线性相关线性相关等价命题
- 格式:ppt
- 大小:1.14 MB
- 文档页数:8
线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里 是1,2,·n的一个排列。
当 是偶排列时,该项的前面带正号;当 是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。
式(1.1)称为n阶行列式的完全展开式。
2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。
一个排列的逆序总是称为这个排列的逆序数。
用 表示排列 的逆序数。
3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。
4.2阶与3阶行列式的展开—— ,5.余子式与代数余子式——在n阶行列式中划去 所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为 的余子式,记为 ;称为 的代数余子式,记为 ,即 。
6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作 。
二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。
2.两行互换位置,行列式的值变号。
特别地,两行相同(或两行成比例),行列式的值为0.3.某行如有公因子k,则可把k提出行列式记号外。
4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则4.范德蒙行列式5.抽象n阶方阵行列式公式 (矩阵)若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:;; |AB|=|A||B|;;;;若 ,则,且特征值相同。
向量组的线性相关与线性无关1、线性组合设12,,,n t a a a R ⋅⋅⋅∈,12,,,t k k k R ⋅⋅⋅∈,称1122t t k a k a k a ++⋅⋅⋅+为12,,,t a a a ⋅⋅⋅的一个线性组合。
【备注1】按分块矩阵的运算规则,12112212(,,,)t t t t k kk a k a k a a a a k ⎛⎫ ⎪ ⎪++⋅⋅⋅+=⋅⋅⋅ ⎪ ⎪⎝⎭。
这样的表示就是有好处的。
2.线性表示设12,,,n t a a a R ⋅⋅⋅∈,n b R ∈,如果存在12,,,t k k k R ⋅⋅⋅∈,使得1122t t b k a k a k a =++⋅⋅⋅+则称b 可由12,,,t a a a ⋅⋅⋅线性表示。
1122t t b k a k a k a =++⋅⋅⋅+,写成矩阵形式,即1212(,,,)t t k kb a a a k ⎛⎫ ⎪ ⎪=⋅⋅⋅ ⎪ ⎪⎝⎭。
因此,b 可由12,,,t a a a ⋅⋅⋅线性表示即线性方程组1212(,,,)t t k ka a ab k ⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪ ⎪⎝⎭有解,而该方程组有解当且仅当1212(,,,)(,,,,)t t r a a a r a a a b ⋅⋅⋅=⋅⋅⋅。
3、向量组等价设1212,,,,,,,n t s a a a b b b R ⋅⋅⋅⋅⋅⋅∈,如果12,,,t a a a ⋅⋅⋅中每一个向量都可以由12,,,s b b b ⋅⋅⋅线性表示,则称向量组12,,,t a a a ⋅⋅⋅可以由向量组12,,,s b b b ⋅⋅⋅线性表示。
如果向量组12,,,t a a a ⋅⋅⋅与向量组12,,,s b b b ⋅⋅⋅可以相互线性表示,则称这两个向量组就是等价的。
向量组等价的性质:(1) 自反性 任何一个向量组都与自身等价。
(2) 对称性 若向量组I 与II 等价,则向量组II 也与I 等价。
向量组的线性相关性1、n 维向量由n 个数组成的有序数组()12,,,n a a a 称作一个n 维向量,记作()12,,,n a a a α= ,其中i a 称作α的第i 个坐标。
设()12,,,n a a a α= ,()12,,,n b b b β= ,当()1,2,,i i a i n b == 时,称α与β相等,记作αβ=。
称()12,,,n a a a α= 为n 维列向量,αT 为n 维行向量。
分量全为0的向量称为零向量。
向量()12,,,n a a a α= 的各分量的相反数所组成的向量,称为α的负向量,记作α-,即()12,,n a a a α=---- 。
向量加法定义:()1122,,,n n a b a b a b αβ+=+++ ;向量减法定义:()()1122,,,n n a b a b a b αβαβ-=+-=--- 。
向量α与数乘积定义;k 为任意实数,则()12,,,n k k k k αααα= n 维向量的加法和数乘运算满足下面性质(设α、β、γ表示n 维向量,k 、l 表示数量)。
(1)αββα+=+;(2)()()αβγαβγ++=++;(3)0αα+=;(4)()0αα+-=;(5)()k k k αβαβ+=+;(6)()k l k l ααα+=+。
2、向量的线性表示设12,,,s ααα ,β均为n 维向量,若存在一组数12,,,s k k k ,使得1122k k αβα=+++ s s k α,则称向量β是向量组12,,,s ααα 的一个线性组合,也称向量β可由向量组12,,,s ααα 线性表示。
3、向量组的线性相关性对于m 个n 维向量12,,,m ααα ,若存在不全为零的数12,,,m k k k ,使得11220m m k k k ααα+++= ,则称这m 个向量线性相关;否则,称它们线性无关。
通过线性相关和线性无关的定义可推出:(1)单独一个0向量,线性相关;高 数向量组的线性相关性知识点速记(2)含有0向量的向量组,线性相关;(3)单独一个非0向量,线性无关;(4)由n 个标准单位向量()11,0,0,,0=ε ,()20,1,0,,0=ε ,…,()0,,0,1n =ε 组成的向量组,线性无关。
第一章1、矩阵乘法矩阵乘法通常满足分配律而一般不满足交换律即AB!=BAf(x),g(x)为多项式,有:f(A)g(A)=g(A)f(A)f(A)g(B)!=g(B)f(A)2、矩阵的转置(A+B)^T=A^T+B^T (AB)^T=B^TA^T(kA)^T=kA^T(A^T)^T=A若A^t=-A 称A为反对称矩阵(斜对称矩阵)任意n阶方阵都可以写成对称矩阵和反对称矩阵之和。
3、矩阵的初等变换4、逆矩阵B唯一,B的逆为A。
(AB)^(-1)=B^(-1)A^(-1)(kA)^(-1)=(1/k)A^(-1)①A可逆②AX=0只有零解③Ab=0有唯一解〔①、③即为克拉默法则〕④A≌Ⅰ(等价)最简判断方法:det!=0逆矩阵求法:(A , I)—→(I , A^(-1))5、分块矩阵(注意使用即可)第二章1、性质(①、②为矩阵的某两行)某一行全为零,det=0某两行对应元成比例,则det=0 ①→k·①,则det→k·det①→k·②+①,则det不变①←→②,则det→(-det)detA=det(A^T)detA^-1=1/detAdetAB…N=detAdetB……detN det(kA)=k^n(detA)#伴随矩阵的性质y推导基础:AA*=A*A=(detA)Ⅰ若A可逆,则A^(-1) = (1/detA)A* det(A*)=(detA)^(n-1)(kA)*=k^(n-1)A*(A*)^(-1)= A^(-1)*(A^T)* =(A*)^T(AB)* = B*A*(A*)*=(detA)^(n-2) Ar(A*)={n(rA=n),1(rA=n-1),0(rA<n-1)} 2、矩阵的秩定义:矩阵A的非零子式的最高阶数称为A的秩,零矩阵的秩为0。
性质:A可逆←→R(A)=nR(A)=0←→A=0R(A)=R(A^T)k≠0时,R(kA)=R(A)若P,Q为可逆矩阵,则R(A)=R(PA)=R(AQ)=R(PAQ)A≌B←→R(A)=R(B)(1) 有:初等变换不改变矩阵的秩经过行初等变化把矩阵换为行最简,即可得到秩。
向量组的线性相关与线性无关1.线性组合设12,,,n t a a a R ⋅⋅⋅∈,12,,,t k k k R ⋅⋅⋅∈,称1122t t k a k a k a ++⋅⋅⋅+为12,,,t a a a ⋅⋅⋅的一个线性组合。
【备注1】按分块矩阵的运算规则,12112212(,,,)t t t t k k k a k a k a a a a k ⎛⎫⎪ ⎪++⋅⋅⋅+=⋅⋅⋅ ⎪ ⎪⎝⎭。
这样的表示是有好处的。
2.线性表示设12,,,n t a a a R ⋅⋅⋅∈,n b R ∈,如果存在12,,,t k k k R ⋅⋅⋅∈,使得1122t t b k a k a k a =++⋅⋅⋅+则称b 可由12,,,t a a a ⋅⋅⋅线性表示。
1122t t b k a k a k a =++⋅⋅⋅+,写成矩阵形式,即1212(,,,)t t k k b a a a k ⎛⎫ ⎪ ⎪=⋅⋅⋅ ⎪ ⎪⎝⎭。
因此,b 可由12,,,t a a a ⋅⋅⋅线性表示即线性方程组1212(,,,)t t k k a a a b k ⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪ ⎪⎝⎭有解,而该方程组有解当且仅当1212(,,,)(,,,,)t t r a a a r a a a b ⋅⋅⋅=⋅⋅⋅。
3.向量组等价设1212,,,,,,,n t s a a a b b b R ⋅⋅⋅⋅⋅⋅∈,如果12,,,t a a a ⋅⋅⋅中每一个向量都可以由12,,,s b b b ⋅⋅⋅线性表示,则称向量组12,,,t a a a ⋅⋅⋅可以由向量组12,,,s b b b ⋅⋅⋅线性表示。
如果向量组12,,,t a a a ⋅⋅⋅和向量组12,,,s b b b ⋅⋅⋅可以相互线性表示,则称这两个向量组是等价的。
向量组等价的性质:(1) 自反性 任何一个向量组都与自身等价。
(2) 对称性 若向量组I 与II 等价,则向量组II 也与I 等价。
◆定理1 向量组α1, α2,…, αn线性相关(⽆关)的充要条件是向量组中⾄少有⼀个(任⼀)向量可由(均不能)其余s-1个向量线性表出.◆定理2 向量组αj=(α1j, α2j,…, αnj)(j=1,2,…,s)线性相关(⽆关)的充要条件是齐次线性⽅程组有⾮零解(唯⼀零解).◆定理3 向量组α1, α2,…, αn线性⽆关,向量组α1, α2,…, αn,β线性相关,则β可由α1,α2,…,αn线性表出,且表法唯⼀.◆定理4 向量组(I)β1,β2,…,βn中的每⼀个向量均可由向量组(II)α1, α2,…, αm线性表出,且n>m,则向量组(I)β1,β2,…,βn线性相关(以少表多,则多相关);反之,若(I)中每⼀个向量均可由(II)表出,且(I)线性⽆关,则s≤t.◆向量组等价两向量组等价,且记作(I)≅ (II).如果(I) α1, α2,…, αn和(II)β1,β2,…,βn可以互相线性表出,则成两向量组等价◆三秩相等r(A)=A的⾏秩(A的⾏向量组的值)=A的列秩(A的列向量组的值)◆初等变换不改变矩阵的秩设P1,Q1为初等矩阵,P,Q为可逆矩阵,则(1) r(A)=r(P1A)=r(AQ1)=r(P1AQ1)=r(PA)=r(AQ)=r(PAQ);(2) PAQ=B⇔A≅B⇔r(A)= r(B);(3) 若A经过初等⾏变换得到B,则A的⾏向量组与B的⾏向量组是等价向量组;(4) 若A经过初等⾏变换得到B,则A和B的任何相应的部分列向量组具有相同的线性相关性.◆有关等式与不等式设A是m×n矩阵,B是满⾜有关矩阵运算要求的矩阵,则◆施密特正交化公式如果向量αTβ=0,则称向量α,β为正交向量.设α1,α2,…,αn为线性⽆关组,则其对应的正交向量组可按如下公式求:得到β1,β2,…,βn为正交向量组,将该向量组单位化,则得到⼀组标准正交向量组.◆过渡矩阵设α=(α1,α2,…,αn)与β=(β1,β2,…,βn)是R n的两组基,如果有β=AαT,则A称为过渡矩阵. 过渡矩阵是可逆矩阵.◆正交矩阵设A是n阶⽅阵,满⾜AA T=E或A T A=E,则称A为正交矩阵. A是正交矩阵,A T=A-1⇔A的⾏(列)向量组是标准正交向量组.◆正交变换设A是正交矩阵,则称y=Ax为正交变换,正交变换保持向量的内积不变,即保持向量的长度和两向量的夹⾓不变.(1) 有关向量的概念及其性质的命题解题⽅法:解题⽅法●向量的线性组合,向量组的线性相关与线性⽆关,极⼤线性⽆关组,向量空间的基,⼀定记熟.●重要定理,如增加向量不改变相关,增加分量不改变⽆关,等价向量组等秩,被表出的⽆关组的秩不超过表出组向量个数。