(完整版)天体运动中的追及相遇问题
- 格式:docx
- 大小:65.02 KB
- 文档页数:6
天体运动中的相遇、急追及问题引言天体运动中的相遇、急追问题是天体力学研究中的一个重要方面。
它能够帮助我们了解天体之间的相互作用规律,及其对天体系统演化的影响。
在太阳系中,行星之间的相对运动状态对于行星成型、轨道演化、甚至是地球存在的稳定性都有着重要的影响。
因此,对于相遇、急追等问题的研究,有着重要的科学意义和应用价值。
相遇问题天体运动中的相遇问题是指两个天体在一个瞬间处于非常接近的状态。
在实际应用中,我们通常定义两个天体之间的相遇状态为:1.两个天体之间的相对距离小于它们的半径之和。
2.两个天体相对运动的曲率半径非常小,它们的运动方向将会接近相反。
在天体力学中,相遇问题是一个非线性的多体系统问题,因此相遇问题的分析非常复杂。
相遇问题的一个经典案例就是恒星聚集星团中的相遇。
相遇问题不仅存在于天体力学中,在社会科学中也具有重要意义。
比如,在交通流中车辆的相遇,或是人类的相遇等。
相遇问题的研究能够帮助我们理解各种物理和社会事件的运动规律。
急追问题急追问题是指在天体运动中,一个天体在追赶另一个天体的过程中,它们之间的相对运动状态。
具体来讲,急追问题包括两种情况:一个天体相对另一个天体的运动速度比它们的距离更快或两个天体沿同一方向运动但速度不同的情况。
在恒星演化中,大质量恒星在一起形成成团状态,且成团状态下的恒星牵涉到的对其他恒星的急追问题有助于解释恒星演化的起源。
问题分析在天体力学中,相遇、急追问题的计算基本上都是建立在二体问题的基础之上。
因此,在分析问题的时候,我们通常也是基于二体问题进行研究。
二体系统主要包括两个方面的因素:运动的质量和运动的形态。
运动的质量代表系统受到的重力和其他外界力量,运动的形态则是由系统运动状态决定的。
对于相遇、急追问题,我们主要考虑的是运动的形态因素。
在求解相遇、急追问题的时候,我们通常会采用数学建模的方法,通过分析已知的物理量来推导出未知的物理量。
在对问题进行建模时,我们通常需要考虑众多因素,如速度、方向、质量等等。
天体运动中的追及相遇问题信阳高中陈庆威2013.09.17在天体运动的问题中,我们常遇到一些这样的问题。
比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。
而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。
根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。
天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。
而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。
一、追及问题【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近?②经过多长时间,两行星第一次相距最远?解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力,因此T1<T2。
可见当A运动完一周时,B还没有达到一周,但是要它们的相距最近,只有A、B行星和恒星M的连线再次在一条直线上,且A、B在同侧,从角度上看,在相同时间内,A比B多转了2π;如果A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内,A 比B 多转了π。
所以再次相距最近的时间t 1,由;第一次相距最远的时间t 2,由。
如果在问题中把“再次”或“第一次”这样的词去掉,那么就变成了多解性问题。
【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。
地球的轨道半径为R ,运转周期为T 。
地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。
已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。
天体运动中的追击相遇问题1.天文上曾出现几个行星与太阳在同一直线上的现象,假设地球和火星绕太阳的运动看作是匀速圆周运动,周期分别是T1和T2,它们绕太阳运动的轨道基本上在同一平面上,若某时刻地球和火星都在太阳的一侧,三者在一条直线上,那么再经过多长的时间,将再次出现这种现象(已知地球离太阳较近,火星较远)()再次出现这种现象(已知地球离太阳较近,火星较远)()2. 如图,两颗行星和太阳在同一条直线上.外面的行星B每12年绕太阳一周,里面的行星A每3年绕太阳一周.两颗行星都沿顺时针方向运行.如果今年这两颗行星和太阳形成一条直线,再过多少年两颗行星又将和太阳形成一条直线?解:根据行星A与行星B要成一条直线就是说它们要成180°,设N年成一条直线.行星B12年绕一圈就是说一年转30度,行星A3年绕一圈一年就是转120度,所以得到:120°×N-30°×N=180°,解得:N=2,所以过2年两颗行星又将和太阳形成一条直线.3.(2007•黄冈)张宇同学是一名天文爱好者,他通过查阅资料得知:地球、火星的运行轨道可以近似地看成是以太阳为圆的两个同心圆,且这两个同心圆在同一平面上(如图所示).由于地球和火星的运行速度不同,所以二者的位置不断发生变化.当地球、太阳和火星三者处在一条直线上,且太阳位于地球、火星中间时,称为“合”;当地球、太阳和火星三者处在一条直线上,且地球于太阳与火星中间时,称为“冲”.另外,从地球上看火星与太阳,当两条视线互相垂直时,分别称为“东方照”和“西方照”.已知地球距太阳15(千万千米),火星距太阳20.5(千万千米).(1)分别求“合”、“冲”、“东方照”、“西方照”时,地球与火星的距离(结果保留准确值);(2)如果从地球上发射宇宙飞船登上火星,为了节省燃料,应选择在什么位置时发射较好,说明你的理由.(注:从地球上看火星,火星在地球左、右两侧时分别叫做“东方照”、“西方照”.)(1)“合”=地球距太阳距离+火星距太阳距离、“冲”=火星距太阳距离-地球距太阳距离、勾股定理得出“东方照”、“西方照”=(2)从地球上发射宇宙飞船登上火星,为了节省燃料,即找出地球与火星的最短距离,这时太阳和火星三者处在一条直线上,且地球于太阳与火星中间.解:(1)“合”=15+20.5=35.5(千万千米),“冲”=20.5-15=5.5(千万千米),“东方照”=“西方照”(2)“冲”位置时发射较好,因为太阳和火星三者处在一条直线上,且地球于太阳与火星中间,地球与火星的距离最短.4.2013年10月3日发生天王星“冲日”,此时天王星、地球、太阳位于同一条直线上,地球和天王星距离最近,每到发生天王星“冲日”的时候,是天文学家和天文爱好者观测天王星的最佳时机.若把地球、天王星围绕太阳的运动当作匀速圆周运动,并用r1、r2分别表示地球、天王星绕太阳运转的轨道半径,并设太阳质量M与万有引力常量G的乘积GM=1/k2,再经过多长时间发生下一次天王星“冲日”?()研究天王星、地球绕太阳做匀速圆周运动,根据万有引力提供向心力,列出等式表示出角速度.天王星、地球绕太阳做匀速圆周运动,当地球转过的角度与天王星转过的角度之差等于2π时,再一次相距最近.5.据报道,美国宇航局发射的“勇气”号和“机遇”号孪生双子火星探测器在2004年1月4日和1月25日相继带着地球人的问候在火星着陆.假设火星和地球绕太阳的运动可以近似看作同一平面内同方向的匀=2.4×1011m,地球的轨道半速圆周运动,已知火星的轨道半径r1径r=1.5×1011m,如图所示,从图示的火星与地球相距最近的时2刻开始计时,请估算火星再次与地球相距最近需多长时间()。
高中物理:天体运动中的追及相遇问题,卫星的追及和相遇问题地面上的物体常常出现追及相遇问题,关键是找出它们的位移、速度和时间等关系,运动路线应该在同一轨道上。
天体运动中也有追及相遇问题,它与地面上的追及相遇问题在思维有上相似之处,即也是找出一些物理量的关系,但它也不同之处,有其自身特点。
根据万有引力提供向心力,即,所以当天体速度增加或减少时,对应的圆周轨道会发生相应的变化,所以天体不可能能在同一轨道上追及或相遇。
分析天体运动的追及相遇重点是角度、角速度和时间等关系的判断。
1、追及问题例1、如图1所示,有A 、B 两颗行星绕同一颗恒星M 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近?②经过多长时间,两行星第一次相距最远?解析:A 、B 两颗行星做匀速圆周运动,由万有引力提供向心力,因此T 1<T 2。
可见当A 运动完一周时,B 还没有达到一周,但是要它们的相距最近,只有A 、B 行星和恒星M 的连线再次在一条直线上,且A 、B 在同侧,从角度看,在相同时间内,A 比B 多转了2π;如果A 、B在异侧,则它们相距最远,从角度看,在相同时间内,A 比B 多转了π。
所以再次相距最近的时间t1,由;第一次相距最远的时间t 2,由。
如果在问题中把“再次”或“第一次”这样的词去掉,那么结果如何?2、相遇问题1月14日高中物理例2、设地球质量为M,绕太阳做匀速圆周运动,有一质量为m的飞船由静止开始从P点沿PD方向做加速度为a的匀加速直线运动,1年后在D点飞船掠过地球上空,再过3个月又在Q处掠过地球上空,如图2所示(图中“S”表示太阳)。
根据以上条件,求地球与太阳之间的万有引力大小。
解析:飞船开始与地球相当于在D点相遇,经过3个月后,它们又在Q点相遇,因此在这段时间内,地球与太阳的连线转过的角度。
设地球的公转周期为T,飞船由静止开始做加速度为a的匀加速直线运动,则地球的公转半径为所以 地球与太阳之间的万有引力大小为例3、阅读下列信息,并结合该信息解题:(1)开普勒从1609年~1619年发表了著名的开普勒行星运动三定律,其中第一定律为:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳在这个椭圆的一个焦点上。
天体运动中的追及相遇问题信阳高中陈庆威在天体运动的问题中,我们常遇到一些这样的问题。
比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。
而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。
根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。
天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。
而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。
一、追及问题【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近?②经过多长时间,两行星第一次相距最远?解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力,因此T1<T2。
可见当A运动完一周时,B还没有达到一周,但是要它们的相距最近,只有A、B行星和恒星M的连线再次在一条直线上,且A、B在同侧,从角度上看,在相同时间内,A比B多转了2π;如果A、B在异侧,则它们相距最远,从角度上看,在相同时间内,A比B多转了π。
所以再次相距最近的时间t1,由;第一次相距最远的时间t2,由。
如果在问题中把“再次”或“第一次”这样的词去掉,那么就变成了多解性问题。
【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。
地球的轨道半径为R,运转周期为T。
地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。
已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。
若某时刻该行星正好处于最佳观察期,问该行星下一次处于最佳观察期至少需经历多长时间?解析:由题意可得行星的轨道半径θsin R r =设行星绕太阳的运行周期为T /,由开普勒大三定律有:2323T r T R '=,得:θ3sin T T =' 绕向相同,行星的角速度比地球大,行星相对地球θθπππω33sin )sin 1(222T T T -=-'=∆ 某时刻该行星正好处于最佳观察期,有两种情况:一是刚看到;二是马上看不到,如图3所示。
«万有引力与航天»考点微专题6 天体运动的追及和相遇问题一 知能掌握1.天体运动追击和相遇问题的分析要点 (1)两星追上或相距最近的运动关系两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两星运行的角度之差等于2π的整数倍;两卫星运动关系应满足(ωA -ωB )t =2n π(n =1,2,3,…). (2)相距最远的运动关系当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,相距最远时,两星运行的角度之差等于π的奇数倍.两卫星运动关系应满足(ωA -ωB )t ′=(2n -1)π(n =1,2,3…).(3)卫星与地面上物体追及(卫星在地面上物体的正上方)时,要根据地面上物体与同步卫星角速度相同的特点进行判断.2.天体运动追击和相遇问题的分析技巧 (1)根据GMm r 2=mr ω2,可判断出谁的角速度大.(2)轨道在同一平面内的两颗卫星之间的距离有最近和最远之分,但它们与中心天体都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量.若它们初始位置与轨道圆心在同一直线上,实际上内轨道上卫星所转过的圆心角与外轨道上卫星所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. (3)轨道不在同一平面内的两颗卫星也可能发生碰撞,但轨道高度要相同.二 探索提升【典例1】我国发射的北斗系列卫星的轨道位于赤道上方,轨道半径为r ,绕行方向与地球自转方向相同.已知地球自转角速度为ω0,地球半径为R ,地球表面重力加速度为g.若某一时刻卫星通过赤道上某建筑物的上方,则当它再一次通过该建筑物上方时,所经历的时间为 ( )A .√2r 3-ω0B .2π(√r 2gR 2-1ω0) C .2π√r 3gR 2 D .2π√gR 2r 3+ω0【答案】A.【解析】人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m ,地球质量为M ,有G Mm r 2=mω2r ,解得ω=√GMr 3,卫星再次经过某建筑物的上空,卫星比地球多转动一圈,有(ω-ω0)t=2π,地球表面的重力加速度为g=GM R 2,联立解得t=√2r3-ω0,选项A 正确.【典例2】如图1所示,A 、B 为地球的两个轨道共面的人造卫星,运行方向相同,A 为地球同步卫星,A 、B 两卫星的轨道半径的比值为k ,地球自转周期为T 0.某时刻A 、B 两卫星距离达到最近,从该时刻起到A 、B间距离最远所经历的最短时间为 ( )图1 A .02(√k 3+1)B .√k 3-1C .2(√k 3-1)D .(√k 3+1)【答案】C.【解析】根据公式r 3T 2=C ,可得r A 3T A2=r B3T B2,两卫星间距最远,则正好在一条直线上,即B 比A 多转半圈,有t T B-t T A=12,A为同步卫星,周期和地球自转周期相同,即T A=T 0,结合rA r B=k ,解得t=,选项C 正确.【典例3】小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍.某时刻,航天站使登月器减速分离,登月器沿如图2所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回.当第一次回到分离点时恰与航天站对接.登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g 0,月球半径为R ,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为( )图2A .4.7πRg 0B .3.6πRg 0C .1.7πRg 0D .1.4πR g 0【答案】A【解析】由题可知,月球半径为R ,则航天站的轨道半径为3R ,设航天站转一周的时间为T ,则有GM 月m(3R )2=m 4π2T 2(3R ),对月球表面的物体有m 0g 0=GM 月·m 0R 2,联立两式得T =63πRg 0.登月器的登月轨道是椭圆,从与航天站分离到第一次回到分离点所用时间为沿椭圆运行一周的时间T ′和在月球停留时间t 之和,若恰好与航天站运行一周所用时间相同时t 最小,则有:t min +T ′=T ,由开普勒第三定律有:(3R )3T2=⎝ ⎛⎭⎪⎫4R 23T ′2,得T ′=42πRg 0,则t min =T -T ′≈4.7πRg 0,所以只有A 对. 【典例4】科学家在地球轨道外侧发现了一颗绕太阳运行的小行星,经过观测该小行星每隔t 时间与地球相遇一次,已知地球绕太阳公转半径是R ,周期是T ,设地球和小行星都是圆轨道,求小行星与地球的最近距离。
天体运动中的追及相遇问题做了一定的角度。
根据题意,当行星处于最大视角时,地球和行星的连线与地球和太阳的连线的夹角为θ,即行星与地球的连线与地球的运动方向相同。
因此,行星的角速度比地球的角速度大,行星相对地球做了一定的角度。
设行星与地球的连线与地球的运动方向的夹角为α,则有α=θ/2.因为行星的运动速度比地球快,所以当行星再次处于最佳观察时期时,地球还没有绕完一周,即行星比地球多转了一定的角度。
设行星绕太阳的周期为T',则有T'=T/α。
因此,下一次行星处于最佳观察时期至少需要经历的时间为T'-T,即为T(1-1/α)。
一、太阳系行星运动问题在太阳系中,行星绕太阳做椭圆形轨道运动,其运动速度和角速度随着位置的不同而不同。
根据开普勒第二定律,行星在相等时间内扫过的面积相等,因此行星的轨道速度是不断变化的。
根据开普勒第三定律,行星的公转周期与其轨道半长轴的立方成正比。
因此,我们可以通过测量行星的运动轨迹和周期来计算出太阳系中各个天体的运动参数。
在某一时刻,如果行星处于最佳观测位置,则有两种情况:一是刚刚进入最佳观测位置;二是即将离开最佳观测位置。
在这两种情况下,行星到达下一次最佳观测位置所需的时间是不同的,可以通过计算行星在轨道上的运动角度来求得。
二、相遇问题在天体运动中,相遇问题是一个重要的研究课题。
例如,当一艘飞船从地球出发,经过一段时间后到达目的地,需要计算出飞船与目的地之间的距离和所需的时间。
这类问题可以通过计算天体的运动轨迹和速度来解决。
例如,当一艘飞船从地球出发,经过一年后到达地球附近,再经过三个月到达另一个地方,我们可以通过计算地球和飞船在这段时间内的运动轨迹和速度来求得地球与太阳之间的万有引力大小。
又例如,当我们向火星发射探测器时,需要计算出探测器的轨道和所需的发射时间。
这类问题可以通过计算天体的运动轨迹和周期来解决。
例如,在某一时刻,当探测器脱离地球并沿地球公转轨道稳定运行后,在某一年3月1日零时测得探测器与火星之间的角距离为60度。
天体的追及相遇问题1.卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. (1)两星相距最近的条件:ωa Δt -ωb Δt =2n π(n =1,2,3…)(图甲) (2)两星相距最远的条件:ωa Δt -ωb Δt =(2n +1)π(n =0,1,2,…)(图乙)甲 乙 2.对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解.【题型1】如图是在同一平面不同轨道上同向运行的两颗人造地球卫星.设它们运行的周期分别是T 1、T 2(T 1<T 2),且某时刻两卫星相距最近.问:(1)两卫星再次相距最近的时间是多少? (2)两卫星相距最远的时间是多少?【答案】(1)T 1T 2T 2-T 1 (2)(2k +1)T 1T 22(T 2-T 1)(k =0,1,2…)【解析】(1)依题意,T 1<T 2,周期大的轨道半径大,故在外层轨道的卫星运行一周所需的时间长.设经过t 1两卫星再次相距最近. 则它们运行的角度之差Δθ=2π 即2πT 1t 1-2πT 2t 1=2π 解得t 1=T 1T 2T 2-T 1.(2)两卫星相距最远时,它们运行的角度之差 Δθ=(2k +1)π(k =0,1,2…)即2πT 1t 2-2πT 2t 2=(2k +1)π(k =0,1,2…) 解得t 2=(2k +1)T 1T 22(T 2-T 1)(k =0,1,2…).【题型2】一颗在赤道上空飞行的人造地球卫星,其轨道半径为r =3R (R 为地球半径),已知地球表面重力加速度为g ,则该卫星的运行周期是多大?若卫星的运动方向与地球自转方向相同,已知地球自转角速度为ω0,某一时刻该卫星通过赤道上某建筑物的正上方,再经过多少时间它又一次出现在该建筑物正上方? 【答案】63Rg 2π13g3R-ω0 【解析】由万有引力定律和牛顿定律可得: GMm (3R )2=m 4π2T 2·3R ①GMmR 2=mg ① 联立①①两式,可得T =6π3R g. 以地面为参考系,卫星再次出现在建筑物上方时转过的角度为2π,卫星相对地面的角速度为ω1-ω0,则Δt =2π2πT -ω0=2π13g3R-ω0. 【题型3】(多选)太阳系中某行星运行的轨道半径为R 0,周期为T 0,但天文学家在长期观测中发现,其实际运行的轨道总是存在一些偏离,且周期性地每隔t 0时间发生一次最大的偏离(行星仍然近似做匀速圆周运动)。
2023届高三物理一轮复习重点热点难点专题特训专题30 天体运动中追及相遇问题、能量问题和图像问题特训目标特训内容目标1 天体运动中的追及相遇问题(1T—5T)目标2 天体运动中的能量问题(6T—10T)目标3 天体运动中的图像问题(11T—15T)一、天体运动中的追及相遇问题1.屈原在长诗《天问》中发出了“日月安属?列星安陈?”的旷世之问,这也是中国首次火星探测工程“天问一号”名字的来源。
“天问一号”探测器的发射时间要求很苛刻,必须在每次地球与火星会合之前的几个月、火星相对于太阳的位置领先于地球特定角度的时候出发。
火星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动。
如图所示,不考虑火星与地球的自转,且假设火星和地球的轨道平面在同一个平面上,相关数据见下表,则根据提供的数据可知()质量半径绕太阳做圆周运动的周期地球M R1年火星约0.1M约0.5R约1.9年B .地球与火星从第1次会合到第2次会合的时间约为2.1年C .火星到太阳的距离约为地球到太阳的距离的1.9倍D .火星表面的重力加速度与地球表面的重力加速度之比约为3:5 【答案】B【详解】A .设地球最小的发射速度为v 地,则22mv GMm R R=地解得=7.9km/s GMv R =地则火星的发射速度与地球的发射速度之比为0.150.5Mv R v M R=火地57.9km/s v =<火故A 错误; B .根据(222)t T T πππ-=地火代入数据解得地球和火星从第1次会合到第2次会合的时间约为2.1年,故B 正确;C .根据开普勒第三定律得3322r r T T =火地地火代入数据解得火星到太阳的距离约为地球到太阳的距离的1.5倍,故C 错误;D .不考虑自转时,物体的重力等于万有引力2GMmmg R=火星表面的重力加速度与地球表面的重力加速度之比为220.120.5=5Mg R M g R=火()故D 错误。
天体运动中的相遇急追及问题Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】天体运动中的相遇急追及问题地面上的物体常常出现追及相遇问题,关键是找出它们的位移、速度和时间等关系,运动路线应该在同一轨道上。
天体运动中也有追及相遇问题,它与地面上的追及相遇问题在思维有上相似之处,即也是找出一些物理量的关系,但它也不同之处,有其自身特点。
根据万有引力提供向心力,即,所以当天体速度增加或减少时,对应的圆周轨道会发生相应的变化,所以天体不可能能在同一轨道上追及或相遇。
分析天体运动的追及相遇重点是角度、角速度和时间等关系的判断。
1.追及问题例1如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近②经过多长时间,两行星第一次相距最远分析与解答:A、B两颗行星做匀速圆周运动,由万有引力提供向心力,因此T1<T2。
可见当A运动完一周时,B还没有达到一周,但是要它们的相距最近,只有A、B行星和恒星M的连线再次在一条直线上,且A、B在同侧,从角度看,在相同时间内,A比B多转了2π;如果A、B在异侧,则它们相距最远,从角度看,在相同时间内,A比B多转了π。
所以再次相距最近的时间t1,由;第一次相距最远的时间t2,由。
如果在问题中把“再次”或“第一次”这样的词去掉,那么结果如何2.相遇问题例2设地球质量为M,绕太阳做匀速圆周运动,有一质量为m的飞船由静止开始从P点沿PD方向做加速度为a的匀加速直线运动,1年后在D点飞船掠过地球上空,再过3个月又在Q处掠过地球上空,如图2所示(图中“S”表示太阳)。
根据以上条件,求地球与太阳之间的万有引力大小。
分析与解答:飞船开始与地球相当于在D点相遇,经过3个月后,它们又在Q点相遇,因此在这段时间内,地球与太阳的连线转过的角度。
天体运动中的追击相遇问题练习题万有引力与航天题号一二三总分得分、单选题(本大题共9 小题,共36.0 分)1.如图所示,A,B 为地球两个同轨道面的人造卫星,运行方向相同,A为同步卫星,A,B卫星的轨道半径之比为=k,地球自转周期为T。
某时刻A,B 两卫星位于地球同侧直线上,从该时刻起至少经过多长时间A,B间距离最远()2.天文上曾出现几个行星与太阳在同一直线上的现象,假设地球A. B. C. D.和火星绕太阳的运动看作是匀速圆周运动,周期分别是和,它们绕太阳运动的轨道基本上在同一平面上,若某时刻地球和火星都在太阳的一侧,三者在一条直线上,那么再经过多长的时间,将再次出现这种现象已知地球离太阳较近,火星较远)()A. B. C. D.3.万有引力定律是科学史上最伟大的定律之一,利用它我们可以进行许多分析和预测。
2016年3月8日出现了“木星冲日”。
当地球位于太阳和木星之间且三者几乎排成一条直线时,天文学称之为“木星冲日”。
木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5 倍。
下列说法正确的是A.木星运行的加速度比地球的大B.木星运行的周期比地球的小C.下一次的“木星冲日”时间肯定在2017 年D.下一次的“木星冲日”时间肯定在2018 年4.如图,运行轨道在同一平面内的两颗人造卫星A、B,同方向绕地心做匀速圆周运动,此时刻A、B 连线与地心恰在同一直线上且相距最近,己知A 的周期为T,B的周期为.下列说法正确的是()A.A 的线速度大于B的线速度B.A 的加速度大于B 的加速度C.A、B 与地心连线在相同时间内扫过的面积相等D.从此时刻到下一次A、B 相距最近的时间为T5.两颗行星、均在同一平面内沿相同的环绕方向围绕中心天体运动,经过观测发现每隔最短时间行星与行星相距最近一次。
两行星的运动均可看作匀速圆周运动,若行星的运行周期为,则行星的运行周期为()二、多选题(本大题共 4 小题,共 16.0 分)10. 太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动, 当地球恰好运行到 某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学家称为 “行星冲 日”,据报道, 2014年各行星冲日时间分别为: 1月 6日木星冲日; 4月 9日火星冲日;5月 11日土星冲日; 8月 29日海王星冲日; 10月 8日天王星冲日.已知地球 及各地球火星 木星 土星 天王星 海王星 轨道半径(AU ) 1.0 1.5 5.2 9.5 19 30A. 各地外行星每年都会出现冲日现象6. A. B. C. D.2018年 7月 27日将发生火星冲日现象,我国整夜可见。
天体运动中的追及相遇问题
信阳高中 陈庆威 2013.09.17
在天体运动的问题中,我们常遇到一些这样的问题。
比如, A 、B 两物体都 绕同一中心天体做圆周运动,某时刻 A 、B 相距最近,问 A 、B 下一次相距最近或 最远需要多少时间,或“至少”需要多少时间等问题。
而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在 思维有上一些相似的地方, 即必须找出各相关物理量间的关系, 但它也有其自身 特点。
根据万有引力提供向心力, 即当天体速度增加或减少时, 对应的圆周轨道就 会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相 遇。
天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂, 成为 同学们学习中的难点。
而解决此类问题的关键是就要找好角度、 角速度和时间等 物理量的关系。
、追及问题 【例 1】如图 1所示,有 A 、B 两颗行星绕同一颗恒星 M 做圆周运动,旋转方向相 同, A 行星的周期为 T 1,B 行星的周期为 T 2,在某一时刻两行星相距最近,则
①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远?
有达到一周,但是要它们的相距最近,只有 A 、B 行星和恒星 M 的连线再次在一 条直线上,且 A 、B 在同侧,从角度上看,在相同时间内, A 比 B 多转了2π;
如
解析:A 、B 两颗行星做匀速圆周运动 ,由 万有引力提供向心力 B 还没
果 A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内, A 比 B 多转了
距最远的时间 t 2,由。
如果在问题中把“再次”
或“第一次”这样的词去掉,那么就变成了多解性问题。
【例 2】 如图 2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。
地球的轨道半径为 R ,运转周期为 T 。
地球和太阳中心的连线与地球和行星的连 线的夹角叫地球对行星的观察视角(简称视角)。
已知该行星的最大视角为θ, 当行星处于最大视角处时, 是地球上天文爱好者观察该行星的最佳时期。
若某时 刻该行星正好处于最佳观察期, 问该行星下一次处于最佳观察期至少需经历多长 时间? 解析: 由题意可得行星的轨道半径 r Rsin 设行星绕太阳的运行周期为 T / ,由开普勒大三定律有: 二、相遇问题
【例 3】设地球质量为 M ,绕太阳做匀速圆周运动,有一质量为 m 的飞船由静止 开始从
P 点沿PD 方向做加速度为 a 的匀加速直线运动, 1年后在 D 点飞船掠过地 球上空,再过 3个月又在 Q 处掠过地球上空,如图 4所示(图中“ S ”表示太阳) 根据以上条件,
求地球与太阳之间的万有引力大小。
π。
所以再次相距最近的时间
太阳
R 3 T 2
3
T r
2 ,得:T T sin 3
绕向相同, 行星的角速度比地球大,行星相对地球
2 2 (1 sin
3 )
行星
视角 地球 图2
T T sin 3 某时刻该行星正好处于
最佳观察期, 刚看到;二是马上看不到 , 如图 3 所示。
观察期至少需经历时间分别为 有两种情况: 到下一次处于最佳
两者都顺时针运转:
t
1
2 ) sin 3
?T
3
2 (1 sin 3
)
两者都逆时针运转:
t
2
( 2 ) sin 3
?T 2 (1 sin 3 )
太阳
行星
θθ
地球 图3
t 1, ;第一次相
解析:飞船开始与地球相当于在 D 点相遇,经过3个月后, 它们又在 Q 点相遇,
因此在这段时间内, 地球与太阳的连线转过的角度 。
设地球的
公转周期为 T ,飞船由静止开始做加速 度为 a 的匀加速 直线 运动 ,则
【例 4】从地球表面向火星发射火星探测器,设地球和火星都在同一平面上绕太 阳做同向圆周运动, 火星轨道半径 r 火为地球轨道半径 r 地的 1.50 倍,简单而又 比较节省能量的发射过程可分为两步进行:
第一步:在地球表面用火箭对探测器进行加速,使之获得足够动能,从而脱 离地球引力作用成为一个沿地球轨道运动的人造卫星 (如图 5);
第二步:在适当时刻点燃与探测器连在一起的火箭发动机,在短时间内对探 测器沿原方向加速, 使其速度数值增加到适当值, 从而使得探测器沿着一个与地 球轨道及火星轨道分别在长轴两端相切的半个椭圆轨道正好射到火星上
( 如图
6)。
当探测器脱离地球并沿地球公转轨道稳定运行后, 在某年 3 月 1日零时测得 探测器与火星之间的角距离为 60°(火星在前,探测器在后),如图 7 所示。
问应在何年何月何日点燃探测器上的火箭发动机, 方能使探测器恰好落在火星表
;
地球的公转半径为
所以,地球与太阳之间的万有引力大小为
面?(时间计算仅需精确到日),已知:
火星 火星
671
得: T 火 (1.5)3T 地 =1.840 ×365=671d
初始相对角距离 =600。
点火前,探测器与地球在同一公转轨道同向运行, 周期跟地球的公转周期相同,故相对火星的角位移为
3600 3600 1? t1 (
365 671
)? t1 太阳
探测器 地球
探测器
太阳
地球
图 5
图6
火星 0
探测器
太阳
地球
解析: 根据根据开普勒第三定律,可求出火星的公转周期
T 火:
点火
图7
3
3
r 地
2
,题设 r 火 1.5r 地 ,
T 地
火星 火星
671
2.5r 第 3 (2.52r 第)3
得:t T 2d = (1.25)3 T 2地
=255d
在这段时间 t 内,探测器的绝对角位移为
1800,火星的绝对角位移为
3600
255 137
探测器在适当位置点火后,沿椭圆轨道到与火星相遇所需时间 t T 2d 火
探测器相对火星的角位移为 2 1800 1370 430
到探测器与火星相遇时,初始相对角距离 (=600),应等于点火前探测
器相对火星的角位移△θ 1,与探测器沿椭圆轨道运动时间内相对火星的角位移 △θ 2之
和,即
已知某年 3月1 日零时,探测器与火星角距离为 60°(火星在前,探测器在后) , 点燃发动机时刻应选在当年 3月 1日后 38天,注意到“ 3月大”(有 31号), 即应在 4 月 7日零时点燃发动机。
以上几例中,有的问题我们采用了“相对角速度”处理同心圆周运动中的追 击和相遇问题, 就是以角速度较小的物体为参照物, 把它看作静止不动, 则角速 度较大的物体以 “相对角速度” 绕它做圆周运动, 这样计算起来就比运用几何知 识来找角度间的关系来的要简单。
故得:
600 430 t
1
t
1
170
170
3600
3600
38d
365
671。