人教版六年级上册_数学_知识点知识树
- 格式:ppt
- 大小:276.50 KB
- 文档页数:8
一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。
2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。
3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。
4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。
6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。
二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。
2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。
3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。
4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。
2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。
3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。
六年级上册数学知识点汇总(人教版)六年级上册数学知识点汇总(人教版)第一单元分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:×6,表示:6个相加是多少,还表示的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×,表示:6的是多少。
×,表示:的是多少。
(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
人教版数学六年级上册重点知识点归纳第一单元知识点一、分数、百分数应用题解题公式单位“1” 已知:单位“1” × 对应分率= 对应数量求单位“1”或单位“1”未知:对应数量÷ 对应分率= 单位“1”1、求一个数是另一个数的几分之几(或百分之几)公式:一个数÷ 另一个数= 一个数是另一个数的几分之几(百分之几)2、求一个数比另一个数多几分之几(或百分之几)公式:多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几)3、求一个数比另一个数少几分之几(或百分之几)公式:少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几)二、熟练掌握:百分数和分数、小数的互化,熟练背诵:2/1= 0.5 = 50% 4/1= 0.25=25% 4/3= 0.75 = 75%5/1= 0.2 = 20% 5/2= 0.4 = 40% 5/3= 0.6 = 60%5/4= 0.8 = 80% 8/1=0.125=12.5% 8/3=0.375=37.5%8/5=0.625=62.5% 8/7=0.875=87.5% 10/1=0.1=10%20/1=0.05=5% 25/1=0.04=4% 50/1=0.02=2%100/1=0.01=1%第二单元知识点1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。
经度和纬度就是这个原理。
2、确定物体位置的方法:(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。
在平面图上标出物体位置的方法:先用量角器确定方向,再以选定的单位长度为基准用直尺来确定图上距离,最后找出物体的具体位置,标上名称。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
新人教版六年级数学上册全册知识点观点整理第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简易运算。
比如:8 ×5表示求 5 个8的和是多少,也表示8 的5 倍是多少。
9 9 92、一个数乘分数是求一个数的几分之几是多少。
比如:8 ×3 表示求8的3是多少。
9 4 9 4(二)分数乘法的计算法例:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简易,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把全部的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
(三)、乘法例律:(乘法中比较大小时)一个数( 0 除外)乘大于 1 的数,积大于这个数。
一个数( 0 除外)乘小于 1 的数( 0 除外),积小于这个数。
一个数( 0 除外)乘 1,积等于这个数。
(四)、分数混淆运算的运算次序和整数的运算次序相同。
速记歌谣:先乘除后加减,有了括号先算里,同级运算从左起,简易方法不忘记。
(五)、整数乘法的互换律、联合律和分派律,关于分数乘法也相同合用。
乘法互换律:乘法联合律:ab = ba(ab)c = a(bc)乘法分派律: (a + b )c = ac + bc二、分数乘法的解决问题(已知单位 “1”的量(用乘法),求单位 “1的”几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、 找单位 “1:” 一般在分率句中分率的前面;或“占”、“是”、 “比”的后边3、求一个数的几倍:一个数 ×几倍 ; 求一个数的几分之几是多少:一个数 ×几。
几4、写数目关系式技巧:(1)“的” 相当于“×”“占”、“是”、“比 ”相当于 “= ”(2)分率前是 “的”:单位 “1的”量 ×分率 =对应量(比较量)(3)分率前是 “多或少 ”:单位 “1”的量 ×(1 分率) =对应量(比较量)三、倒数1、倒数的意义: 乘积是 1 的两个数互为 倒数。
新人教版六年级数学上册知识点总结
本文档旨在总结新人教版六年级数学上册的知识点,帮助学生更好地研究和复数学知识。
1. 数的认识和数的读写
- 数的认识:了解自然数、整数、小数的概念和特点。
- 数的读写:掌握数的正确读法和书写方法。
2. 万以内的数
- 比较大小:掌握比较大小的方法,能够正确比较万以内数的大小。
- 用途:了解万以内数的实际用途,能够运用数的概念解决实际问题。
3. 加法和减法
- 加法:掌握加法的基本概念和运算方法,能够进行简单的加法计算。
- 减法:掌握减法的基本概念和运算方法,能够进行简单的减法计算。
4. 乘法和除法
- 乘法:了解乘法的概念和运算方法,能够进行简单的乘法计算。
- 除法:了解除法的概念和运算方法,能够进行简单的除法计算。
5. 分数的认识
- 分数的概念:了解分数的基本概念和特点。
- 分数的读写:掌握分数的正确读法和书写方法。
6. 分数的加减法
- 分数的加法:了解分数的加法概念和运算方法,能够进行简单的分数加法计算。
- 分数的减法:了解分数的减法概念和运算方法,能够进行简单的分数减法计算。
7. 简便计算法
- 简便计算法:了解简便计算法的概念和运用方法。
以上是新人教版六年级数学上册的主要知识点总结。
希望本文档能对学生的研究和复有所帮助。
人教版六年级数学上册知识点汇总第一单元分数乘法〔一〕分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义一样,就是求几个一样加数和得简便运算。
555例如:12×6,表示: 6 个12相加是多少,还表示12的 6倍是多少。
2、一个数〔小数、分数、整数〕乘分数:一个数乘分数的意义与整数乘法的意义不一样,是表示这个数的几分之几是多少。
55例如: 6×12,表示: 6 的12是多少。
25257× 12,表示:7的12是多少。
〔二〕分数乘法的计算法那么1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。
〔三〕分数大小的比拟:1、一个数〔 0 除外〕乘以一个真分数,所得的积小于它本身。
一个数〔 0 除外〕乘以一个假分数,所得的积等于或大于它本身。
一个数〔 0 除外〕乘以一个带分数,所得的积大于它本身。
2、如果几个不为0 的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
〔四〕解决实际问题。
1、分数应用题一般解题步行骤。
(1〕找出含有分率的关键句。
(2〕找出单位“ 1〞的量(3〕根据线段图写出等量关系式:单位“ 1〞的量×对应分率 =对应量。
(4〕根据条件和问题列式解答。
2、乘法应用题有关注意概念。
(1〕乘法应用题的解题思路:一个数,求这个数的几分之几是多少?(2〕找单位“1〞的方法:从含有分数的关键句中找,注意“的〞前“比〞后的规那么。
当句子中的单位“1〞不明显时,把原来的量看做单位“ 1〞。
(3〕甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4〕在应用题中如:小湖村去年水稻的亩产量是 750 千克,今年水稻的亩产量是 800 千克,增产几分之几?题目中的“增产〞是多的意思,那么谁比谁多,应该是“多比少多〞,“多〞的是指 800 千克,“少〞的是指 750 千克,即 800千克比 750 千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?〞(5〕“增加〞、“提高〞、“增产〞等蕴含“多〞的意思,“减少〞、“下降〞、“裁员〞等蕴含“少〞的意思,“相当于〞、“占〞、“是〞、“等于〞意思相近。
人教版六年级上册数学重点知识点归纳人教版六年级上册数学重点知识点归纳篇1小数1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。
3、在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
分数1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
3、分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
5、分子分母是互质数的分数叫做最简分数。
6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
约分和通分1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
数学0的性质1、0既不是正数也不是负数,而是介于—1和+1之间的整数。
2、0的相反数是0,即—0=0。
3、0的绝对值是其本身。
4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。
5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
人教版六年级上册数学知识点人教版六年级上册数学知识点1扇形统计图的意义:1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
数学广角——数与形:2+4+6+8+10+12+14+16+18+20=(110)规律:从2开始的n个连续偶数的和等于n×(n+1)。
10×(10+1)=10×11=110从1开始的连续奇数的和正好是这串数个数的平方。
位置与方向:1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。
经度和纬度就是这个原理。
2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东——西;南——北;南偏东——北偏西。
数学梯形面积与周长公式:梯形的面积公式:(上底+下底)×高÷2。
用字母表示:(a+b)×h÷2梯形的面积公式2:中位线×高用字母表示:l·h(l表示中位线长度)另外对角线互相垂直的梯形:对角线×对角线÷2梯形的周长公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+c+2b。
数学分数的加减法知识点:1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
六年级上册数学知识点 第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法(一)分数乘法意义:行号1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 ×61表示: 求9的61是多少? A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。