应用随机过程试题及答案
- 格式:docx
- 大小:21.64 KB
- 文档页数:3
随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。
通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。
以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。
1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。
(2) 求X(t)的平稳分布。
2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。
令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。
设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。
根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。
(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。
(2) 计算X(t)的平均到达速率。
4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。
所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
1.为it(e-1)e λ。
2. 1(sin(t+1)-sin t)2ωω。
3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.(n)nP P =。
习 题一、习题编号本次作业:1,2, 7,9,12,17,18,19,23,25 二、习题解答1.1 设随机试验E 是将一枚硬币抛两次,观察H -正面,T -反面出现的情况,试分析它的概率空间(),,P Ω。
解1.1: 样本空间:Ω = {HH, HT, TH, TT}集类:F = { Ø, Ω, {HH}, {HT}, {TH}, {TT},{HH,HT}, {HH, TH}, {HH,TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH, HT, TH}, {HH, HT, TT}, {HT, TH, TT}, {TH, TT, HH}, }概率:P: P{HH} = P{HT} = P{TH} = P{TT} = 1/41.2 设,A B ∈Ω,集类{},A B =。
试求:()σ的所有元素。
解1.2:因为:{},A B =所以:(){},,,σ=∅Ω1.3 设四个黑球与两个白球随机地等分为A 与B 两组,记A 组中白球的数目为X ;然后随机交换A 与B 中一个球,再记交换后A 组中白球的数目为Y 。
试求:(1)X 的分布律;(2)Y|X 的分布律;(3)Y 的分布律。
解1.3:(1)总计有2个白球,因此,X 的取值为0,1,2。
等分共有36C 种分法,等分后,X 取值分别为0,1,2的概率为:3211244242333666012012131()()555XX C C C C C P X P X C C C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (2)交换一个球后,1)如果X 中没有白球,则交换后Y 可能取值为0、1 2)如果X 中有一个白球,则交换后Y 可能取值为0、1、2 3)如果X 中有两个白球,则交换后Y 可能取值为1、2|0|01|00|11|12|11|22|21225221(|)3399933Y XP Y X ⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)20()(|)()i P Y P Y X i P X i ====∑2(0)(0|)()1123359515i P Y P Y X i P X i =======⨯+⨯=∑2(1)(1|)()21532135953535i P Y P Y X i P X i =======⨯+⨯+⨯=∑2(2)(2|)()23110953515i P Y P Y X i P X i =======+⨯+⨯=∑故Y 的分布律为:012131()555YP Y ⎛⎫ ⎪ ⎪⎪⎝⎭1.4 设A 与B 是概率空间(),,P Ω上的事件,且()01P B <<,试证明:A 与B独立的充要条件为:()()|=|P A B P A B 。
应用随机过程试题及答案一.概念简答题(每题5 分,共40 分)1. 写出卡尔曼滤波的算法公式2. 写出ARMA(p,q)模型的定义3. 简述Poisson 过程的随机分流定理4. 简述Markov 链与Markov 性质的概念5. 简述Markov 状态分解定理6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分)1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) ,2 k kk X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X是相互独立的。
试求1 Y 与2 Y 的概率分布及其联合概率分布。
2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y}4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。
试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t,协方差1 2 ( , ) X C t t。
B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为P= 0 ,求其相应的极限分布。
6.设I={1,2,3,4},其一步转移概率矩阵P= 1 1 0 0 2 2 10 0 0 1 ,试画出状态传递图,对其状态进行分类,确定哪些状态是常返态,并确定其周期。
B 卷(共9 页)第5 页河北科技大学2010——2011 学年第一学期《应用随机过程》试卷(B)答案一.概念简答题(每题5 分,共40 分)1. 写出卡尔曼滤波的算法公式答:X(k|k-1)=AX(k-1|k-1)+BU(k) (1)P(k|k-1)=AP(k-1|k-1)A’+Q…(2) X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))…(3) Kg(k)=P(k|k-1)H’/(HP(k|k-1)H’+R)…(4) P(k|k)=(I-Kg(k)H) P(k|k-1)…(5) 2.写出ARMA(p,q)模型的定义答: 自回归移动平均ARMA(p,q) 模型为1 1 2 2 1 1 2 2 t tt p t p t t q t q X XXX ?其中,p 和q 是模型的自回归阶数和移动平均阶数;, ? ? 是不为0 的待定系数;t ?是独立的误差项;t X 是平稳、正态、零均值的时间序列。
习题1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞且1221(),()33P P ωω==,分别求:(1)一维分布函数(0,)F x 和(,)4F x π;(2)二维分布函数(0,;,)4F x y π;(3)均值函数()X m t ; (4)协方差函数(,)X C s t .2. 利用抛掷一枚硬币一次的随机试验,定义随机过程12cos ()2t X t πωω⎧=⎨⎩出现正面出现反面且“出现正面”与“出现反面”的概率相等,各为12,求 1)画出{()}X t 的样本函数2){()}X t 的一维概率分布,1(;)2F x 和(1;)F x3){()}X t 的二维概率分布121(,1;,)2F x x3. 通过连续重复抛掷一枚硬币确定随机过程{()}X tcos ()2t t X t t π⎧=⎨⎩在时刻抛掷硬币出现正面在时刻抛掷硬币出现反面求:(1)1(,),(1,)2F x F x ; (2)121(,1;,)2F x x4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ.(1)分别求3,,,424t ππππωωωω=时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程:()X t t ξη=+ ()t -∞<<+∞其中r. v. (,)ξη的协方差矩阵为1334C ⎛⎫= ⎪⎝⎭,求随机过程{(),}X t t -∞<<+∞的协方差函数.6. 考虑随机游动{(),0,1,2,}Y n n =1()(),1,2,,(0)0nk Y n X k n Y ====∑其中()(0,1,2,)X k k =是相互独立同服从2(0,)N σ的正态随机变量. 试求: (1)()Y n 的概率密度;(2)((),())Y n Y m 的联合概率密度(m n ≥).7. 给定随机过程{(),}X t t T ∈,定义另一个随机过程:1,(),()0,().X t x Y t X t x <⎧=⎨≥⎩试证:{(),}Y t t T ∈的均值和自相关函数分别为{(),}X t t T ∈的一维分布函数和二维分布函数. 8. 设随机过程()cos()β=+ΘX t A t其中β为正常数,r. v. ~(0,1),~(0,2)A N U πΘ二者相互独立. 试求随机过程{(),}X t t -∞<<+∞的均值函数()m t 、方差函数()D t 和相关函数(,)R s t .9. 已知随机变量,ξη相互独立都服从正态分布2(0,)N σ,分别设:(1)()X t t ξη=+; (2)()cos X t t ξ=,令01max ()t Z X t ≤≤=,分别两种情形求()E Z .10. 一个通讯系统,以每T 秒为一周期输出一个幅度为A 的信号,A 为常数,信号输出时间~(0,)i X U T ,且持续到周期结束,设每个信号的输出时间i X 相互独立,设()Y t 为t 时刻接收到的信号幅度,求{()}Y t 的一维概率分布。
随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
2. (1) 求参数为的()b p ,分布的特征函数,其概率密度为Γ()()是正整数p b x x e x p b x p bx p p ,0 000,1>⎪⎩⎪⎨⎧≤>Γ=−−(2)求其期望和方差。
(3)证明对具有相同参数的b Γ分布,关于参数具有可加性。
p 函数有下面的性质:解 (1) 首先,我们知道Γ()()! 1−=Γp p根据特征函数的定义,有()[]()()()()()()()()()()()()()()()()()()()()pp p x jt b p p xjt b p p x jt b p p xjt b p p xjt b p p bxp p jtxjtxjtXX jt b b jt b p p b dxe x jt b p p b dx e x jt b p p b dx e x jt b p p b e x jt b p b dx e x p b dx e x p b edx x p e e E t f ⎟⎟⎠⎞⎜⎜⎝⎛−=−−Γ=−−Γ==−−Γ=−−Γ+−−Γ=Γ=Γ===∫∫∫∫∫∫∞−−−∞−−−∞−−−∞−−−∞−−−−−∞∞∞−!1!11110010202010110L所以()pX jt b b t f ⎟⎟⎠⎞⎜⎜⎝⎛−=(2)根据期望的定义,有[]()()()()()()()bpdx x p b p dx e x p b b p dx e x bp p b e x bp b dx e x p b dx e x p b x dx x xp X E m bx p p bx p p bxp p bx p p bx p p X ==Γ=Γ+−Γ=Γ=Γ===∫∫∫∫∫∫∞∞−∞−−∞−−∞−∞−∞−−∞∞−010100011类似的,有[]()()()()()()()()()()()()()2201200010101222111111b p p dx x p b p p dx e x p b b p p dx e x b p p b dx e x bp p b e x bp b dx e x p b dx e x p b x dx x p x XE bxp p bxp p bxp p bxp p bx p p bx p p +=+=Γ+==+Γ=+Γ+−Γ=Γ=Γ==∫∫∫∫∫∫∫∞∞−∞−−∞−∞−∞−+∞−+∞−−∞∞−L的方差为X 所以,[]()222221b pb p b p p mXE D XX =⎟⎠⎞⎜⎝⎛−+=−=(3)()()()jt jnt jt e n e e t f −−=115. 试证函数为一特征函数,并求它所对应的随机变量的分布。
随机过程试题及答案一、选择题1. 关于随机过程的描述,错误的是:A. 随机过程是一种由随机变量组成的集合B. 随机过程是一种在时间上有序排列的随机变量序列C. 随机过程可以是离散的,也可以是连续的D. 随机过程是一种确定性的数学模型答案:D2. 以下哪种过程不是随机过程?A. 白噪声过程B. 马尔可夫过程C. 布朗运动D. 正态分布答案:D3. 随机过程的一阶矩描述的是:A. 均值B. 方差C. 偏度D. 峰度答案:A4. 当随机过程的各个时间点上的随机变量是独立同分布时,该随机过程为:A. 马尔可夫过程B. 马尔可夫链C. 平稳随机过程D. 白噪声过程答案:B5. 下列关于马尔可夫过程的说法中,正确的是:A. 当前状态只与上一状态有关,与历史状态无关B. 当前状态只与历史状态有关,与上一状态无关C. 当前状态只与上一状态和历史状态有关D. 当前状态与所有历史状态均无关答案:A二、填空题1. 随机过程中,时域函数常用的表示方法是__________。
答案:概率分布函数或概率密度函数2. 马尔可夫过程的状态转移概率只与__________相关。
答案:当前状态和下一状态3. 随机过程的时间参数称为__________。
答案:时刻或时间点4. 白噪声过程的自相关函数是一个__________函数。
答案:冲激函数5. 平稳随机过程的自相关函数只与__________相关。
答案:时间差三、解答题1. 请简要解释随机过程的概念。
随机过程是一种由随机变量组成的集合,表示一个在时间上有序排列的随机变量序列。
它可以是离散的,也可以是连续的。
随机过程的描述通常包括概率分布函数或概率密度函数,以及相关的统计特征,如均值、方差等。
随机过程可以用于对随机现象进行建模和分析。
2. 请简要说明马尔可夫过程的特点及应用。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即当前状态只与上一状态有关,与历史状态无关。
其状态转移概率只与当前状态和下一状态相关。
华南理工大学2011—2012 学年第一学期 《应用随机过程》考试试卷(A 卷)(闭卷时间 120 分钟)院/系年级 __专业姓名学号1、设X 是概率空间(Ω,F ,P )且EX 存在,C 是F 的子σ-域,定义E (XC )如下:(1)_______________ ;(2)_____________________________________________ ; 2、设{N (t ),t ≥ 0}是强度为λ的 Poisson 过程,则 N (t )具有_____、_____增量,且∀t >0,h >0充分小,有:P ({N (t + h )− N (t ) = 0})= ________,P ({N (t + h )− N (t ) =1})=_____________;3、设{W (t ),t ≥ 0}为一维标准 Brown 运动,则∀t >0,W (t ) ~____,且与 Brown 运动有关的三个随机过程____________、________ ______________、______________都是鞅(过程);4、倒向随机微分方程(BSDE )典型的数学结构为__________ ______________________________,其处理问题的实质在于 ______________________________________________________。
二、证明分析题(共 12 分,选做一题)1、设X 是定义于概率空间(Ω,F ,P )上的非负随机变量,并且具有指数分布,即:P({X ≤ a}) =1−e−λa ,a >0,其中λ是正常数。
设λ是另一个正常数,定义:Z = λλe−(λ−λ)X ,由下式定义:P(A)=∫A ZdP,∀A∈F ;(1)证明:P(Ω) =1;(2)在概率测度P 下计算的分布函数:P({X ≤ a}),a>0;2、设X0~U (0,1),X n+1~U (1−X n,1),n≥1,域流{F n,n≥ 0}满足:F n =σ(X k,0 ≤k≤n),n≥ 0 ;又设Y0 = X0 ,Y n = 2n ⋅∏kn=1 1 X−k X −1 k ,n ≥1,试证:{Yn,n ≥ 0}关于域流{F n,n ≥ 0}是鞅!三、计算证明题(共60 分)1、(12 分)假设X~E(λ),给定c >0,试分别由指数分布的无记E(XI A )忆性和E(X A) = ,求E(XX >c);P(A)2、(10 分,选做一题)(1)设X~E(λ),Y~E(μ),λ> μ,且X,Y 相互独立;∀c >0,设fX X )为给定X +Y = c 时X 的条件概率密度,试求之并由此求+Y (x cE(X X +Y = c);⎧1)及(2)设(X,Y)~f (x, y) = ⎪⎨x ,0 ≤ y ≤ x ≤1;,试求fY X (y x⎪⎩0,其它;P(X 2 +Y 2 ≤1X = x),并由此(连续型全概率公式)求P({X 2 +Y 2 ≤1});3、(4 分,选做一题)(1)设X,Y独立同U [0,1]分布,试基(2)设于微元法由条件密度求E(XX <Y);(X,Y)~U (D),D:0 ≤ y≤x≤1,试由条件数学期望的直观方法求E(YX )、E ⎡⎣(Y −X )2X ⎤⎦;[0,1]分布,Y = min{X1, X2, , 4、(10 分)设X1, X2, , X n 独立同U求E(X1Y) = E(X1 σ(Y));X n},试由条件数学期望的一般定义5、(14 分)设{N (t),t ≥ 0}是强度为λ的Poisson 过程,S0 = 0,S n 表示第n个事件发生(到达)的时刻,试求:(1)P(N (s) =kN (t) = n)(s <t,k = 0,1, ,n);(2)E(S k N (t) = n),k ≤ n;6、(10 分)设{W (t),t ≥ 0}为标准Brown 运动,试由Ito-Doeblin 公式求解随机微分方程 d ⎡⎣S(t)⎤⎦= μS(t)dt +σS(t)dW (t),并求E ⎡⎣W4 (t)⎤⎦,E ⎡⎣W6 (t)⎤⎦。
随机过程期末试题及答案一、选择题1. 随机过程的定义中,下列哪个是错误的?A. 属于随机现象。
B. 具有随机变量。
C. 具有时间集合。
D. 具有马尔可夫性质。
答案:D2. 下列哪个不是连续时间的随机过程?A. 泊松过程。
B. 布朗运动。
C. 维纳过程。
D. 马尔可夫链。
答案:D3. 关于时间齐次的描述,下列哪个是正确的?A. 随机过程的概率分布不随时间变化。
B. 随机过程的均值不随时间变化。
C. 随机过程的方差不随时间变化。
D. 随机过程的偏度不随时间变化。
答案:A4. 下列哪个是离散时间的随机过程?A. 随机游走。
B. 指数分布过程。
C. 广义强度过程。
D. 随机驱动过程。
答案:A二、填空题1. 马尔可夫链中,状态转移概率与当前状态无关,只与前一个状态有关,这个性质被称为(马尔可夫性质)。
2. 在某一区间内,随机过程的均值是时间的(函数)。
3. 两个随机过程的相互独立性是指它们的(联合概率)等于各自概率的乘积。
4. 利用(随机过程)可以模拟无记忆的随机现象。
三、解答题1. 试述随机过程的定义及其要素。
随机过程是描述随机现象随时间演化的数学模型。
它由两个基本要素组成:时间集合和取值集合。
时间集合是指随机过程所涉及的时间轴,可以是离散的或连续的。
取值集合是指随机过程在每个时间点上可能取到的值的集合,可以是实数集、整数集或其他集合。
2. 什么是时间齐次随机过程?请举例说明。
时间齐次随机过程是指随机过程的概率分布在时间上不变的特性。
即随机过程在任意两个时间点上的特性是相同的。
例如,离散时间的随机游走就是一个时间齐次随机过程。
在随机游走中,每次移动的概率分布不随时间变化,且每次移动的步长独立同分布。
3. 什么是马尔可夫链?它有哪些性质?马尔可夫链是一种离散时间的随机过程,具有马尔可夫性质,即在给定当前状态的情况下,未来的状态只与当前状态有关,与过去的状态无关。
马尔可夫链的性质包括:首先,状态转移概率与当前状态无关,只与前一个状态有关。
山东财政学院2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A )(考试时间为120分钟)参考答案及评分标准考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ)1. 严平稳过程一定是宽平稳过程。
(ⅹ )2. 非周期的正常返态是遍历态。
(√ )3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。
(ⅹ )4. 有限马尔科夫链没有零常返态。
(√ )5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(〉nd iip 。
(ⅹ )二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。
2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。
三. 简答题(每小题5分,共10分)1. 简述马氏链的遍历性。
答:设)(n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(〉=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。
2. 非齐次泊松过程与齐次泊松过程有何不同?答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。
它反映了其变化与时间相关的过程。
如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。
四. 计算、证明题(共70分)1. 请写出C —K 方程,并证明之. (10分)解:2. 写出复合泊松过程的定义并推算其均值公式. (15分)解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y1,那么{}0),(≥t t X 复合泊松过程3. 顾客以泊松过程到达某商店,速率为小时人4=λ,已知商店上午9:00开门,求到9:30时仅到一位顾客,而到11:30时总计已达5位顾客的概率。
应用随机过程林元烈期中考自测题(1)应用随机过程——林元烈期中考自测题随机过程是一种研究随机现象随时间或空间变化的数学模型。
而应用随机过程则是将随机过程理论应用于实际问题的一种方法,例如在金融、物理、计算机科学、统计等领域都有广泛的应用。
在林元烈期中考自测题中,也涉及到了应用随机过程的相关内容,下面进行分析。
1. 第2题:某公司的电话接线员接电话量服从泊松分布,平均每小时接25个电话。
设T代表这位接线员一小时内接3个电话的时间 [0,t]的概率,求T的概率密度函数。
解析:由于电话接线员接电话服从泊松分布,因此假设单位时间内接电话的个数X~Pois(25),接3个电话的概率为P(X=3),因此可得出T,即3/X的分布函数概率密度函数。
最终得出答案为3*e^(-75*t)/(5 * (1-e^(-25*t))^2)。
2. 第10题:某银行的营业额服从均值1.2万元,方差为0.81万元^2的正态分布。
若有某天该银行的营业额达到了1.5万元,则该天是该银行总营业额高于期望值的概率是多少?解析:由于营业额服从正态分布,因此可以使用标准正态分布表求得Z 值,即Z=(1.5-1.2)/0.9=0.333。
然后,在标准正态分布表中查找Z=0.333时的面积为0.6293,即该天该银行总营业额高于期望值的概率为0.6293。
3. 第11题:有5个记忆体插座,其中有2个是坏的,设插座随机插入记忆体,取出一块记忆体,若是坏的,则再次放回盒中;若不坏,则不再放回盒中。
现已取出一块不坏的记忆体,请问至少要进行几轮才能够找到一块坏的记忆体?解析:这个问题可以使用几何分布来解决,假设坏的记忆体出现的概率为p=2/5,取出一块不坏的记忆体之后,再次放回盒中,因此不影响下一次抽取的概率。
因此,设X为进行几轮才能找到一块坏的记忆体,则X~Geo(p),根据几何分布公式可得E(X)=1/P(X>=1)=1/p=2.5,因此至少要进行3轮才能够找到一块坏的记忆体。
随机过程试题及答案一、选择题(每题2分,共10分)1. 下列哪个是随机过程的数学定义?A. 一系列随机变量B. 一系列确定的函数C. 一系列随机函数D. 一系列确定的变量答案:C2. 随机过程的期望值函数E[X(t)]随时间t的变化特性是:A. 确定性B. 随机性C. 非线性D. 线性答案:A3. 马尔可夫链是具有以下哪个特性的随机过程?A. 无记忆性B. 有记忆性C. 独立性D. 相关性答案:A4. 泊松过程是一种:A. 连续时间随机过程B. 离散时间随机过程C. 连续空间随机过程D. 离散空间随机过程答案:A5. 布朗运动是:A. 一个确定的函数B. 一个随机过程C. 一个确定的变量D. 一个随机变量答案:B二、简答题(每题5分,共20分)1. 简述什么是平稳随机过程,并给出其数学特征。
答案:平稳随机过程是指其统计特性不随时间变化的随机过程。
数学上,如果一个随机过程的任意时刻的一维分布和任意两个时刻的二维分布都不随时间平移而改变,则称该过程为严格平稳过程。
2. 解释什么是遍历定理,并说明其在随机过程中的重要性。
答案:遍历定理是随机过程中的一个基本定理,它提供了时间平均与概率平均之间的联系。
在随机过程中,如果一个随机过程是遍历的,那么对于任意的观测时间点,其时间平均值将趋向于其期望值,这一点在统计推断和信号处理等领域具有重要应用。
3. 描述什么是随机过程的平稳增量,并给出其数学定义。
答案:随机过程的平稳增量是指在固定时间间隔内,随机过程增量的分布不随时间变化。
数学上,如果对于任意的非负整数n和任意的实数h,随机过程{X(t+h) - X(t)}与{X(h) - X(0)}具有相同的分布,则称该随机过程具有平稳增量。
4. 简述什么是马尔可夫性质,并给出一个实际应用的例子。
答案:马尔可夫性质是指一个随机过程的未来发展只依赖于当前状态,而与过去的状态无关。
具有马尔可夫性质的随机过程称为马尔可夫链。
例如,在天气预报中,明天的天气可能只与今天的天气有关,而与前几天的天气无关,这就是马尔可夫性质的一个实际应用。
随机过程试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是随机过程的典型特征?A. 确定性B. 可预测性C. 无记忆性D. 独立增量性答案:D2. 马尔可夫链的哪一性质表明,系统的未来状态只依赖于当前状态,而与过去状态无关?A. 独立性B. 无记忆性C. 齐次性D. 可逆性答案:B3. 布朗运动是一个连续时间的随机过程,其增量具有什么性质?A. 独立性B. 正态分布C. 独立增量性D. 所有选项都正确答案:D4. 随机过程的平稳性指的是什么?A. 过程的分布随时间不变B. 过程的均值随时间不变C. 过程的方差随时间不变D. 过程的自相关函数随时间不变答案:A二、填空题(每题5分,共20分)1. 如果随机过程的任意时刻的分布函数不随时间变化,则称该随机过程是________。
答案:平稳的2. 随机过程的自相关函数R(t,s)表示在时刻t和时刻s的随机变量的________。
答案:相关性3. 随机游走过程是一类具有________性质的随机过程。
答案:独立增量4. 泊松过程是一种描述在固定时间间隔内随机事件发生次数的随机过程,其特点是事件的发生具有________。
答案:无记忆性三、简答题(每题10分,共30分)1. 简述什么是马尔可夫过程,并给出其数学定义。
答案:马尔可夫过程是一种随机过程,其未来的状态只依赖于当前状态,而与过去状态无关。
数学上,如果对于任意的n,以及任意的时间序列t1, t2, ..., tn,满足P(Xt+1 = x | Xt = x_t, Xt-1 = x_t-1, ..., X1 = x_1) = P(Xt+1 = x | Xt = x_t),则称随机过程{Xt}为马尔可夫过程。
2. 描述布朗运动的三个基本性质。
答案:布朗运动的三个基本性质包括:1) 布朗运动的增量是独立的;2) 布朗运动的增量服从正态分布;3) 布朗运动具有连续的样本路径。
3. 什么是平稳随机过程?请给出其数学定义。
一、选择题1.在随机过程中,若某一过程的所有可能状态及其概率在时间上保持不变,则称该过程为:A.平稳过程B.非平稳过程C.马尔可夫过程D.遍历过程2.下列哪个不是描述随机变量分布特性的重要参数?A.期望值(均值)B.方差C.协方差D.样本容量3.马尔可夫链中,若当前状态仅依赖于前一个状态,则称该链具有:A.一阶记忆性B.无记忆性C.高阶记忆性D.完全记忆性4.在随机游走模型中,若每一步的位移是独立同分布的随机变量,且均值为0,则该模型属于:A.布朗运动B.泊松过程C.几何布朗运动D.平稳独立增量过程5.泊松分布常用于描述:A.单位时间内某事件发生次数的概率分布B.连续型随机变量的概率分布C.样本均值的分布D.两个随机变量之间的线性关系6.若一个随机过程的任意两个时间点上的随机变量之间都存在线性关系,则称该过程具有:A.平稳性B.相关性C.正态性D.独立性7.在连续时间马尔可夫链中,状态转移率矩阵描述了:A.各状态间的直接转移概率B.各状态间的间接转移概率C.单位时间内从某状态转移到其他状态的概率D.所有状态的总转移概率8.布朗运动的一个关键性质是:A.路径可预测性B.路径连续但几乎处处不可导C.路径分段平滑D.路径与时间呈线性关系9.对于随机过程X(t),若对任意t,X(t)的概率分布函数与时间t无关,则X(t)是:A.平稳过程B.严格平稳过程C.弱平稳过程D.遍历过程10.下列哪个随机过程模型常用于金融市场中的股票价格模拟?A.几何布朗运动B.泊松过程C.平稳独立增量过程D.线性回归过程。
第一次作业答案1,假设一大型设备在任何长为t 的时间内发生故障的次数为)(t N ,它服从参数为t λ的泊松分布,求(1) 相邻两次故障之间的时间间隔T 的概率分布(2) 在设备已经无故障工作8小时的情况下,再无故障运行8小时的概率。
【答案】(1)求T 的分布函数对于任意实数t ,)()(t T P t F ≤=,由题意知,当0≤t 时,0)()(=≤=t T P t F ;当0>t 时,)()(t T P t F ≤=.用T 表示相邻两次故障时间的时间间隔。
因此,“t T ≤”表明在t 这么长的时间中,至少发生了一次故障,即“()1N t ≥”;当0>t 时,由题设有t ke k t k t N P λλ-==!)(])([, 于是()()(()1)1(()0)1tF t P T t P N t P N t e λ-=≤=≥=-==- 故 1,0()0,0t e t F t t λ-⎧->=⎨≤⎩ (2)由(1)可得1688(16,8)(16|8)(8)(16)(8)1(16)1(8)P T T P T T P T P T P T F e e F e λλλ---≥≥≥≥=≥≥=≥-===-2,在区间10≤≤x 中随机地取两点,求它们的平方和小于1的概率。
【答案】用X 和Y 表示区间[0,1]中所取的两点,他们是随机变量,在等长区间上取点的概率应该相当,因此,X 和Y 的密度函数分别为1,011,01()()0,0,X Y x y f x f y ≤≤≤≤⎧⎧==⎨⎨⎩⎩,其他其他 因为X 和Y 相互独立,因而他们的联合密度为1,01,01(,)()()0,X Y x y f x y f x f y ≤≤≤≤⎧==⎨⎩其他 因而22221(1)4x y P X Y dxdy π+≤+≤==⎰⎰3,设N 为取值非负整数的随机变量,证明∑∑∞=∞=>=≥=01)()(n n n N P n N P EN设X 是非负随机变量,具有分布函数)(x F ,证明 dx x F EX ⎰∞-=0))(1(,)1())(1()(01≥-=⎰∞-n dx x F nx X E n n 【答案】11111()()()()nn n m n m n n EN nP N n P N n P N m P N n ∞∞===∞∞∞==========>∑∑∑∑∑∑00000()()()()(1())xy EX xdF x dy dF x dF x dy F x dx ∞∞∞∞∞====-⎰⎰⎰⎰⎰⎰ 10001100()()()()(1())x n n n n n y EX x dF x ny dy dF x dF x ny dy nx F x dx ∞∞-∞∞∞--====-⎰⎰⎰⎰⎰⎰。
随机过程试题及答案一、单项选择题(每题2分,共10分)1. 随机过程的数学定义中,通常需要满足哪些条件?A. 样本空间、概率测度、随机变量B. 样本空间、概率测度、随机函数C. 样本空间、随机变量、随机函数D. 概率测度、随机变量、随机函数答案:B2. 马尔可夫链的无记忆性指的是什么?A. 过程的未来状态仅依赖于当前状态B. 过程的未来状态仅依赖于过去的状态C. 过程的未来状态依赖于当前和过去的状态D. 过程的未来状态依赖于所有历史状态答案:A3. 在随机过程中,如果一个过程的任何有限维分布都是联合正态的,则称该过程为什么?A. 正态过程B. 高斯过程C. 联合正态过程D. 多元正态过程答案:B4. 以下哪个不是平稳随机过程的性质?A. 一阶矩不随时间变化B. 任意两个不同时间点的协方差仅依赖于时间差C. 过程的均值随时间变化D. 过程的自相关函数仅依赖于时间差答案:C5. 随机过程的谱密度函数与自相关函数之间的关系是什么?A. 互为傅里叶变换B. 互为拉普拉斯变换C. 互为Z变换D. 互为梅林变换答案:A二、填空题(每题3分,共15分)1. 如果随机过程的样本路径是连续的,则称该过程为_________。
答案:连续过程2. 随机过程的样本函数是定义在时间轴上的_________。
答案:随机变量3. 对于一个平稳过程,其自相关函数R(τ)仅依赖于时间差τ,而不依赖于绝对时间t,即R(t1, t2) = R(t1 - t2) = R(τ),其中τ = t2 - t1。
这种性质称为_________。
答案:时间平移不变性4. 随机过程的遍历性是指过程的_________等于其统计平均。
答案:时间平均5. 随机过程的遍历性分为_________遍历性和_________遍历性。
答案:强,弱三、简答题(每题10分,共20分)1. 简述什么是泊松过程,并给出其概率质量函数。
答案:泊松过程是一种描述在固定时间或空间间隔内随机事件发生次数的随机过程。
应用随机过程试题及答案
一.概念简答题(每题5 分,共40 分)
1. 写出卡尔曼滤波的算法公式
2. 写出ARMA(p,q)模型的定义
3. 简述Poisson 过程的随机分流定理
4. 简述Markov 链与Markov 性质的概念
5. 简述Markov 状态分解定理
6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分)
1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ?
1 ( 1) ( 1) ,
2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1
2 , , ... X X 是相互独立的。
试求1 Y 与2 Y 的概率分布及其联合概率分布。
2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页
3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。
试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。
B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为
P= 0 ,求其相应的极限分布。
6.设I={1,2,3,4},其一步转移概率矩阵P= 1 1 0 0 2 2 1 0 0 0 1 ,试画出状态传递图,对其状态进行分类,确定哪些状态是常返态,并确定其周期。
B 卷(共9 页)第5 页河北科技大学2010——2011 学年第一学期《应用随机过程》试卷(B)
答案一.概念简答题(每题5 分,共40 分)
1. 写出卡尔曼滤波的算法公式答:X(k|k-1)=AX(k-1|k-1)+BU(k) (1)
P(k|k-1)=AP(k-1|k-1)A’+Q…(2) X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))…
(3) Kg(k)=P(k|k-1)H’/(HP(k|k-1)H’+R)…(4) P(k|k)=(I-Kg(k)H) P(k|k-1)…
(5) 2.写出ARMA(p,q)模型的定义答: 自回归移动平均ARMA(p,q) 模型为1 1 2 2 1 1 2 2 t t t p t p t t q t q X X X X ?其中,p 和q 是模型的自回归阶数和移动平均阶数;, ? ? 是不为0 的待定系数;t ? 是独立的误差项;t X 是平稳、正态、零均值的时间序列。
3 简述Poisson 过程的随机分流定理答:设t N 为强度为? 的poisson 过程,如果把其相应的指数流看成顾客流,用与此指数流相互独立的概率p,把每个到达的顾客,归入第一类,而以概率1-p 把他归入第二类。
对i=1,2,记( ) i t N 为t 前到达的第i 类顾客数,那么(1) ( 2 ) { : 0} , { : 0} t t N t N t ? ? 分别为强度为p? 与(1-p)? 的poisson 过程,而且这两个过程相互独立。
4 简述Markov 链与Markov 性质的概念答:如果随机变量是离散的,而且对于0 n ? ? 及任意状态0 1 1 1 1 0 0 1 , , , , , ( | , , , ) ( | ) n n n n n n n i j i i p j i i i p j i 都有,该随机序列为Markov 链,该对应的性质为Markov 性质。
5. 简述Markov 状态分解定理答:(1) Markov 链的状态空间S 可惟一分解为1 2 S T H H ? ? ? ? ,其中T 为B 卷(共9 页)第6 页暂态的全体,而i H 为等价常返类。
(2)若Markov 链的初分布集中在某个常返类k H 上,则此Markov 链概率为1 地永远在此常返类中,也就是说,它也可以看成状态空间为k H 的不可约Markov 链。
6.简述HMM 要解决的三个主要问题答:(1)从一段观测序列{ , } k Y k m ? 及已知的模型( , , ) A B ? ? ? 出发,估计n X 的最佳值,称为解码问题。
这是状态估计的问题。
(2) 从一段观测序列{ , } k Y k m ? 出发,估计模型参数组( , , ) A B ? ? ? ,称为学习问题。
这是参数估计问题。
(3) 对于一个特定的观测链{ , } k Y k m ? ,已知它可能是由已经学习好的若干模型之一所得的观测,要决定此观测究竟是得自于哪一个模型,这称为识别问题,就是分类问题。
7.什么是随机过程,随机序列?答:设T 为[0,+? )或(- ? ,+? ),依赖于t(t? T)的一族随机变量(或随。