除。
因此,对于任意正整数n,n^2 + 3n + 2总是能被3整除。
10. 已知函数f(x) = x^3 - 3x^2 + 2x,求f(x)的单调区间。
解:首先求导数f'(x) = 3x^2 - 6x + 2。
创新数学大赛高中试题在数学的海洋中,创新是推动知识前行的风帆。
今年的高中创新数学大赛,旨在激发学生们对数学的热爱和探索精神。
以下是一些精心设计的试题,它们不仅考验学生的数学基础,更挑战他们的创新思维和解决问题的能力。
试题一:几何图形的变换在平面直角坐标系中,给定一个由四个点A(1,2), B(3,4), C(5,1), D(2,0)组成的四边形ABCD。
现在需要通过旋转和平移操作,将这个四边形变换到一个新的位置,使得它的对角线相交于坐标系的原点。
请给出具体的旋转角度和平移向量。
试题二:函数的极限探索考虑函数f(x) = (x^2 - 1) / (x - 1)。
当x趋近于1时,求f(x)的极限。
并证明你的结论。
试题三:概率与统计在一个班级中,有50名学生,他们的成绩分布如下:20名学生成绩在60-69分之间,15名学生成绩在70-79分之间,10名学生成绩在80-89分之间,5名学生成绩在90-99分之间。
假设成绩分布是均匀的,计算这个班级的平均成绩和标准差。
试题四:数列与级数给定一个数列:a1 = 2, a2 = 3, a3 = 5, ...,其中an = an-1 + an-2(对于n > 2)。
求这个数列的第20项。
试题五:组合数学问题在一个有100个座位的电影院里,有10个不同的电影可供选择。
如果每个座位可以独立选择播放的电影,不考虑座位是否被占用,计算总共有多少种不同的电影播放组合。
试题六:线性代数与矩阵给定一个3x3的矩阵A:\[ A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{{bmatrix} } \]求矩阵A的特征值和对应的特征向量。
试题七:拓扑学初步考虑一个平面上的简单闭曲线,它将平面划分为内部和外部两个区域。
如果在这个曲线上添加一个点,使得这个点与曲线上的其他点不重合,这个新的图形能否将平面划分为三个区域?请给出你的解释。
2012年广西高一数学竞赛初赛试卷考试时间:2012年9月16日(星期日)8:30-10:30一、选择题(每小题6分,共36分)1.若c b a ,,为有理数,且0323=++c b a ,则=++c b a ( )(A )0 (B )1 (C )2012 (D )2015答:A 。
解析:由有理数与无理数的性质可知0===c b a 时等式成立。
故选A.2.已知⎩⎨⎧=++=--02022z y x z y x ,则分式222222z y x z y x ++--=( ) (A )0 (B )1 (C )-1 (D )2答:C 。
解析:已知,002022=⎩⎨⎧=++=--x z y x z y x 得,则分式1222222-=++--z y x z y x .故选C.3.下列四图,都是由全等正方形组成的图形,其中哪一个能围成正方体?答:( )(A ) (B ) (C ) (D ) 答:A 。
解析:只有A 是可以的。
故选A. 4.己知a 是正数,并且:等于则224,12aa a a +=-( ) (A )5 (B )3 (C )1 (D )-3 答:A 。
解析:5424,12222=+-=+=-)(则由aa a a a a 。
故选A.5.化简22312523+++得( )(A )1 (B )22+ (C )12+ (D )122+答:D 。
解析:122)223(23)21(1252322312523+=++=+++=+++。
故选D.6.若函数c bx ax y ++=2,当1,0,2-=x 时,其函数值9,5,15-=y ,则函数y 的最大值为( ) (A )5 (B )219(C )13 (D )14 答:B 。
解析:由已知求得223192652()22y x x x =-++=--+。
故选B.二、填空题(每小题9分,共54分)1.方程:675691089++-++=++-++x x x x x x x x 的解为 . 答案:x=-7。
2017年广西高一创新杯参考答案2017年广西高一“创新杯”预赛试题参考答案及评分标准一、选择题(每小题6分,共36分)1.若$(x+3)(x+n)=x^2+mx-15$,则$m$等于A。
$-2$ B。
$2$ C。
$-5$ D。
$5$解析:根据多项式展开,对应系数比较得$n=-5,m=-2$,故选A。
2.设集合$M=\left\{x|x=\dfrac{k_1}{k_1+2},k\inZ\right\},N=\left\{x|x=\dfrac{k}{4},k\in Z\right\}$,则A。
$M\subseteq N$ B。
$N\subseteq M$ C。
$M=N$ D。
$M\cap N=\varnothing$解析:对$M$:$x=\dfrac{k_1}{k_1+2}$,对$N$:$x=\dfrac{k}{4}$,故选A。
3.函数$y=x^2+x,-1\leq x\leq 3$的值域是A。
$[0,12]$ B。
$[-1,12]$ C。
$[-\infty,12]$ D。
$(-\infty,12]$解析:$y=x^2+x$的对称轴为$x=-\dfrac{1}{2}$,从图像上分析,当$x=-1$时,函数有最小值$f(-1)=-\dfrac{1}{4}$,当$x=3$时,函数有最大值$f(3)=12$,故函数的值域为$[-1,12]$,选B。
4.计算$\dfrac{(x+1)^2-x^2}{2x+1}$的值等于A。
$1$ B。
$-1$ C。
$2016$ D。
$2017$解析:设$2016=x$,则原式$=\dfrac{(x+1)^2-x^2}{2x+1}=\dfrac{2x+1}{2x+1}=1$,选A。
5.若$a$是最大的负整数,$b$是绝对值最小的有理数,$c$是倒数等于它本身的自然数,则$a\times2015+2016b+c^{2017}$的值为A。
$2015$ B。
$2016$ C。
$2017$ D。
2017年广西高一“创新杯”决赛试卷参考答案一、选择题(每小题6分,共36分)1.如果1=++cc bb aa ,则abcabc 的值为 ( _★_ )A.1-B. 1C. 1±D. 与c b a ,,的值有关【答案】A解:c c b b a a ,,的取值是1或-1,因为1=++c c b b a a ,所以c c b b a a ,,中有2个1,1个-1.c b a ,,中有两正一负,所以0<abc ,.1-=abcabc2.已知非零实数a b 、满足:2210a ab b a b ++-+=+,则a b +的值等于 ( _★_ )A .1-B .0C .1D .2 【答案】B解:由题设得22211102a b a b ⎡⎤++++-=⎣⎦()()(),则0a b =+,10a =+,10b -=,故0a b =+.3.方程 3)2(22=-+x x x 的所有实数根之和为 ( ★ ) A .1 B.3 C.5 D .7 【答案】C 解:方程22()32x x x +=-化为2222(2)3(2)x x x x -+=-。
即3251060x x x -+-=,2(1)(46)0x x x --+=。
解得1x =。
经检验1x =是原方程的根。
∴ 原方程所有实数根之和为5。
4.如图,四边形ABHK 是边长为6的正方形,点C 、D 在边AB 上,且AC =DB =1,点P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作正方形AMNP 和正方形BRQP ,E 、F 分别为MN 、QR 的中点,连接EF ,设EF 的中点为G ,则当点P 从点C 运动到点D 时,点G 移动的路径长为 ( _★_ ) A.1 B. 2 C. 3 D. 6【答案】B解:设KH 中点为S ,连接PE 、ES 、SF 、PF 、PS ,可证明四边形PESF 为平行四边形,∴G 为PS 的中点,即在点P 运动过程中,G 始终为PS 的中点,所以G 的运行轨迹为△CSD 的中位线,∵CD =AB -AC -BD =6-1-1=4,∴点G 移动的路径长为421⨯=2.5.已知,,x y z 为三个非负实数,且满足325231x y z x y z ++=⎧⎨+-=⎩,设37s x y z =+-,则s 的最大值是 ( _★_ ) A .57-B. 75-C. 111D. 111- 【答案】D 解:由方程组解出73711x z y z=-⎧⎨=-⎩,由,x y 非负实数,可解得37711z ≤≤,∵373(73)711732s x y z z z z z =+-=-+--=-,取711z =代入即可求得,111max -=s6.()f x 是定义在R 上的函数,若0)1(=f ,且对任意x R ∈,满足)()2(x f x f -+≤2,)()6(x f x f -+≥6,则=)2017(f ( _★_ )A. 2015B. 2016C. 2017D. 2018 【答案】B解:∵ 对任意x R ∈,满足)()2(x f x f -+≤2,∴[][][](6)()(6)(4)(4)(2)(2)()6f x f x f x f x f x f x f x f x +-=+-+++-+++-≤,又)()6(x f x f -+≥6因此,(6)()6f x f x +-=,(6)()6f x f x +=+. ∴ (6)()6f x k f x k +=+,*k N ∈.∴ .20163366)1()33661()2017(=⨯+=⨯+=f f f二、填空题(每小题9分,共54分)7.已知实数x ,y 满足x 2+3x +y -4=0,则x +y 的最大值为 . 【答案】5解:由x 2+3x +y -4=0得y =-x 2-3x +4,把y 代入x +y 得:x +y =x -x 2-3x +4=-x 2-2x +4=-(x +1)2+5≤5,∴x +y 的最大值为5.8.设a =,且ab = 1,则a 2 + b 2的值为 .【答案】98解:因25a ===+,及ab = 1知,625)23(23232-=-=+-=b ,故a 2 + b 2 = (a + b )2– 2ab = 100 – 2 = 98.9.若f ex dx cx bx ax x +++++=+23455)12(,则e d c b a +-+-的值是 .【答案】2解:f ex dx cx bx ax x +++++=+23455)12( ,当x =0时,1=f ,当1-=x 时,1-=+-+-+-f e d c b a ,2-=-+-+-e d c b a2=+-+∴e d c b a -.10.如图所示,BC 是半圆⊙O 的直径,EF ⊥BC 于点F ,5BFFC=. 已知AB = 8,AE = 2.则AD 的长为 .【答案】231+ 解:联结BE .由BC 为直径知∠BEC = 90°.故BE == 又由Rt △BFE ∽Rt △EFC ,知225BE BF EF BE BF EC EC EF FC EC FC==⇒==⇒=由割线定理得()AE AE EC AD AB +===11.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :34+=kx y 与x轴、y 轴分别交于A 、B ,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是 .【答案】6解:∵直线l :y =kx +与x 轴、y 轴分别交于A 、B ,∴B (0,4),∴OB =在Rt △AOB 中,∠OAB =30°,∴OA OB =×4=12,∵⊙P 与l 相切,设切点为M ,连接PM ,则PM ⊥AB ,∴PM =12P A ,设P (x ,0),∴P A =12﹣x ,∴⊙P 的半径PM =12PA =6-12x ,∵x 为整数,PM 为整数,∴x 可以取0,2,4,6,8,10,6个数,∴使得⊙P 成为整圆的点P 个数是6.12.黑板上写有1001,,31,21,1⋅⋅⋅共100个数字.每次操作先从黑板上的数中选取2个数b a ,,然后删去b a ,,并在黑板上写上数ab b a ++,则经过99次操作后,黑板上剩下的数是 . 【答案】100解:1)1)(1(-++=++b a ab b a ,∵计算结果与顺序无关,∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++.13.(本小题满分20分)已知实数a ,b ,c 满足a +b +c =13,a 2+b 2+c 2=77,abc =48,求cb a 111++的值. 解:因为a +b +c =13,所以(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca )=169. ……………… 5分 因为a 2+b 2+c 2=77,所以ab +bc +ca =46. ……………… 10分 又因为abc =48,所以2423111=++=++abc ca bc ab c b a . ……………… 20分14.(本小题满分20分)如图,⊙O 的直径AB =2,AM 和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y . (1)求y 关于x 的关系式;(2)求四边形ABCD 的面积S ,并证明:S ≥2.解:(1)过点D 作BC DF ⊥于F ,则DF AB // ∵AB 是直径,AM 、BN 是切线∴AB BN AB AM ⊥⊥, ∴BN AM //∴四边形ABFD 为平行四边形又∵∠ABC =90°,∴四边形ABFD 为矩形.∴2==AB FD ,x AD BF ==∵DE 、DA ,CE 、CB 都是切线 ∴根据切线长定理,得x AD DE ==,y CB CE ==在DFC Rt ∆中,x y BF BC CF y x CE DE DC DF -=-=+=+==,,2∴222)(2)(x y y x -+=+化简,得)0(1>=x xy ……………………………… 10分 (2))0(,1)(21>+=+=x xx BC AD AB S ABCD,即)0(,1>+=x xx S ……………………………… 15分 ∵2)1(21xx x x -=-+≥0当且仅当1=x 时,等号成立 ∴xx 1+≥2,即S ≥2.……………………………… 20分15.(本小题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.解:因,a b 为正整数,要使得22324M a ab b =---的值为正整数,则有2a ≥. 当2a =时,b 只能为1,此时 4.M =故M 能取到的最小正整数值不超过4. 当3a =时,b 只能为1或2.若1,18b M ==;若2b =,则7M =.当4a =时,b 只能为1或2或3.若1,38b M ==;若2,24b M ==;若3,b =则2M =.……… 10分(下面考虑:22324M a ab b =---的值能否为1?)(反证法)假设1M =,则223241a ab b ---=,即22325a ab b -=+,2(3)25a a b b -=+ ①因b 为正整数,故25b +为奇数,从而a 为奇数,b 为偶数, 不妨设21,2a m b n =+=,其中,m n 均为正整数,则22222(3)(21)3(21)(2)4(332)3a a b m m n m m mn n ⎡⎤-=++-=+--+⎣⎦即2(3)a a b -被4除所得余数为3,而252(2)141b n n +=+=+被4除所得余数为1, 故①式不可能成立,故1M ≠.因此,M 能取到的最小正整数值为2.……………… 20分。