六年级上册数学知识树一到八单元
- 格式:docx
- 大小:36.82 KB
- 文档页数:3
小学数学六年级上册各单元思维导图第一部分:数的认识一、整数1. 自然数:0、1、2、3、4、5、6、7、8、9、10……2. 整数:自然数和它们的相反数3. 整数的分类:正整数、0、负整数二、分数1. 分数的意义:表示一个整体被平均分成若干份,其中的一份或几份2. 分数的表示:分子/分母3. 分数的分类:真分数、假分数、带分数三、小数1. 小数的意义:表示一个整体被平均分成若干份,其中的一份或几份,用小数点表示2. 小数的表示:整数部分和小数部分3. 小数的分类:有限小数、无限小数第二部分:数的运算一、加法1. 整数加法:相同符号的整数相加,异号整数相加2. 分数加法:同分母分数相加,异分母分数相加3. 小数加法:小数点对齐,逐位相加二、减法1. 整数减法:相同符号的整数相减,异号整数相减2. 分数减法:同分母分数相减,异分母分数相减3. 小数减法:小数点对齐,逐位相减三、乘法1. 整数乘法:相同符号的整数相乘,异号整数相乘2. 分数乘法:分子相乘,分母相乘3. 小数乘法:小数点对齐,逐位相乘四、除法1. 整数除法:相同符号的整数相除,异号整数相除2. 分数除法:分子相除,分母相除3. 小数除法:小数点对齐,逐位相除第三部分:数的性质一、数的性质1. 整数的性质:奇数、偶数、质数、合数2. 分数的性质:分子分母同乘(除)一个数,分数的值不变3. 小数的性质:小数点向左(右)移动一位,小数的值缩小(扩大)10倍二、数的运算定律1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 乘法交换律:a × b = b × a4. 乘法结合律:(a × b) × c = a × (b × c)5. 乘法分配律:a × (b + c) = a × b + a × c三、数的运算顺序1. 先算乘除,后算加减2. 同级运算,从左到右依次计算3. 括号内的运算优先级最高第四部分:数的应用一、整数应用1. 计算长度、面积、体积等2. 解决实际问题,如购物、分配、比较等二、分数应用1. 计算比例、比率等2. 解决实际问题,如分物品、分配资源等三、小数应用1. 计算长度、面积、体积等2. 解决实际问题,如购物、分配、比较等第五部分:几何图形一、平面图形1. 线段、射线、直线:线段是有限长的直线,射线有一个端点,直线无限长2. 角:由两条射线共同确定的图形,有一个顶点和两条边3. 三角形:由三条线段围成的图形,有三个角和三个边4. 四边形:由四条线段围成的图形,有四个角和四个边5. 圆:平面内到一个固定点距离相等的所有点组成的图形二、立体图形1. 长方体:由六个长方形围成的立体图形,有六个面、十二条边和八个顶点2. 正方体:由六个正方形围成的立体图形,有六个面、十二条边和八个顶点3. 圆柱:由两个底面和一个侧面围成的立体图形,底面是圆形4. 圆锥:由一个底面和一个侧面围成的立体图形,底面是圆形5. 球:由一个点向外无限延伸,到该点的距离相等的所有点组成的立体图形第六部分:几何图形的性质一、平面图形的性质1. 线段的性质:线段有长度,线段之间可以比较大小2. 角的性质:角有度数,角之间可以比较大小3. 三角形的性质:三角形的内角和为180度,等腰三角形的底角相等,直角三角形的勾股定理4. 四边形的性质:四边形的内角和为360度,矩形、正方形的对角线互相平分5. 圆的性质:圆的周长与直径的比例是圆周率,圆的面积与半径的平方成正比二、立体图形的性质1. 长方体的性质:长方体的体积等于长、宽、高的乘积2. 正方体的性质:正方体的体积等于边长的立方3. 圆柱的性质:圆柱的体积等于底面积乘以高4. 圆锥的性质:圆锥的体积等于底面积乘以高除以35. 球的性质:球的体积等于半径的立方乘以4/3π第七部分:几何图形的测量一、长度测量1. 线段长度:使用直尺或卷尺进行测量2. 角度测量:使用量角器进行测量二、面积测量1. 平面图形面积:根据公式计算,如长方形面积=长×宽,圆面积=πr²2. 立体图形表面积:根据公式计算,如长方体表面积=2(长×宽+长×高+宽×高)三、体积测量1. 立体图形体积:根据公式计算,如长方体体积=长×宽×高,圆柱体积=底面积×高2. 容器体积:使用量筒或量杯进行测量第八部分:数学应用与拓展一、数学在生活中的应用1. 购物:计算价格、找零等2. 测量:计算长度、面积、体积等3. 分配:分配物品、资源等二、数学在科学中的应用1. 物理学:计算速度、加速度、力等2. 化学:计算物质的量、浓度等3. 生物:计算种群数量、增长率等三、数学在艺术中的应用1. 音乐:计算音高、节奏等2. 绘画:计算比例、透视等3. 建筑设计:计算结构、空间等第九部分:数学问题解决策略一、问题解决步骤1. 理解问题:仔细阅读题目,明确已知条件和求解目标2. 制定计划:根据问题类型和条件,选择合适的解决方法3. 执行计划:按照计划进行计算和推导4. 检查结果:验证计算过程和结果的正确性二、常见问题解决方法1. 图形法:通过绘制图形,直观地表示问题条件,便于理解和解决2. 列表法:将问题条件列成表格,便于分析和比较3. 代数法:使用代数表达式和方程,进行符号运算和推导4. 逻辑推理法:根据已知条件和数学规律,进行逻辑推理和证明第十部分:数学思维培养一、培养逻辑思维能力1. 通过解决数学问题,锻炼逻辑推理和证明能力2. 学习数学定义、定理和公式,理解其背后的逻辑关系二、培养空间想象能力1. 学习几何知识,通过绘制图形和想象空间关系,培养空间想象力2. 参与数学建模活动,将实际问题转化为数学模型,提高空间想象能力三、培养数学建模能力1. 学习数学建模方法,将实际问题转化为数学问题2. 参与数学建模竞赛和活动,提高数学建模能力第十一部分:数学学习资源一、教材和辅导书1. 选择适合自己水平的教材和辅导书,进行系统学习2. 利用辅导书中的例题和习题,巩固所学知识二、在线资源和应用程序1. 利用在线教育平台和数学学习网站,获取丰富的学习资源2. 数学学习应用程序,进行互动式学习和练习三、数学竞赛和活动1. 参与数学竞赛,提高数学水平和竞争意识2. 参加数学讲座、研讨会等活动,拓宽数学视野。
一、整数运算(第一单元)1.整数的认识:整数是由正整数、零和负整数组成。
2.整数加法与减法:同号两数相加,异号两数相减,加减法运算的结果遵循同号得正、异号得负的原则。
二、小数的认识与运算(第二单元)1.小数的认识:小数是由整数部分和小数部分组成的数。
2.小数的加法和减法:小数的加法和减法运算与整数运算相似,需要对齐小数点,按位进行运算。
三、分数的认识与运算(第三单元)1.分数的认识:分数是一个整体被等分为若干个相等的部分,分数由分子和分母组成。
2.分数的加法、减法、乘法和除法:分数的运算需要找到最小公倍数,化为相同分母后进行运算。
四、比例与相似(第四单元)1.比例和比例式:比例是两个比较的数之间的等比关系,比例式是比例的一种表达方式。
2.比例的三项性质:给定三个已知比例中的三项,可以求解未知的第四项。
3.相似图形:相似图形的各个对应边成比例,对应角相等。
五、长方体与平面图形(第五单元)1.长方体的认识:长方体是一种具有六个矩形面的立体图形。
2.长方体的表面积与体积:长方体的表面积等于六个面的面积之和,体积等于底面积与高的乘积。
六、数据与统计(第六单元)1.统计图表的认识:包括条形图、折线图和饼图等,用于展示数据的分布情况。
2.数据的收集和处理:收集数据,统计频数、频率和百分比,分析数据的规律。
七、几何变换(第七单元)1.对称:平面图形关于一条直线对称,对称的图形具有相同的形状和大小。
2.平移:平移是一种沿着一个方向移动图形的变换,保持图形的大小和形状不变。
3.旋转:旋转是沿着一个点将图形转动一定的角度,使得图形保持大小和形状不变。
4.缩放:缩放是按照一定的比例因子改变图形的大小,保持图形的形状不变。
八、三角形(第八单元)1.三角形的分类:根据边长和角度的关系,可以将三角形分为等边三角形、等腰三角形、直角三角形和普通三角形等。
2.三角形的性质:例如三角形的内角和为180°,等边三角形的三个内角都是60°等。
六年级数学上册重点知识归纳第一单元:位置1、确定第几列、第几行的一般规则:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。
2、用数对表示位置时,一般先表示第几列,再表示第几行。
如数对(3,2)中的“3”表示第三列,“2”表示第二行。
3、物体平移前后顶点的位置变化:(1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变;(2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。
第二单元:分数乘法1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。
2、分数乘分数,应该分子乘分子,分母乘分母。
注意:能约分的可以先约分再乘。
注意:一个大于0的数乘大于1的数,积大于这个数。
一个大于0的数乘小于1的数,积小于这个数。
3、分数混合运算的顺序和整数的混合运算顺序相同。
(1)在没有括号的算式里,同级运算从左往右进行计算;(2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减;(3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。
4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
(1)乘法交换律:a×b=b×a(2)乘法结合律:(a×b)×c=a×(b×c)(3)乘法分配律:(a+b)×c=a×c+b×c5、解决求一个数的几分之几是多少的问题,用乘法计算。
6、乘积是1的两个数互为倒数。
求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。
注意:1的倒数是1,0没有倒数。
7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。
第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
1.定义和比较大小:-数的定义:数是用来计数和测量的-自然数和整数的定义:自然数是指从1开始的正整数,整数包括正整数、负整数和0-分数和小数的定义:分数是整数与整数之间的比值,小数是不完全的分数-比较大小:通过比较数的大小来确定大小顺序,可以使用大小符号进行表示2.分数的认识与比较:-分数的基本概念:分子、分母、真分数、假分数、带分数等-分数的比较:可以通过相同分母的转化,或者将分数转化为小数进行比较确定大小关系3.小数的认识与比较:-小数的定义:小数是不完全的分数,可以通过十分位、百分位、千分位等进行表示-小数的性质:小数的大小由整数部分和小数部分决定,小数末尾的0可以省略不写-小数的比较:可以通过大小的增减以及小数部分的比较确定大小关系4.四则运算:-加法:两个数的和叫做它们的和,可以直接相加-减法:两个数的差叫做它们的差,可以先找零再相减-乘法:两个数的积叫做它们的乘积,可以通过重复相加得到-除法:两个数的商叫做它们的商,可以通过反向乘法得到5.快速算术:-快速计算:通过对数进行分解,利用倍数等进行计算的方法,能够加快计算速度-快速估算:通过对数进行近似值的得出,进行估算6.三角形和四边形:-三角形:根据边的长短和角的大小,可以分别为等边三角形、等腰三角形、直角三角形和普通三角形-四边形:根据边的长短和角的大小,可以分别为矩形、正方形、平行四边形和普通四边形7.数的倍数和因数:-倍数:一个数能够整除另一个数时-数的因子:能够整除一个数的数叫做这个数的因子-公因子和最大公因子:能够同时整除两个或多个数的数叫做这些数的公因子,其中最大的公因子叫做最大公因子8.分数的运算:-分数的加减乘除:可以通过通分、化简等方法进行运算-约分和通分:约分是将分数的分子和分母同时除以相同的数,通分是使分数的分母相同。
六年级上册数学知识点总结六年级上册数学知识点总结篇一1、一单元分数乘法分数乘整数的意义:就是求几个相同加数和的简便运算。
2、计算法则:分数乘整数,用分数的分子和整数的积做分子,分母不变。
3、一个数乘分数的意义:可以看做是求这个数的几分之几。
4、计算法则:一个数乘分数,用分子×的积做分子,分母相乘的做分母,为了计算的简便可以先约分。
5、整数乘法的交换律,结合律,分配率,对分数同样适用。
6、乘积是一的两个数互为倒数。
7、2单元位置与方向用坐标确定位置:前面的数表示列,后面的表示行上北下南左西右东3单元分数除法分数除法的意义:分数与整数的意义相同。
8、单位1:1.甲是乙的几分之几?甲÷乙2.甲比乙多几分之几?(甲-乙)÷乙3.甲比乙少几分之几?(乙-甲)÷乙路程=速度×时间速度=路程÷时间时间=路程÷速度工作总量=效率×时间工作效率=总量÷时间工作时间=总量÷效率4单元比比的意义:两数相除就叫做两个数的`比比的前项相当于被除数,后项相当于除数,比值相当于商。
9、前项相当于分子,后项相当于分母,比值相当于分数的值。
10、5单元圆圆是一种平面曲线图形。
11、圆中心的点叫圆心,连接圆心和圆上的任意一点叫半径,通过圆心并且两端都在圆上的线段叫直径直径=半径×2圆的周长公式:面积公式:C=πd或C=2πr S=πr的平方6单元百分数便是一个数是另一个数的百分之几的数叫百分数。
12、百分数也叫百分率和百分比。
13、百分数表示的是数量,不能带单位;百分数是分母是100的分数,分母是100的不一定是百分数。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改成分母是100的,能约分的要约成最简分数。
15、7单元扇形统计图统计图有:扇形统计图,条形统计图和折线统计图。
青岛版六年上册数学第二单元教案_青岛版六年级数学上册知识树第一部分数与代数第一单元:分数乘法(1)分数乘法的计算法则:分子乘分子做分子,分母乘分母做分母,能约分先约分。
分子和整数与分母约分,因倍关系的先约分。
(2)列乘法算式的原理:“1”是已知量,求“1”的几分之几是多少,用乘法。
(3)积与第一个因数的大小比较:(4)倒数:乘积是1的两个数互为倒数,两数互为倒数乘积是1。
1的倒数是1,0没有倒数。
求一个数倒数的方法:把这个数的分子与分母交换位置。
第二单元:分数除法(5)分数除法的计算法则:法1:画图(基本方法)。
法2:分数除以整数:分子是整数的倍数,分母不变,分子除以整数。
法3:a÷b=a某1/b(b≠0)(6)列除法算式的原理:“1”是未知量,已知“1”的几分之几是多少,求“1”是多少用除法。
(7)商与被除数大小的比较:(8)解决分数应用题的方法:1、找“1”(“的”前面是“1”)2、判断“1”是已知量,用乘法。
“1”是未知量,用除法。
3、实量某对应的分率,实量÷对应的分率。
(“的”后面是对应的分率)第三单元:比(9)比的定义:两个数相除又叫两个数的比。
(10)求比值的方法:前项÷后项(11)化简比的方法:1、依据比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
这叫做比的基本性质。
2、化简整数比:找前项和后项的最大公因数,前项后项同时除以最大公因数,化成最简整数比。
化简分数比:找前项和后项分母的最小公倍数,前项后项同时乘最小公倍数,再化简整数比。
化简小数比:把小数转化成整数,再化简整数比。
(12)按比例分配:找总量,找出部分量是总量的几分之几,用乘法计算。
甲:乙=a:b,甲是乙的a/b,乙是甲的b/a,甲是全部的a/a+b,乙是全部的b/a+b第五单元:分数四则混合运算(13)混合运算顺序:先乘除,后加减。
有括号,先括号,括号内先小后中。
(14)运用运算律进行简便运算:加法运算律:1)加法交换律:a+b=b+a2)加法结合律:(a+b)+c=a+(b+c)乘法运算律:1)乘法交换律:a·b=b·a2)乘法结合律:(a·b)·c=a·(b·c)3)乘法分配律:a·(b+c)=a·b+a·c(15)去括号的方法:括号外有加号、乘号,去括号,括号内不变号。
1.第一单元:数的认识和整数运算
-了解自然数、零和负整数
-知道正整数、负整数和零之间的大小关系-理解整数的加法、减法和乘法运算
-掌握整数的加法、减法和乘法计算方法2.第二单元:分数的认识和分数的加减运算-了解分数的定义和意义
-能够读写分数
-理解分数的比较大小
-掌握分数的加法和减法运算
3.第三单元:小数的认识和小数的加减运算-理解小数的定义和意义
-掌握小数的读写方法
-理解小数的比较大小
-掌握小数的加法和减法运算
4.第四单元:倍数和约数
-理解倍数和约数的概念
-掌握寻找倍数和约数的方法
-熟练求解最大公约数和最小公倍数的问题
5.第五单元:整数的乘除运算
-掌握整数的乘法和除法计算方法
-理解负数相乘、相除的规律
-掌握负数相乘、相除的规律
6.第六单元:平方数和平方根
-认识平方数和平方根的概念
-掌握寻找平方数和平方根的方法
-能够计算平方数和平方根的值
7.第七单元:图形的认识和图形的计算
-认识和区分各种图形,如矩形、正方形、三角形等-知道各种图形的性质和特点
-掌握图形的周长和面积的计算方法
-理解图形的变换
8.第八单元:数据的收集和分析
-掌握数据的收集和整理方法
-理解统计图表的意义和作用
-能够读取和分析统计图表中的信息
-掌握统计数据的整理和求解问题的方法。
第1单元分数乘法一、分数乘整数的意义及计算方法分数乘整数的意义与整数乘法的意义相同, 都是求几个相同加数的和的简便运算。
计算时用分数的分子和整数相乘的积作分子,分母不变,能约分的要先约分。
二、一个数乘分数的意义一个数乘分数的意义就是求这个数的几分之几是多少。
三、分数乘分数的计算方法分数乘分数,用分子相乘的积作分子,分母相乘的积作分母,能约分的要先约分。
四、小数乘分数的计算方法小数乘分数,可以把小数化成分数再计算,也可以把分数化成小数再计算,还可以直接将小数与分数的分母进行约分,再计算。
五、分数混合运算的运算顺序没有括号的,先算乘除法,再算加减法;有括号的,先算括号里面的,再算括号外面的。
六、整数乘法运算律推广到分数乘法整数乘法的运算律对于分数乘法同样适用。
应用乘法的运算律进行计算,可以使一些计算简便。
七、连续求一个数的几分之几是多少的实际问题解答这类实际问题的关键是弄清楚单位“1”是谁,要求的量是单位“1”的几分之几,再根据分数乘法的意义进行解答。
八、求比一个数多(或少)几分之几的数是多少的问题解题方法:①单位“1”的量±单位“1”的量×比单位“1”多(或少)的几分之几=另一个量;②单位“1”的量×(1±比单位“1”多(或少)的几分之几)=另一个量。
第2单元位置与方向(二)一、根据平面示意图确定某个点的位置在平面图上描述某个点的位置时,需要描述清楚方向和距离这两个条件。
二、在平面图上确定某个点的位置在平面图上确定某个点的位置时,先确定方向,再确定距离。
三、描述简单的路线图先按行走路线确定每一个观测点, 然后以每一个观测点为起点,再描述到下一个目标行走的方向和距离。
四、绘制简单的路线图根据描述,从起点出发,确定方向和距离,第一段以起点为观测点,后面每段都要以前一段的终点为观测点。
以谁为观测点,就以谁为中心画出“十”字方向标,然后判断下一段的方向和距离。
第3单元分数除法一、倒数的意义积是1的两个数互为倒数。
六年级上册数学知识树一到八单元
一、数字和运算
1.自然数:正整数
2.整数:正整数、负整数和0
3.四则运算:加法、减法、乘法、除法
4.算式:由数字和运算符号组成的计算式
5.优先级:先乘除,后加减,括号优先
6.口算技巧:加减运算交换律、结合律、分配率
二、小数
1.小数的概念
2.精确度:小数点后的位数
3.小数的大小比较
4.小数的加减法
三、分数
1.分数的概念
2.分数的大小比较
3.分数的加减法
4.分数的乘除法
四、面积和体积
1.面积:二维图形所占的空间大小
2.平行四边形面积:底边乘高
3.梯形面积:上底加下底乘高除以2
4.长方形面积:长乘宽
5.正方形面积:边长的平方
6.三角形面积:底边乘高除以2
7.体积:三维图形所占的空间大小
8.长方体体积:长乘宽乘高
9.正方体体积:边长的立方
五、时间和长度
1.时间:秒、分、时、天、周、月、年
2.秒和分的换算
3.分和时的换算
4.时和天的换算
5.天和周的换算
6.周和月的换算
7.月和年的换算
8.长度:米、厘米、毫米
9.长度单位的换算
六、图形的认识
1.正方形、长方形、三角形、圆形、梯形的认识
2.轮廓线、对称轴
3.图形的拼凑和组合
七、数据和统计
1.数据:数字和图形
2.频数和频率
3.直方图、折线图、饼图的读取和制作
4.平均数:一组数据的总和除以个数
八、测量
1.重量:千克、克
2.长度:米、厘米
3.体积:升、毫升
4.温度:摄氏度、华氏度
5.容量:毫升、升、毫升和升的换算
6.时间:秒、分钟、小时、天
7.面积和体积的测量方法
以上是六年级上册数学知识树一到八单元的相关参考内容。