逻辑函数的卡诺图化简法介绍
- 格式:ppt
- 大小:2.12 MB
- 文档页数:24
1.4 用卡诺图化简逻辑函数本次重点内容1、卡诺图的画法与性质2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图逻辑函数可以用卡诺图表示。
所谓卡诺图,就是逻辑函数的一种图形表示。
对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。
在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。
二、最小项的定义及基本性质: 1、最小项的定义在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。
通常用m 表示最小项,其下标为最小项的编号。
编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。
如最小项C B A 对应的变量取值为000,它对应十进制数为0。
因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。
2、最小项的基本性质:(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。
(2)不同的最小项,使它的值为1的那组变量取值也不同。
(3)对于变量的任一组取值,全体最小项的和为1。
图1.4.1分别为二变量、三变量和四变量卡诺图。
在卡诺图的行和列分别标出变量及其状态。
变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。
这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。
小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最小项可用m0, m1,m2,……来编号。
01 0100011110 01ABCABCDBA0001111000011110m m m mm m m mm mm m01230112233mmmmmmmmmmmmmmmm456789101112131415图1.4.1 卡诺图二、应用卡诺图表示逻辑函数应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。
逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。
但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。
运用卡诺图法可以较简便的方法得到最简表达式。
但首先需要了解最小项的概念。
一、最小项的定义及其性质1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。
由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。
(2)不同的最小项,使它的值为1的那一组变量取值也不同。
(3)对于变量的任一组取值,任意两个最小项的乘积为0。
(4)对于变量的任一组取值,全体最小项之和为1。
3.最小项的编号最小项通常用mi表示,下标i即最小项编号,用十进制数表示。
以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。
下面举例说明把逻辑表达式展开为最小项表达式的方法。
例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。
第十章 数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。
卡诺图是按一定规则画出来的方框图。
优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。
缺点:当变量超过六个以上,就没有什么实用价值了。
公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。
2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。
注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项1次。
如:Y=F (A ,B ) (2个变量共有4个最小项B A B A B A AB )Y=F (A ,B ,C ) (3个变量共有8个最小项C B A C B A C B A BC A C B AC B A C AB ABC )结论: n 变量共有2n 个最小项。
三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为1: ②任意两个最小项的乘种为零; ③全体最小项之和为1。
(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用m i 表示。
3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。
而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。
例1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA 解:Y=AB(C +C)+BC(A +A)+CA(B +B)=ABC C B A ABC BC A ABC C AB +++++ =ABC C B A BC A C AB +++ =3567m m m m +++例2.写出下列函数的标准与或式:C B AD AB Y ++=解:))()(C B D A B A Y +++=( ))((C B D B A ++= D C B C A B A B A +++=D C B A D C B A C B A C B A BC A ++++=D C B A D C B A D C B A D C B A D C B A D BC A BCD A ++++++=_ 8014567m m m m m m m ++++++= =)8,7,6,5,4,1,0(m ∑ 列真值表写最小项表达式。
第十章数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。
卡诺图是按一定规则画出来的方框图。
优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。
缺点:当变量超过六个以上,就没有什么实用价值了。
公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。
2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。
注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项 1 次。
如:Y=F(A,B)(2 个变量共有4 个最小项AB AB AB AB )Y=F(A,B,C)(3 个变量共有 8 个最小项ABC ABC ABC ABC ABC ABC ABC ABC )结论: n 变量共有 2n个最小项。
三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为 1:②任意两个最小项的乘种为零;③全体最小项之和为 1。
(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用 mi表示。
3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。
而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。
例 1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA解:Y=AB( C +C)+BC( A +A)+CA( B +B)= ABC +ABC +ABC +ABC +ABC +ABC= ABC +ABC +ABC +ABC= m7 +m6+m5+m3例 2.写出下列函数的标准与或式:Y =AB +AD +BC解:Y =(A +B)( A +D)(B +C)= ( A +BD)(B +C)=AB +AB +AC +BCD=ABC +ABC +ABC +ABCD +ABCD=ABCD + _ ABCD +ABCD +ABCD +ABCD +ABCD +ABCD=m7 +m6+m5+m4+m1+m+m8=∑m(0,1,4,5,6,7,8)列真值表写最小项表达式。
卡诺图化简方法学生姓名:陈曦指导教师:杜启高将输出与输入之间的逻辑关系写成与、或、非等运算的组合式,就是逻辑函数式。
一、逻辑函数的卡诺图表示法将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上也相邻地排列起来,所得到的图形称为n变量最小项的卡诺图。
为了保证图中几何位置相邻地最小项在逻辑上也具有相邻性,这些数码不能按自然二进制数从小到大地顺序排列,而必须按图中的方式排列,以确保相邻的两个最小项仅有一个变量是不同的。
从卡诺图上可以看到,处在任何一行或一列两端的最小项也仅有一个变量不同,所以它们也具有逻辑相邻性。
因此,从几何位置上应当将卡诺图看成是上下、左右闭合的图形。
任何一个逻辑函数都能表示为若干最小项之和的形式,自然也可以用卡诺图来表示任意一个逻辑函数。
具体做法是:首先将逻辑函数化为最小项之和的形式,然后在卡诺图上标出与之相对应的最小项,在其余位置上标入0,就得到了表示该逻辑函数的卡诺图。
也就是说,任何一个逻辑函数都等于卡诺图中填入1的那些最小项之和。
二、用卡诺图化解逻辑函数化简时依据的基本原理就是具有相邻性的最小项可以合并,并消去不同的因子。
由于在卡诺图上几何位置相邻与逻辑上的相邻性是一致的,因而从卡诺图上能直观的找出那些具有相邻性的最小项并将其合并化简。
合并最小项的原则:若两个最小项相邻,则可以合并为一项并消去一对因子。
若四个最小项相邻并排列成一个矩形组,则可合并为一项并消去两队因子。
若八个最小项相邻并且排列成一个矩形组,则可以合并成一项并消去三对因子。
合并后的结果中只剩下公共因子。
卡诺图化简法步骤:(一)将函数式化为最小项之和的形式;(二)画出表示该逻辑函数的卡诺图;(三)找出可以合并的最小项;(四)画出包围圈并选取化简后的乘积项。
在画包围圈时要注意:(一)包围圈越大越好;(二)包围圈的个数越少越好;(三)同一个“1”方块可以被圈多次;(四)画包围圈时,可先圈大,再圈小;(五)每个圈要有新的成分,如果某一圈中所有的“1”方块均被别的包围圈包围,就可以舍掉这个包围圈;(六)不要遗漏任何方块。