2.2.1椭圆及其标准方程(4)学案(人教A版选修2-1)
- 格式:doc
- 大小:172.00 KB
- 文档页数:7
高 二 年级 数学 学科第 1周第 1 课时教学要点=课题: 选修2-1 §2.2.1椭圆及其标准方程 主备人:_一. 学习目标:1.理解并掌握椭圆的定义,了解椭圆标准方程的推导方法;2.能根据椭圆的标准方程熟练地写出椭圆的焦点坐标,会用待定系数法确定椭圆的方程;3.初步掌握用相关点法和直接法求轨迹方程的一般方法.二、教学重点与难点重点:掌握椭圆的标准方程,理解坐标法的基本思想 难点:椭圆标准方程的推导与化简,坐标法的应用 三、教学过程分析1、椭圆定义的理解椭圆定义中,平面内动点与两个定点F 1,F 2的距离之和等于常数,当这个常数大于|F 1F 2|时,动点的轨迹是椭圆;当这个常数等于|F 1F 2|时,动点的轨迹是线段F 1F 2;当这个常数小于|F 1F 2|时,动点不存在. 2、椭圆的标准方程对于两种标准方程对应的图形是全等图形,要注意焦点位置确定的讨论. 3、典型例题例1、(1)求椭圆14222=+y x 的焦距与焦点坐标;(2)求焦点为)0,3(),0,3(21F F -,且过点)516,3(-的椭圆的标准方程. [分析]先把方程化为标准型方程再求解,(1))0,21(),0,21(,1221F F c -=;(2)1162522=+y x . 例2、已知椭圆)0(12222>>=+b a by a x ,21,F F 是椭圆的两个焦点,P 为椭圆上一点,θ=∠21PF F 求证:θ=∆21PF F 的面积2tan 2θb S =.[分析]方法:应用椭圆的定义与余弦定理、面积公式.例3、已知动圆P 过定点A (-3,0),并且在定圆B : (x -3)2+y 2=64的内部与其相切,求动圆圆心P 的轨迹方程.[分析]应用定义法求得:.171622=+y x 例4、在ABC ∆中,BC =24,AC 、AB 边上的中线长之和等于39,求ABC ∆的重心的轨迹方程。
2.2.1圆及其标准方程教学要求:从具体情境中抽象出椭圆的模型,掌握椭圆的定义,标准方程 教学重点:椭圆的定义和标准方程 教学难点:椭圆标准方程的推导 教学过程:一、新课导入:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?(学生动手,观察结果)思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的长度保持不变,即笔尖到两个定点的距离之和等于常数. 二、讲授新课:1. 定义椭圆:把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆标准方程的推导:以经过椭圆两焦点12,F F 的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系xOy .设(,)M x y 是椭圆上任意一点,椭圆的焦距为()20c c >,那么焦点12,F F 的坐标分别为(),0c -,(),0c ,又设M 与12,F F 的距离之和等于2a ,根据椭圆的定义,则有122MF MF a +=,用两点间的距离公式代入,画简后的222221x y a a c+=-,此时引入222b ac =-要讲清楚. 即椭圆的标准方程是()222210x y a b a b+=>>. 根据对称性,若焦点在y 轴上,则椭圆的标准方程是()222210x y a b b a+=>>.两个焦点坐标()()12,0,,0F c F c -.通过椭圆的定义及推导,给学生强调两个基本的等式:122MF MF a +=和222b c a +=3. 例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==(教师引导——学生回答) 例2 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(教师分析——学生演板——教师点评) 三、巩固练习:1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -;⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=. 2. 作业:40P 第2题.2.2椭圆及其标准方程教学要求:掌握点的轨迹的求法,坐标法的基本思想和应用. 教学重点:求点的轨迹方程,坐标法的基本思想和应用. 教学难点:求点的轨迹方程,坐标法的基本思想和应用. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.关于椭圆的两个基本等式. 二、讲授新课:1. 例1 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程. 求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式. (教师引导——示范书写)2. 练习:1.点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么? (教师分析——学生演板——教师点评)2.求到定点()2,0A 与到定直线8x =的距离之比为2的动点的轨迹方程. (教师分析——学生演板——教师点评)3. 例2 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.(教师引导——示范书写) 4. 练习: 1.47P 第7题.2.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程. 5.知识小结:①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程. 三、作业: 40P 第4题 精讲精练第8练.2.2椭圆的简单几何性质教学要求:根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 教学重点:通过几何性质求椭圆方程并画图. 教学难点:通过几何性质求椭圆方程并画图. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程. 二、讲授新课:1.范围——变量,x y 的取值范围,亦即曲线的取值范围:横坐标a x a -<<;纵坐标b x b -<<.方法:①观察图像法; ②代数方法.2.对称性——既是轴对称图形,关于x 轴对称,也关于y 轴对称;又是中心对称图形. 方法:①观察图像法; ②定义法.3.顶点:椭圆的长轴122A A a =,椭圆的短轴122B B b =,椭圆与四个对称轴的交点叫做椭圆的顶点,()()()()1212,0,,0,,0,,0A a A aB b B b --.4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比c a 称为离心率.记ce a=. 可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.5.例题例4 求椭圆221625400x y +=的长轴和短轴的长,离心率,焦点和定点坐标. 提示:将一般方程化为标准方程. (学生回答——老师书写)练习:求椭圆22416x y +=和椭圆22981x y +=的长轴和短轴长,离心率,焦点坐标,定点坐标.(学生演板——教师点评)例5 点(),M x y 与定点()4,0F 的距离和它到直线25:4l x =的距离之比是常数45,求点M 的轨迹.(教师分析——示范书写)三、课堂练习:①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ⑵22936x y +=与221610x y +=(学生口答,并说明原因)②求适合下列条件的椭圆的标准方程.⑴经过点()(,P Q -⑵长轴长是短轴长的3倍,且经过点()3,0P ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) ③作业:47P 第4题.。
《椭圆及其标准方程》说课稿尊敬的各位评委:大家好!我说课的内容是《椭圆及其标准方程》, 下面, 我将从教材分析, 学情分析, 教学目标, 教学方法, 教学过程设计, 教学设计说明几个方面来进行阐述.一、教材分析1.课标要求:《椭圆及其标准方程》是人教A版普通高中课程选修2-1第二章的第二节内容.课程标准对这部分内容的要求是:“经历从具体情境中抽象出椭圆模型的过程, 掌握椭圆的定义、标准方程及简单几何性质”.2.教材地位“椭圆及其标准方程”是《圆锥曲线》第一节的内容;在前面学生已经学习了运用坐标法研究了直线和圆的性质,及曲线与方程的关系,对椭圆概念与方程的研究是坐标法的深入,为后面研究双曲线、抛物线提供了基本模式和理论基础,因此, “椭圆及其标准方程”起到了承上启下的重要作用.二、学情分析(1)在学习本课之前学生已学习了直线和圆的方程及其性质, 曲线与方程的关系, 对解析几何有一定的了解, 已有一定的观察、分析、解决问题的能力.这为本节课的学习奠定了必要的知识基础.(2)在日常生活中, 学生对椭圆有了一定的认识, 但仍没有上升到成为“概念”的水平, 将感性认识理性化将会是对他们的一个挑战.含有两个根式的方程的化简也会使学生的探究受阻, 教师要适时加以点拨.三、教学目标分析根据教学内容的地位和作用, 结合学生的实际, 确定了以下教学目标:1.掌握椭圆的定义及其标准方程;通过对椭圆标准方程的探求, 熟悉求曲线方程的一般方法.2.在椭圆概念的形成过程及其标准方程的推导过程中,培养学生的归纳概括能力、动手实践能力、分析问题、解决问题的能力及运算能力.3.在教学中充分揭示“数”与“形”的内在联系, 体会数形美的统一, 激发学生学习数学的兴趣, 培养学生敢于探索, 勇于创新的精神.教学重点和难点:1.重点: 感受建立曲线方程的基本过程, 掌握椭圆的标准方程及其推导方法.为了突出重点, 让学生动手实践, 自主探索, 通过画图揭示椭圆上的点所要满足的条件, 由此得出定义, 推出方程.2.难点: 椭圆标准方程的推导.为了突破难点, 关键是抓住“怎样建立坐标系”和“怎样简化方程”两个环节来进行方程的推导.四、教学方法及准备(一)教学方法本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法, 并以多媒体手段辅助教学, 使学生经历实践、观察、交流、分析、概括等理性思维的基本过程, 切实改进学生的学习方式, 使学生真正成为学习的主人.(二)教学准备教师准备:多媒体课件学生准备: 一支铅笔、两个图钉(或胶带)、一根细绳、一张硬纸板.五、教学过程设计按照“引入课题——形成概念——推导方程——对比分析——例题讲解——归纳小结——作业布置”这七个环节来组织教学, 层层推进, 实现教学目标.(一)创设情境, 引入课题本节课的开始由多媒体演示“神舟八号”无人飞船与“天宫一号”目标飞行器进行了空间交会对接, 绕地球旋转运行的画面.提出问题: “神州八号”的轨道是什么形状?待学生回答后,请学生叙述生活中见到的椭圆形象, 并用课件展示我所搜集的椭圆形象, 让学生形成椭圆的感性认识, 引入课题.[设计意图] 这一过程充分调动学生的学习兴趣, 激发学生的探究心理,为引出新知做铺垫.通过举例和展示生活中椭圆形的图片, 让学生认识到椭圆和日常生活关系密切.使他们感受数学的应用价值, 同时培养学生学会用数学眼光去观察周围事物的能力.(二)实验探索, 形成概念有了对椭圆的感性认识,如何来研究椭圆呢?提出问题: 曲线可以看作适合某种条件的点的集合或轨迹.椭圆是满足什么条件的点的轨迹呢?这时借助于多媒体演示椭圆的画法, 请学生拿出准备的学具动手画图, 并思考问题.在学生思考的过程中我继续用问题引导: 圆是如何定义的,圆是满足什么条件的点的轨迹呢?学生回答后我继续追问: 在画图的过程中, 哪些量在变, 哪些量保持不变?学生根据自己的实验, 观察回答: “两定点间的距离没变, 绳子的长度没变, 点在运动.”我继续提问:你们能根据刚才画椭圆的过程, 类比圆的定义, 归纳概括出椭圆的定义吗?先让学生独立思考,尝试归纳,然后进行小组合作交流,教师重点关注学困生,适时给予点拨指导.几分钟后,大部分学生都能得到椭圆的定义:“平面内与两个定点的距离之和为常数的点的轨迹叫椭圆.”接着对得到的概念进行剖析, 提出问题: 这个常数是任意的吗?给学生两分钟时间进行思考、讨论、交流, 尝试找出答案, 若有困难, 教师借助于演示实验再次探索观察, 学生不难发现, 这个常数必须大于两定点间的距离.这样, 就得到了完整的椭圆定义:平面内与两个定点、的距离之和等于常数(大于|F F |)的点的轨迹叫做椭圆。
1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。
§2.2.1 椭圆及其标准方程一、分析教材1.教材的地位和作用:椭圆是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线,通过求椭圆的标准方程,使学生掌握导出这一类轨迹方程的一般规律和化简的常用方法,同时为后面学习双曲线,抛物线打下基础。
2教学目标: 知识与技能:掌握椭圆的定义、标准方程的推导和标准方程 过程与方法:通过椭圆概念的引入与椭圆标准方程的推导过程,培养学生分析探索能力,熟练掌握解决解析几何问题的方法——坐标法 情感态度与价值观:通过椭圆定义和标准方程的学习,渗透数形结合的思想,启发学生在研究问题时,抓住问题本质,严谨细致思考,规范得出解答,体会运动变化、对立统一的思想。
3.教学重点:椭圆的定义和椭圆标准方程的两种形式;教学难点:椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因。
4.教学方法:椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以把用坐标法对椭圆的研究放在了重点位置上。
学好椭圆对于学生学好圆锥曲线是非常重要的。
结合多媒体演示,再给出椭圆的定义,强调概念的形成,构成整个教学过程,对椭圆标准方程的推导,可采用观察、分析、归纳、抽象、概括、自主探究、合作交流的教学方法,调动学生参与课堂教学的主动性和积极性。
5.教学过程(一)直观展示和问题引入(二)概念形成与深入探究(三)椭圆标准方程的推导(四)例题解析与随堂测试(五)课堂总结并提高素质(六)布置作业与反思提高 (七)分享故事更了解椭圆 二、新课讲授思考:1.圆的定义是什么?2.圆的标准方程是什么?探究:3.平面上到两个定点的距离等于定长的点的轨迹又是什么呢? 初识椭圆环节-------数学实验[1]取一条细绳,[2]把它的两端固定在板上的两点F1、F2;[3]用铅笔尖(M )把细绳拉紧,在板上慢慢移动观察画出的图形. 新课内容1.归纳椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 需要注意的几点:|MF 1|+|MF 2|> |F 1F 2|时,动点M 的轨迹是椭圆;|MF 1|+|MF 2|= |F 1F 2|时,动点M 的轨迹是线段; |MF 1|+|MF 2|< |F 1F 2|时,动点M 的轨迹不存在。
作图,作图后学生回答引出课题。
学生口述后在投影展示,教师再根据投影进行强调。
引生入境听1、师:移动笔尖,画出的轨迹是什么图形?2、师:笔尖在移动的过程中,笔尖到两个定点F1和F2的距离之和是一个定值吗?3、师:观察教材P33-图2.1-2.设M(x,y),F1(-c,0),F2(c,0),且|MF1|+|MF2|=2a(a>c),则M点的轨迹方程是什么?4、师:观察教材P34“思考”.设M(x,y),F1(0,-c),F2(0,c),且|MF1|+|MF2|=2a(a>c),则M点的轨迹方程是什么?5.师:定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小于|F1F2|”的常数,其他条件不变,点的轨迹是什么?1、生:椭圆.2、生:是.其距离之和始终等于线段的长度.3生:.4、生:5.生:当距离之和等于|F1F2|时,动点的轨迹就是线段F1F2;;_当距离之和小于|F1F2|时,动点的轨迹不存在.1.通过教师的引导,由于坐标系选择的灵活性与根式运算的复杂性,在寻求方程的过程中,培养学生战胜困难的意志品质并体会数学的简洁美、对称美。
2.通过这些实物和图片,让学生从感性上认识椭圆.板书设计导学反思课题:椭圆及其标准方程一、定义二、标准方程三、例题(文字表述) (符号表述)四。
变式训练。
五。
课堂检测。
六。
作业布置。
1.数形结合的思想开展我的教学;在整个教学过程中采用了“引导发现、讨论交流”的方法来进行教学,最大限度的挖掘学生的潜力;同时让学生通过动手作图亲身经历椭圆的形成过程,培养了学生的观察、分析、概括能力,从而激发学生学习数学的兴趣。
2.根据学生思讲练的反馈信息,在后面的教学中及时的进行小结和点评,并针对学生的反馈情况分层次组织引导学生解决存在问题,进行教学调节。
3.在设计过程遇到很多我无法解决的问题,比如如何将圆锥曲线背景知识融入到课堂;如何用几何画板将图形的翻折更形象的演示等,如何加以改进,这是在后续教学中需要思考的问题。
人教版高中数学选修2-1 《椭圆及其标准方程》教案一、课型新授课二、教学内容1、椭圆的定义;2、椭圆的两类标准方程;3、根据椭圆的定义及标准方程的知识解决一些简单的问题。
三、教学目标1、知识与技能:理解并掌握椭圆的定义;明确焦点、焦距的概念;掌握椭圆标准方程的两种形式及其推导过程;掌握 a、b、c 三个量的几何意义及它们之间的关系。
能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;2、过程与方法:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力。
让学生感知数学知识与实际生活的普遍联系;3、情感态度与价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识。
培养学生的探索能力和进取精神,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。
通过椭圆的形成过程培养学生的数学美感,同时培养团队协作的能力。
四、教学重点、难点重点:椭圆的定义及椭圆的标准方程;难点:椭圆标准方程的推导过程。
五、教学方法教师引导为主、学生自主探究为辅。
六、教学媒体幻灯片、黑板。
七、教学过程(一)创设情境,导入新课用多媒体演示神舟飞船绕地球旋转的模型,它运行的轨迹又是什么图形呢?可以看出,它的运行轨迹是椭圆。
此时老师指出:在实际生活中,椭圆随处可见,很多学科也涉及到椭圆的应用,所以学习椭圆的相关知识是十分必要的。
这就是我们这节课所要学习的内容——椭圆及其标准方程。
(二)问题探究老师提问:我们从直观上认识了椭圆,那么椭圆它是如何形成的呢?椭圆满足什么样的条件呢?它的定义又是如何?1、椭圆的形成下面请各小组拿出老师之前让大家准备的工具:一段固定长的细绳、两颗钉子、一块长 3 分米,宽 3 分米的硬纸板。
然后将钉子系在细绳的两头,将钉子固定在图板上,使得两个钉子之间的距离小于细绳的长度(请同学们考虑一下,为什么两顶子之间的距离要小于细绳的长度?),我们用笔尖将细绳拉紧,让笔尖在图板上慢慢移动,请同学们观察笔尖运动的轨迹是什么图形呢?如果我们将两个钉子之间的距离变大,使得两个钉子之间的距离恰好等于细绳的长度,同样用笔尖将细绳拉紧,让笔尖在图板上慢慢移动。
2.2.1 椭圆及其标准方程【课标点击】1. 理解椭圆、焦点、焦距的定义2. 掌握椭圆标准方程的推导过程3. 会求一些简单的椭圆的标准方程 【预习导学】 ►基础梳理1.椭圆的定义及标准方程.(1)平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做,这两个定点叫做,两点间的距离叫做.只有当||PF 1+||PF 2=2a >||F 1F 2时,点P 的轨迹才是; 当||PF 1+||PF 2=2a =||F 1F 2时,点P 的轨迹是; 当||PF 1+||PF 2=2a <||F 1F 2时,点P 的轨迹. 3.正确理解椭圆的两种标准形式. (1)要熟记a ,b ,c 三个量的关系.椭圆方程中,a 表示椭圆上的点M 到两焦点间距离和的一半,正数a ,b ,c 恰构成一个直角三角形的三条边,a 是斜边,所以a >b ,a >c ,且a 2=b 2+c 2,其中c 是焦距的一半,叫做半焦距.(2)通过标准方程可以判断焦点的位置,其方法是: 4.用待定系数法求椭圆标准方程的步骤.(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述判断设方程为.②在不能确定焦点位置的情况下也可设.(3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. ►自测自评1.到两定点F 1(-4,0)和F 2(4,0)的距离之和为8的点M 的轨迹是.2.椭圆的焦点坐标为(4,0),(-4,0),椭圆上一点到两焦点的距离之和为10,则椭圆的标准方程为.3.已知a =4,c =3,焦点在y 轴上的椭圆的标准方程为.4.椭圆x 225+y 29=1的焦点坐标为.【随堂巩固】1.已知两定点F 1(-2,0),F 2(2,0),点P 是平面上一动点,且|PF 1|+|PF 2|=6,则点P 的轨迹是()A .圆B .直线C .椭圆D .线段2.若椭圆的两焦点为(-2,0),(2,0),且过点⎝ ⎛⎭⎪⎫52,-32,则该椭圆的方程是()A.y 28+x 24=1B.y 210+x 26=1C.y 24+x 28=1 D.y 26+x 210=1 3.过椭圆4x 2+2y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点F 2构成△ABF 2,那么△ABF 2的周长是______.4.写出适合下列条件的椭圆的标准方程: (1)a =4,b =3焦点在x 轴上; (2)a =5,c =2焦点在y 轴上;(3)求中心在原点,焦点在坐标轴上,且经过点⎝ ⎛⎭⎪⎫63,3和点⎝ ⎛⎭⎪⎫223,1.5.设F 1、F 2分别为椭圆C :x 2a 2+y 2b 2=1,(a >b >0)的左右两焦点,若椭圆C 上的点A ⎝ ⎛⎭⎪⎫1,32到F 1、F 2两点的距离之和为4,求椭圆C 的方程及焦点坐标.【课时训练】1.下列说法中正确的是()A .已知F 1(-4,0),F 2(4,0),到F 1,F 2两点的距离之和等于8的点的轨迹是椭圆B .已知F 1(-4,0),F 2(4,0),到F 1,F 2两点的距离之和为6的点的轨迹是椭圆C .到F 1(-4,0),F 2(4,0)两点的距离之和等于点M (5,3)到F 1,F 2的距离之和的点的轨迹是椭圆D .到F 1(-4,0),F 2(4,0)两点距离相等的点的轨迹是椭圆2.设F 1、F 2是椭圆x 225+y 29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为()A .16B .18C .20D .不正确3.椭圆4x 2+9y 2=36的焦点坐标是() A .(0,±3) B .(0,±5) C .(±3,0) D .(±5,0)4.椭圆x 2m +y 24=1的焦距是2,则m 的值为()A .5或3B .8C .5D .35.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是() A .(0,2) B .(0,+∞) C .(-∞,1) D .(0,1)6.椭圆x 249+y 224=1上一点P 与椭圆的两个焦点F 1、F 2的连线互相垂直,则△PF 1F 2的面积为()A .20B .22C .24D .287.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k =____.8.与椭圆x 2+4y 2=4有公共的焦点,且经过点A (2,1)的椭圆的方程为______.9.一动圆过定点A (1,0),且与定圆(x +1)2+y 2=16相切,则动圆圆心轨迹方程是__________.10.已知B 、C 是两个定点,|BC |=6,且△ABC 的周长等于16,求定点A 的轨迹方程.11.已知M (4,0),N (1,0),若动点P 满足MN →·MP →=6|NP →|,求动点P 的轨迹方程.►体验高考1.(2014·辽宁卷)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________________________________________________________________________.2.(2014·安徽卷)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 与A ,B 两点,若|AF 1|=3|BF 1|,AF 2⊥x 轴,则椭圆E 的方程为________________________________________________________________________.3.设椭圆E :x 2a 2+y 2b2=1(a ,b >0)过M (2,2),N (6,1),O 为坐标原点,求椭圆E 的方程.4.在平面直角坐标系x 0y 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点F 1(-1,0),且P(0,1)在C1上,求C1的方程.5.(2013·新课标全国卷Ⅰ)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P 与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.[答案]基础梳理1.(1)椭圆,椭圆的焦点,椭圆的焦距.123.(2)看x 2,y 2的分母大小,哪个分母大,焦点就在哪个坐标轴上.4.(2) ①x 2a 2+y 2b 2=1或x 2b 2+y 2a 2=1.②mx 2+ny 2=1(m >0,n >0且m ≠n ).自测自评1.线段F 1F 2.2.x 225+y 29=1. 3.x 27+y 216=1.4.(4,0),(-4,0).随堂巩固1.[答案]C 2.[答案]D 3.[答案]2 24.[答案](1)x 216+y 29=1;(2)y 225+x 221=1;(3)x 2+y 29=1.5.[答案]解:椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1,F 2两点的距离之和是4,得2a =4,即a =2.又A ⎝ ⎛⎭⎪⎫1,32在椭圆C 上, ∴122+⎝ ⎛⎭⎪⎫322b 2=1,解得b 2=3. ∴c 2=a 2-b 2=1.∴椭圆C 的方程为x 24+y 23=1,焦点坐标为F (±1,0).课时训练1.[答案]C 2.[答案] B 3.[答案] D 4.[答案]A 5.[答案] D6.[答案] C 7.[答案]1[解析]焦点在y 轴上,则y 25k+x 21=1,c 2=5k-1=4,k =1.8.[答案]x26+y23=1.[解析]椭圆x 2+4y 2=4的标准方程为x 24+y 2=1,∴c =a 2-b 2=4-1=3.设椭圆的方程为x 2a 2+y 2a 2-3=1.(a 2>3),把点A (2,1)代入4a 2+1a 2-3=1,解得a 2=6,或a 2=2(舍去), ∴所求椭圆方程为x 26+y 23=1.9.[答案]x 24+y 23=1[解析]设定圆(x +1)2+y 2=16的圆心为C ,动圆圆心为P ,则|PA |+|PC |=4. ∵P 点的轨迹为椭圆,且a =2,c =1,b =3,∴动圆圆心轨迹方程为x 24+y 23=1.10.[答案]解:如图,建立直角坐标系,使x 轴经过点B 、C ,原点O 与BC 的中点重合. 由已知|AB |+|AC |+|BC |=16,|BC |=6, 有|AB |+|AC |=10>|BC |=6,即点A 的轨迹是椭圆,且2c =6,2a =10.∴c =3,a =5,b 2-a 2-c 2=25-9=16.但当点A 在直线BC 上,即y =0时,A 、B 、C 三点不能构成三角形.∴点A 的轨迹方程是x 225+y 216=1(y ≠0).11.[答案]解:设动点P (x ,y ),MP →=(x -4,y ),MN →=(-3,0),NP →=(x -1,y ),由MN →·MP →=6|NP →|,得-3(x -4)=6(x -1)2+y 2,平方化简得3x 2+4y 2=12,即x 24+y 23=1.∴点P 的轨迹方程为x 24+y 23=1.►体验高考1.[答案]解:(1)椭圆x 29+y 24=1中,a =3.如图,设MN 的中点为D ,则|DF 1|+|DF 2|=2a =6. ∵D ,F 1,F 2分别为MN ,AM ,BM 的中点, ∴|BN |=2|DF 2|,|AN |=2|DF 1|, ∴|AN |+|BN |=2(|DF 1|+|DF 2|)=12.2.[解析]由⎩⎪⎨⎪⎧x =c x 2+y 2b2=1,得⎩⎪⎨⎪⎧x =c y =±b 2,设A (c ,b 2),由|AF 1|=3|BF 1|,得B ⎝ ⎛⎭⎪⎫-53c ,-13b 2,∴⎝ ⎛⎭⎪⎫-53c 2+⎝ ⎛⎭⎪⎫-13b 22b 2=1,∴25c 2+b 2=9, ∴25(1-b 2)+b 2=9,b 2=23,∴椭圆E 的方程为x 2+32y 2=1.[答案]x 2+32y 2=13.[答案][解析]将M ,N 的坐标代入椭圆E 的方程得 ⎩⎪⎨⎪⎧4a 2+2b2=1,6a 2+1b 2=1,解得a 2=8,b 2=4. 所以,椭圆E 的方程为x 28+y 24=1.4.[答案][解析]由题意得:b =1,c =a 2-b 2=1∴a =2,b =c =1,故椭圆C 1的方程为:x 22+y 2=1.5.[答案]解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M 、N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q . 则|QP |QM=R r 1,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M 相切得|3k |1+k2=1, 解得k =±24. 当k =24时,将y =24x +2代入x 24+y 23=1,并整理得7x 2+8x -8=0,解得x 1=-4+627,x 2=-4-627.所以|AB |=1+k 2|x 2-x 1|=187.当k =-24时,由图形的对称性可知|AB |=187.18 7.综上,|AB|=23或|AB|=。
椭圆【课题】椭圆【课型】高三复习课【授课教师】【教材分析】圆锥曲线是解析几何的主体内容,也是高中数学的重点内容,而椭圆是圆锥曲线的起始部分,通过本节课的学习,不但让学生对椭圆的知识结构有一个较清晰的认识,而且在处理问题时,让学生学会灵活运用定义,正确选用标准方程,恰当利用几何性质,合理的分析,准确的计算。
并且为复习双曲线和抛物线奠定了基础。
【学情分析】根据“诱思探究教学论”,教学过程中遵循“探索——研究——运用”的三个层次要素,侧重学生的“思”、“探”、“究”的自主学习。
通过教师的“诱”,学生的动脑“思”,使学生的学习达到“探索得资料,研究获本质”。
【教学目标】1、知识目标:掌握椭圆的定义,标准方程和椭圆的几何性质。
2、能力目标:培养学生的解析几何观念,培养学生观察、概括能力,以及类比的学习方法,培养学生分析问题、解决问题的能力。
3、思想目标:⑴培养学生对待知识的科学态度和主动探索精神,激发学生学习激情,提高数学素养。
⑵通过圆锥曲线的学习,可以对学生进行对立、统一的唯物主义思想教育。
【教学重点】1、椭圆的定义,标准方程和几何性质。
2、利用性质解决一些问题。
【教学难点】椭圆定义和几何性质的灵活应用。
【教学方法】诱思探究教学法【教具准备】多媒体电脑课件 【教学过程】一、知识梳理 构建网络问题1:平面内与两个定点F 1、F 2的距离之和为常数的点的轨迹是什么?常数大于|F 1F 2|的点的轨迹是椭圆 常数等于|F 1F 2|的点的轨迹是线段F 1F 2 常数小于|F 1F 2|的点的轨迹不存在问题2:平面内到定点F 与到定直线l 的距离之比为常数的点的轨迹是椭圆吗?常数e(0<e<1)点的轨迹是椭圆问题3:椭圆的标准方程的两种形式是什么?12222=+b y a x , 12222=+ay b x ,(a >b >0) 分别表示中心在原点,焦点在 x 轴和y 轴上的椭圆问题4:椭圆的几何性质有哪些?2F 1F M二、要点训练 知识再现例1.已知椭圆 )0,(12222>=+b a by a x 长半轴的长等于焦距,且 4=x 为它的右准线,椭圆的标准方程为:例2.椭圆上一点P 到左准线的距离为10,F 1是左焦点,O 是坐标原点,点M 满足,则21162522=+y x )(211OF OP OM +=.,0,,,)0(1)06.(321212222的范围求椭圆离心率使若椭圆上存在一点的两焦点为设椭圆模拟例e PF PF P F F b a by a x =⋅>>=+2212221212121020100||||||,0||,||,||),,(解法一F F PF PF PF PF PF PF F F ex a PF ex a PF y x P =+⊥∴=⋅-=+= 则:设)1,22[200,024)()(22222022202220222020∈∴<-≤∴<≤∴<≤∴-==-++e c a c c x e a x x p a c x e c ex a ex a 轴上在椭圆上但不在即1222,.,02222222212121<≤⇒≤∴≤-∴≤⇒≤∴⊥∴=⋅e c a c c a c b c b P F F P PF PF PF PF ,椭圆有又在椭圆上,所以圆与而为直径的圆上,在以所以解法二:公共点探究:以c 为半径的圆与椭圆的位置关系?三、学以致用 直通高考357||||||||||||||||||||||||||||||||||||||41525162617277161514131211132512261127252627==++++++=++++++∴===a P F P F P F P F P F P F P P F P F P F P F P F P F P F P F P F P F P F P F P F P F P F P ,,,,由题意知,,,解法二:连接___||||||811625)06.(4171211172122=+⋯⋯++⋯⋯=+F P F P F P F P P P x y x 则七个点,,,于的垂线交椭圆上半部分轴等分,过每个分点作的长轴分成把椭圆四川例四、知识迁移 提升能力.?|F P ||F P ||,F P ||,F P |, P ,P ,8116251812111080172122差说明理由,若是求出公,是否为判断长轴与椭圆交于是椭圆的左焦点七个点,,,半部分于轴的垂线交椭圆上等分,过每个分点作的长轴分成把椭圆等差数列:变式练习 F P P P x y x ⋯⋯=+五、课后小结 谈谈收获通过本节课的学习,同学们应明确以下几点:357)(7||||||||||7321171613121176543217654321==+++++=+++++a x x x x e a F P F P F P F P F P x x x x x x x P P P P P P P ,,,,,,的横坐标分别为,,,,,,解法一:设43'||||||||||||8045810}{x :1810101111n 810810==∴⋯⋯∴=-+=∈≤≤==⋯⋯⋯⋯+ed d F P F P F P ed F P F P ex a F P N n n d x x x P P P n n n n ,,)。
《椭圆及其标准方程》学案一、学习目标1.知识目标:①掌握椭圆的定义及其标准方程;②通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法.2.能力目标:通过自我探究、操作、数学思想(待定系数法)的运用等,从而提高学生实际动手、合作学习以及运用知识解决实际问题的能力.3.情感目标:在教学中充分揭示“数”与“形”的内在联系,体会形数美的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于创新的精神.二、重点难点1.重点:椭圆的定义及椭圆的标准方程;2.难点:椭圆标准方程的建立和推导.三、认真阅读“2.2.1椭圆及其标准方程”一节,回答下列问题。
(一)椭圆的定义1、[动动手]:取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔拉紧绳子,移动笔尖,画出的轨迹是什么曲线?把细绳的两端拉开一段距离,分别固定在图版的两点处,套上铅笔拉紧绳子,移动笔尖,画出的轨迹是什么曲线?2、[问题]:①对比两条曲线,分别说出移动的笔尖满足的几何条件。
②能否说,椭圆为平面上一动点到两个定点的距离之和等于定长的点的轨迹呢?为什么?3、[讨论]:①平面上一动点到两个定点的距离之和等于这两个定点间的距离的点的轨迹是什么?②平面上一动点到两个定点的距离之和小于这两个定点间的距离的点的轨迹是什么?4、[概括归纳] 椭圆的定义:(二)椭圆的标准方程1、[问题] ① 你能说出求轨迹方程的一般步骤吗?② 我们是如何建系求圆的标准方程的?观察椭圆的形状,你认为怎样建立坐标系才能使椭圆的方程简单?2、[动动手]:根据椭圆定义完成标准方程的推导过程。
【注意】问题1 怎样化简方程22)(y c x +++a y c x 2)(22=+-同桌合作: 相互检查化简的过程、结果是否正确?出现什么问题?如何更正?分组讨论: 对a ²-b ²该如何处理?它有几何意义吗?画图说明。
问题2 如果焦点F 1,F 2在y 轴上,坐标分别为(0,-c )(0,c ),a ,b 的意义同上,那么椭圆的方程是什么?它和焦点在轴上的椭圆方程有什么区别?3、[归纳总结] 椭圆的标准方程:(1)焦点在x 轴上:(2)焦点在y 轴上:(三)例题解析例1 已知椭圆两焦点的坐标分别是()()0,2,0,2-,并且经过点⎪⎭⎫ ⎝⎛-23,25,求它的标准方程.(要求:用多种方法解题,同学间相互交流,看谁的方法最多最好!)例2.在圆上任取一点P ,过点P 做X 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?(你能说出椭圆和圆的关系吗?)(四)小结:(1)知识小结:(2)求曲线方程的方法:(3)数学思想:(四)达标练习1.到两定点F 1(-2,0)和F2(2,0)的距离之和为4的点M 的轨迹是( )A.椭圆 B.线段 C.圆 D.以上都不对2.如果椭圆13610022=+y x 上一点P 到焦点F 1的距离等于6, 那么点P 到另一个焦点F 2的距离是( )A.13 B.14 C.15 D.163.命题甲:动点P 到两定点A ,B 的距离之和︱PA ︱+︱PB ︱=2a (a >0,且a 是常数);命题乙:P 点的轨迹是椭圆,则命题甲是命题乙的( )A .充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件4.椭圆1163222=+y x 的焦距等于( ) A.123 B.8 C.6 D.45. 椭圆两焦点的坐标分别是(0,8)(0,-8)且椭圆上一点到两个焦点的距离之和是20,则此椭圆的方程是( ) A.11003622=+y x B.133640022=+y x C.13610022=+y x D.140033622=+y x 6.若方程1222=-ay a x 表示焦点在y 轴上的椭圆,则a 的取值范围是( ) A. a <0 B.0 < a <1 C.a <1 D.无法确定7.已知圆C 1: (x -4)²+ y ²=13²,圆C 2:(x +4)²+ y ²=3²,动圆C 与圆C 1内切同时与圆C 2外切,求动圆圆心C 的轨迹方程是8.已知经过椭圆1162522=+y x 的右焦点F 2做垂直于x 轴的直线AB 交椭圆与A , B 两点, F 1是椭圆的左焦点.(1)求△AF 1B 的周长(2)如果AB 不垂直于x 轴, △AF 1B 的周长有变化吗?为什么?9. 已知P 为椭圆16410022=+y x 上的点,设F 1, F 2是椭圆的两个焦点,且∠F 1 PF 2=3π 求△F 1 PF 2的面积.【学后记】:。
课题:椭圆及其标准方程教材:普通高中课程标准试验教科书——《数学》选修2-1 一、教材分析:《椭圆及其标准方程》是高中数学新教材选修2—1第二章第二节的第一课时。
从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础;所以说,无论从教材内容,还是从教学方法上都是起着承上启下的作用,它是学好本章内容的关键。
因此搞好这一节的教学,具有非常重要的意义。
二、教学目标分析:(一)知识与技能目标: 准确理解椭圆的定义,掌握椭圆的标准方程及其推导.(二)过程与方法目标: 通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力.(三)情感态度与价值观目标:(1)通过椭圆定义的获得培养学生探索数学的兴趣.(2)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、教学重点、难点:(一).重点:椭圆定义及其标准方程(二).难点:椭圆标准方程的推导四、教学方法与教学手段采用启发和探究式教学相结合的教学模式,即在教师的引导下,创设情境,学生利用课前准备的工具亲自动手画出椭圆,并讨论椭圆上的点满足的条件,以此来充分调动学生学习的主动性和积极性,发展学生数形结合,等价转换等思想,培养学生综合运用知识解决问题的能力。
教学手段:计算机课件辅助教学。
五、教学过程:(一)认识椭圆,探求规律:1.对椭圆的感性认识.通过演示课前老师准备的有关椭圆的图片,让学生从感性上认识椭圆.2.通过演示动画,展示椭圆的形成过程,使学生认识到椭圆是点按一定“规律”运动的轨迹.(二)动手实验,亲身体会用上面所总结的规律,指导学生互相合作(主要在于动手),体验画椭圆的过程(课前准备细绳),并以此了解椭圆上的点的特征.请两名同学上黑板画(三)归纳定义,完善定义我们通过动画演示,实践操作,对椭圆有了一定的认识,下面由同学们归纳椭圆的定义.椭圆定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F =2c )的点的轨迹叫做椭圆。
2.2椭圆2.2.1椭圆及其标准方程1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.思考:(1)椭圆定义中将“大于|F1F2|”改为“等于|F1F2|”的常数,其他条件不变,点的轨迹是什么?(2)椭圆定义中将“大于|F1F2|”改为“小于|F1F2|”的常数,其他条件不变,动点的轨迹是什么?[提示](1)点的轨迹是线段F1F2.(2)当距离之和小于|F1F2|时,动点的轨迹不存在.2.椭圆的标准方程1.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.5C.8 D.10D[由椭圆方程知a2=25,则a=5,|PF1|+|PF2|=2a=10.]2.椭圆的两个焦点坐标分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为()A.x2100+y236=1 B.y2400+x2336=1C.y2100+x236=1 D.y220+x212=1C[由题意知c=8,2a=20,∴a=10,∴b2=a2-c2=36,故椭圆的方程为y2100+x236=1.]3.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的方程为()A.x24+y23=1 B.x24+y2=1C.y24+x23=1 D.y24+x2=1A[由题意知c=1,椭圆的焦点在x轴上,设椭圆方程为x2a2+y2b2=1,又点P(2,0)在椭圆上,∴4a2+b2=1,∴a2=4,b2=a2-c2=3,故椭圆方程为x24+y23=1.]4.椭圆8k2x2-ky2=8的一个焦点坐标为(0,7),则k的值为________.-1或-17[原方程可化为x21k2+y2-8k=1.依题意,得⎩⎪⎨⎪⎧-8k >0,-8k >1k 2,-8k -1k 2=7,即⎩⎪⎨⎪⎧k <0,k <-18,k =-1或k =-17.所以k 的值为-1或-17.](1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点A (3,-2)和点B (-23,1). [解] (1)由于椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0). ∴a =5,c =4,∴b 2=a 2-c 2=25-16=9. 故所求椭圆的标准方程为x 225+y 29=1. (2)由于椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0). ∴a =2,b =1.故所求椭圆的标准方程为y 24+x 2=1. (3)法一:①当焦点在x 轴上时,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).依题意有⎩⎪⎨⎪⎧(3)2a 2+(-2)2b 2=1,(-23)2a 2+1b 2=1,解得⎩⎨⎧a 2=15,b 2=5.故所求椭圆的标准方程为x 215+y 25=1. ②当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).依题意有⎩⎪⎨⎪⎧(-2)2a 2+(3)2b 2=1,1a 2+(-23)2b 2=1,解得⎩⎨⎧a 2=5,b 2=15,因为a >b >0,所以无解.所以所求椭圆的标准方程为x 215+y 25=1.法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),依题意有⎩⎨⎧3m +4n =1,12m +n =1,解得⎩⎪⎨⎪⎧m =115,n =15.所以所求椭圆的标准方程为x 215+y 25=1.1.利用待定系数法求椭圆的标准方程(1)先确定焦点位置;(2)设出方程;(3)寻求a ,b ,c 的等量关系;(4)求a ,b 的值,代入所设方程.2.当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).因为它包括焦点在x 轴上(m <n )或焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而简化了运算.1.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点,若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1D.x 25+y 24=1[答案] B【例2】 (1)椭圆x 9+y 2=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为________.(2)已知椭圆x 24+y 23=1中,点P 是椭圆上一点,F 1,F 2是椭圆的焦点,且∠PF 1F 2=120°,则△PF 1F 2的面积为________.思路探究:(1)求|PF 2|→求cos ∠F 1PF 2→求∠F 1PF 2的大小 (2)椭圆定义和余弦定理→建立关于|PF 1|,|PF 2|的方程→联立求解|PF 1|→求三角形的面积(1)120° (2)335 [(1)由x 29+y 22=1,知a =3,b =2, ∴c =7.∴|PF 2|=2a -|PF 1|=2,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=-12,∴∠F 1PF 2=120°.(2)由x 24+y 23=1,可知a =2,b =3,所以c =a 2-b 2=1,从而|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos ∠PF 1F 2,即|PF 2|2=|PF 1|2+4+2|PF 1|. ①由椭圆定义得|PF 1|+|PF 2|=2a =4. ② 由①②联立可得|PF 1|=65.所以S △PF 1F 2=12|PF 1||F 1F 2|sin ∠PF 1F 2=12×65×2×32=335.]1.椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .2.椭圆中的焦点三角形椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.在处理椭圆中的焦点三角形问题时,可结合椭圆的定义|MF 1|+|MF 2|=2a 及三角形中的有关定理和公式(如正弦定理、余弦定理、三角形面积公式等)来求解.2.(1)已知P 是椭圆y 25+x 24=1上的一点,F 1,F 2是椭圆的两个焦点,且∠F 1PF 2=30°,则△F 1PF 2的面积是__________________.8-43 [由椭圆的标准方程,知a =5,b =2, ∴c =a 2-b 2=1,∴|F 1F 2|=2. 又由椭圆的定义,知 |PF 1|+|PF 2|=2a =2 5.在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2,即4=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-2|PF 1|·|PF 2|cos 30°, 即4=20-(2+3)|PF 1|·|PF 2|, ∴|PF 1|·|PF 2|=16(2-3).∴S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2=12×16(2-3)×12=8-4 3.] (2)设P 是椭圆x 24+y 23=1上一点,F 1,F 2是椭圆的焦点,若∠PF 1F 2=90°,则△F 1PF 2的面积是________.32 [由椭圆方程x 24+y 23=1,知a =2,c =1,由椭圆定义,得|PF 1|+|PF 2|=2a =4,且|F 1F 2|=2,在△PF 1F 2中,∠PF 1F 2=90°.∴|PF 2|2=|PF 1|2+|F 1F 2|2.从而(4-|PF 1|)2=|PF 1|2+4,则|PF 1|=32,因此S △PF 1F 2=12·|F 1F 2|·|PF 1|=32.故所求△PF 1F 2的面积为32.]1.如图所示,P 为圆B :(x +2)2+y 2=36上一动点,点A 的坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.[提示] 用定义法求椭圆的方程,首先要利用平面几何知识将题目条件转化为到两定点的距离之和为定值,然后判断椭圆的中心是否在原点、对称轴是否为坐标轴,最后由定义确定椭圆的基本量a ,b ,c .所求点Q 的轨迹方程为x 29+y 25=1.2.如图所示,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹方程是什么?为什么?[提示] 当题目中所求动点和已知动点存在明显关系时,一般利用代入法(相关点法)求解.用代入法(相关点法)求轨迹方程的基本步骤为:(1)设点:设所求轨迹上动点坐标为M (x ,y ),已知曲线上动点坐标为P (x 1,y 1).(2)求关系式:用点M 的坐标表示出点P 的坐标,即得关系式⎩⎨⎧x 1=g (x ,y ),y 1=h (x ,y ). (3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可.所求点M 的轨迹方程为x 24+y 2=1.【例3】 (1)已知P 是椭圆x 24+y 28=1上一动点;O 为坐标原点,则线段OP 中点Q 的轨迹方程为______________.(2)一个动圆与圆Q 1:(x +3)2+y 2=1外切,与圆Q 2:(x -3)2+y 2=81内切,试求这个动圆圆心的轨迹方程.思路探究:(1)点Q为OP的中点⇒点Q与点P的坐标关系⇒代入法求解.(2)由圆的相切,及动圆圆心与两个定圆圆心、半径的关系得轨迹.(1)x2+y22=1[设Q(x,y),P(x0,y0),由点Q是线段OP的中点知x0=2x,y0=2y,又x204+y208=1.所以(2x)24+(2y)28=1,即x2+y22=1.](2)解:由已知,得两定圆的圆心和半径分别为Q1(-3,0),R1=1;Q2(3,0),R2=9.设动圆圆心为M(x,y),半径为R,如图.由题设有|MQ1|=1+R,|MQ2|=9-R,所以|MQ1|+|MQ2|=10>|Q1Q2|=6.由椭圆的定义,知点M在以Q1,Q2为焦点的椭圆上,且a=5,c=3.所以b2=a2-c2=25-9=16,故动圆圆心的轨迹方程为x225+y216=1.1.与椭圆有关的轨迹方程的求法常用方法有:直接法、定义法和代入法,本例(1)所用方法为代入法.例(2)所用方法为定义法.2.对定义法求轨迹方程的认识如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法.3.代入法(相关点法)若所求轨迹上的动点P(x,y)与另一个已知曲线C:F(x,y)=0上的动点Q(x1,y1)存在着某种联系,可以把点Q的坐标用点P的坐标表示出来,然后代入已知曲线C的方程F(x,y)=0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法).3.(1)已知x 轴上一定点A (1,0),Q 为椭圆x 24+y 2=1上任一点,求线段AQ 中点M 的轨迹方程.[解] 设中点M 的坐标为(x ,y ),点Q 的坐标为(x 0,y 0). 利用中点坐标公式,得⎩⎪⎨⎪⎧x =x 0+12,y =y 02,∴⎩⎨⎧x 0=2x -1,y 0=2y .∵Q (x 0,y 0)在椭圆x 24+y 2=1上, ∴x 204+y 20=1.将x 0=2x -1,y 0=2y 代入上式, 得(2x -1)24+(2y )2=1.故所求AQ 的中点M 的轨迹方程是 ⎝ ⎛⎭⎪⎫x -122+4y 2=1. (2)在Rt △ABC 中,∠CAB =90°,|AB |=2,|AC |=32,曲线E 过C 点,动点P 在曲线E 上运动,且|P A |+|PB |是定值.建立适当的平面直角坐标系,求曲线E 的方程.[解] 以AB 的中点O 为原点,建立如图所示的平面直角坐标系.由题意可知,曲线E 是以A ,B 为焦点,且过点C 的椭圆,设其方程为x 2a 2+y 2b 2=1(a >b >0).则2a =|AC |+|BC |=32+52=4,2c =|AB |=2,所以a =2,c =1,所以b 2=a 2-c 2=3.所以曲线E 的方程为x 24+y 23=1.1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a ,当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.所谓椭圆的标准方程,指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在x 2a 2+y 2b 2=1与y 2a 2+x 2b 2=1这两个标准方程中,都有a >b >0的要求,如方程x 2m +y 2n =1(m >0,n >0,m ≠n )就不能确定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式x a +y b =1类比,如x 2a 2+y 2b 2=1中,由于a >b ,所以在x 轴上的“截距”更大,因而焦点在x 轴上(即看x 2,y 2分母的大小).3.对于求解椭圆的标准方程一般有两种方法:一是通过待定系数法求解,二是通过椭圆的定义进行求解.1.已知A (-5,0),B (5,0).动点C 满足|AC |+|BC |=10,则点C 的轨迹是( )A .椭圆B .直线C .线段D .点 C [由|AC |+|BC |=10=|AB |知点C 的轨迹是线段AB .]2.已知椭圆4x 2+ky 2=4的一个焦点坐标是(0,1),则实数k 的值是( ) A .1 B .2 C .3 D .4B[椭圆方程可化为x 2+y24k =1,由题意知⎩⎪⎨⎪⎧4k >1,4k -1=1,解得k =2.]3.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1,F 2的连线夹角为直角,则|PF 1|·|PF 2|=________.48 [由题意知⎩⎨⎧|PF 1|+|PF 2|=14, ①|PF 1|2+|PF 2|2=100, ② ①2-②得2|PF 1||PF 2|=96.所以|PF 1||PF 2|=48.]4.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.[解] 设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).设焦点F 1(-c ,0),F 2(c ,0)(c >0).∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0,而F 1A →=(-4+c ,3),F 2A →=(-4-c ,3),∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5.∴F 1(-5,0),F 2(5,0).∴2a =|AF 1|+|AF 2| =(-4+5)2+32+(-4-5)2+32=10+90=410. ∴a =210,∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1.。
《椭圆及其标准方程》教案一、教学内容解析本节课是人教A版选修2-1中的第二章第二节第一课时的内容,其主要内容是研究椭圆的定义及其标准方程,属于概念性知识。
解析几何是在直角坐标系的基础上,利用代数方法解决几何问题的一门学科。
从知识上讲,本节是在直线和圆的基础上,对解析法的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上讲,为进一步研究双曲线、抛物线提供了基本模式和理论基础;从教材编排上讲,三种圆锥曲线独编为一章,体现椭圆的重要地位。
解析几何的意义主要表现在数形结合的思想上,在研究椭圆定义和方程的过程中,几何直观观察和代数严格推导相互结合,同时要借助圆作类比,用类比的思想为学生的思维搭桥铺路。
因此本节课内容起到了承上启下的重要作用,是本章和本节的重点。
本节课的教学重点是:椭圆的定义及其标准方程。
二、学生学情分析(1)学生已初步掌握用坐标法研究直线和圆的方程;(2)学生已初步熟悉求曲线方程的基本步骤;(3)学生对于利用数形结合思想解决问题的意识还不够强;(4)对含有两个根式方程的化简能力薄弱。
三、教学目标知识目标:(1)理解椭圆的定义。
(2)掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力。
过程与方法:经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质。
情感目标:培养学生勇于探索,善于发现的创新思想,形成实事求是的科学态度并体会数学的简洁美、对称美。
教学难点及突破策略:1.本节课的教学难点:椭圆的标准方程的推导与化简。
2.突破策略:引导学生类比建立圆的方程的方法,经过学生独立思考与交流讨论,在椭圆上建立恰当的直角坐标系;化简动点满足的代数方程时,引导学生注意观察方程的特点,对其进行移项变形后再通过平方运算进行化简,配合多媒体演示。
四、教学策略分析1.为了充分调动学生学习数学的积极性,促进学生主动思考,采用问题串引导探究活动,以问题作为引领,诱导学生积极思考;2.利用手工制作的教具和现代教育手段,把教学内容与教具及现代教育手段合理整合。
§2.2.1椭圆及其标准方程(1)
1.从具体情境中抽象出椭圆的模型;
2.掌握椭圆的定义;
3.掌握椭圆的标准方程.
一、课前准备
(预习教材理P38~ P40,文P32~ P34找出疑惑之处)
复习1:过两点(0,1),(2,0)的直线方程.
复习2:方程22
-++=表示以为圆心, 为半径的.
(3)(1)4
x y
二、新课导学
※学习探究
取一条定长的细绳,
把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个.
如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,Array
拉紧绳子,移动笔尖,画出的轨迹是什么曲线?
思考:移动的笔尖(动点)满足的几何条件是什么?
经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.
新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的
点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦
距 .
反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ; 当122a F F <时,其轨迹为 .
试试:
已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹
是 .
小结:应用椭圆的定义注意两点:
①分清动点和定点; ②看是否满足常数122a F F >.
新知2:焦点在x 轴上的椭圆的标准方程
()2
22210x y a b a b +=>> 其中222b a c =-
若焦点在y 轴上,两个焦点坐标 ,
则椭圆的标准方程是 .
※ 典型例题
例1 写出适合下列条件的椭圆的标准方程:
⑴4,1a b ==,焦点在x 轴上;
⑵4,a c =y 轴上;
⑶10,a b c +==
变式:方程2
14x y
m +=表示焦点在x 轴上的椭圆,
则
实数m 的范围 .
小结:椭圆标准方程中:222
a b c
=+;a b
>.
例2 已知椭圆两个焦点的坐标分别是()
2,0
-,(2,0),并且经过点
53
,
22
⎛⎫
-
⎪
⎝⎭
,求它
的标准方程.
变式:椭圆过点()
2,0
-,(2,0),(0,3),求它的标准方程.
小结:由椭圆的定义出发,得椭圆标准方程.
※动手试试
练 1. 已知ABC
∆的顶点B、C在椭圆
2
21
3
x
y
+=上,顶点A是椭圆的一个焦点,
且椭圆的另外一个焦点在BC边上,则ABC
∆的周长是().
A. B.6 C..12
练2 .方程219x y m
-=表示焦点在y 轴上的椭圆,求实数m 的范围.
三、总结提升
※ 学习小结
1. 椭圆的定义:
2. 椭圆的标准方程:
※ 知识拓展
1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,
则点M 的轨迹为( ). A .椭圆 B .圆
C .无轨迹
D .椭圆或线段或无轨迹
2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).
A .(0,)+∞
B .(0,2)
C .(1,)+∞
D .(0,1)
3.如果椭圆22110036
x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( )
. A .4 B .14 C .12 D .8
4.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程
是 .
5.如果点(,)M x y 10,点M 的轨迹是 ,它的方程是 .
1. 写出适合下列条件的椭圆的标准方程:
⑴焦点在x轴上,焦距等于4,并且经过点(3,P-;
⑵焦点坐标分别为()()
0,4,0,4
-,5
a=;
⑶10,4
a c a c
+=-=.
2. 椭圆
22
1
4
x y
n
+=的焦距为2,求n的值.。