清华大学随机过程答案1
- 格式:pdf
- 大小:135.20 KB
- 文档页数:7
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
随机过程作业第一章 P9例题6:随机过程X(t)=A+Bt, t ≥0, 其中A 和B 是独立随机变量,分布服从正态分布N(0, 1)。
求X(t)的一维和二维分布。
解 先求一维分布。
当t 固定,X(t)是随机变量,因为 EX(t)=EA+tEB=0, DX(t)=DA+2t DB=1+2t故X(t)具有正态分布N(0, 1+2t )。
这亦是随机过程X(t)的一维分布。
再求二维分布。
当1t , 2t 固定, X(1t )=A+B 1t , X(2t )=A+B 2t因A 、B 独立同正态分布,故(A, B)T 亦为二维正态分布。
则其线性变换也服从正态分布。
且所以二维分布是数学期望为(0, 0)T,协方差矩阵 的二维正态分布。
P10例题7:随机过程X(t)=Acost, -∞<t<∞,其中A 是随机变量,且有分布列 A 1 2 3 P 1/3 1/3 1/3 求 (1) 一维分布函数(2) 二维分布函数解 (1) 先求所以222211211)DX(t ,1)DX(t , 0)EX(t ,0)(t t t EX +=+===212121211))(())()X(t ())X(t ),(cov(t t Bt A Bt A E t X E t X +=++==⎥⎦⎤⎢⎣⎡++++222121211111t t t t t t )3π,0x x F )2πF(x;x F ;,( ),4;(21π( ;) 4F x π。
X()cos ,442A A ππ==显然,三值,,易知它仅取2232 22{()42P X π=={cos 42P A π==1P{A 1},3==31}223)4({ ,31 }2)4({====ππX P X P 同理,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<= 2 23 x 1,2 23x 2 ,32 2 x 22 ,3122 x 0 )4; ( ,πx F进而有P18例题1:具有随机初相位的简谐波 其中a 与 是正常数,而 服从在区间[0,2 ]上的均匀分布, 求X(t)的数学期望方差和相关函数。
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。
(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。
【理论基础】 (1)⎰∞-=xdt t f x F )()(,则)(t f 为密度函数;(2))(t X 为),(b a 上的均匀分布,概率密度函数⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f ,分布函数⎪⎩⎪⎨⎧>≤≤--<=b x b x a ab a x a x x F ,1,,0)(,2)(ba x E +=,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数⎩⎨⎧<≥=-0,00,)(x x e x f x λλ,分布函数⎩⎨⎧<≥-=-0,00,1)(x x e x F x λ,λ1)(=x E ,21)(λ=x D ; (4)2)(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞=--x e x f x ,21)(222)(σμπσ,分布函数∞<<-∞=⎰∞---x dt ex F xt ,21)(222)(σμπσ,若1,0==σμ时,其为标准正态分布。
【解答】本题可参加课本习题2.1及2.2题。
(1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。
由R 的取值范围可知,)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tC x C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s C st t X s X E t s R X +++==;协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t et t t X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Utt Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
4030(30)((1)40)!kk P N ek -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
随机过程作业题及参考答案(第一章)第一章随机过程基本概念P391. 设随机过程 X tX cos 0t , t,其中0 是正常数,而X 是标准正态变量。
试求 X t的一维概率分布。
解:1当 cos0t0 ,0tk,即 t1 k 1( kz )时,22 X t 0,则 P X t1.2当 cos0t0,0tk,即 t1 k 1( kz )时,22X~N 0,1, E X0,D X 1.E X tE X cos 0t E X cos 0t 0 .D X tD X cos0tD X cos 20tcos 2 0t .X t ~ N 0,cos 20t .1x 2则 fx ;te 2cos 2 0t .2 cos 0t2. 利用投掷一枚硬币的试验,定义随机过程为cos ,出现正面X t,出现反面2t假定 “出现正面” 和“出现反面” 的概率各为11 。
试确定 X t 的一维分布函数F x ;22和 F x ;1 ,以及二维分布函数1 。
F x 1,x 2;,12随机过程作业题及参考答案(第一章)解:, x 0X10 11 1 12,; P Xxx 122p k1 1 2x1, 221X 112,x 11 1 ;1,1 x 2p kF x 1 P X 1 x222x2,1随机矢量X1,X 1的可能取值为0, 1 ,1,2.2而PX10,X 111,PX11,X1 2 1 .2222F x 1,x 2 1P X1 x 1,X 1 x 2;,1 22,x 1或10 x 21, 且或且 1 x 2 22 0 x 1 1 x 21 x 1x 12, 且1 1 x 23. 设随机过程X t , t总共有三条样本曲线X t ,11 X t ,2sint, X t ,3 cost,且P 1PP 31t和相关函数 R X t 1,t 2。
2。
试求数学期望 EX3随机过程作业题及参考答案(第一章)解:EX t1 1sint1cost1 1 1 sint cost .333 3,E X t 1 X t 2R X t 1 t 21 1 1 1sint 1 sint 2 1 cost 1 cost 23 331 1 sint 1 sint2 cost 1 cost 2 31 1 cos t 1 t2 .34. 设随机过程X te Xt ,( t 0),其中 X 是具有分布密度f x 的随机变量。
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ 0()k jtkk p q e∞==∑ =0()1jt kjt k pp qe qe∞==-∑ 又20()kk k k q q E X kpq p kq pp p∞∞======∑∑ 222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n x S t dt n tdt xx∞∞+===+==-∑∑⎰⎰ 202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b+==222()()()PD XE X E X b ∴=== (4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设ln (),()(k Z F X E Z k =并求是常数)。