《随机过程答案》第五章习题
- 格式:pdf
- 大小:90.60 KB
- 文档页数:2
钱敏平龚光鲁随机过程答案(部分)随机过程课后习题答案第⼀章第⼆题:已知⼀列⼀维分布{();1}n F x n ≥,试构造⼀个概率空间及其上的⼀个相互独⽴的随机变量序列{(,);1}n n ξ?≥使得(,)n ξ?的分布函数为()n F x 。
解:有引理:设ξ为[0, 1]上均匀分布的随机变量,F(x)为某⼀随机变量的分布函数,且F(x)连续,那么1()F x η-=是以F(x)为分布的随机变量。
所以可以假设有相互独⽴的随机变量12,,...,n θθθ服从u[0, 1]分布,另有分布{()}n F x ,如果令1(,)()n n n F ξθ-?=,则有(,)n ξ?为服从分布()n F x 的随机变量。
⼜由假设条件可知,随机变量{(,),1}n n ξ?≥之间相互独⽴,则其中任意有限个随机变量12(,), (,),...,(,)n i i i ξξξ的联合分布为:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i x i x i x F x F x F x ξξξ?≤?≤?≤=再令112{,,...,,...},,{|()[0,1],1,2,...}n i i i i w w w w A A x F x i -Ω=∈=∈=,令F 为Ω所有柱集的σ代数,则由Kolmogorov 定理可知,存在F 上唯⼀的概率测度P 使得:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i w i w i w F w F w F w ξξξ?≤?≤?≤=则所构造的概率空间为(Ω,F , P)。
第⼋题:令{};1n X n ≥是⼀列相互独⽴且服从(0,1)N (正态分布)的随机变量。
⼜令1n n S X X =++22(1)n S n n ξ+=1(,,)n n F X X σ=试证明:,;1n n F n ξ≥()是下鞅(参见23题)。
随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。
(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。
答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。
假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。
(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。
电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。
因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。
均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。
随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。
(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。
答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。
假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。
(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。
电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。
因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。
均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。
5.4 对于题5.2,若滤波器的输出,再加到第二个相同的滤波器中,仍用频域分析法求出第二个滤波器
的输出。
解:
第一个滤波器输入是
,则经过两个相同的滤波器以后的输出
5.14 假设一个零均值平稳随机过程
加到冲激响应为
(t.>=0)的线形滤波器中,证明
证明:
5.15 假设一个零均值平稳随机过程
,加到冲激响应为
的线性滤波器中,证明输出功率谱密度为。
证明:
所以,
5.18 假设随机过程
通过一个微分器,其输出过程
存在,微分器的传密为
,求(1)
与
的互功率谱密度。
(2)
的功率谱密度。
解:(1)
(2)
5.20 图为单个输入两个输出的线形系统,输入
为平稳随机过程,求证输出
和
的互谱密度为
证明:
令
,则
5.26 若线性系统输入平稳过程
的功率谱密度为
,现要求系统输出
的功率谱密度为
,求:相应的稳定系统的传输系数。
解:
5.29 某个放大器,其功率增益随频率的变化为
,求:该放大器的噪声带宽。
解:。
随机过程习题解答第一章习题解答1.设随机变量X 服从几何分布,即:(),0,1,2,kP X k pqk ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ =()1jt k jtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑(其中 0(1)nnnn n n nx n x x ∞∞∞====+-∑∑∑)令 0()(1)nn S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰同理 2(1)2kkkk k k k k kx k x kx x ∞∞∞∞=====+--∑∑∑∑令2()(1)kk S x k x ∞==+∑ 则211()(1)(1)xkk kk k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为(2) 其期望和方差;(3)证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则 (2)'1()(0)Xp E X fjb∴==(4)若(,)i i X p b Γ 1,2i = 则同理可得:()()i i P X b f t b jt∑=∑-3、设ln (),()(kZ F X E Zk =并求是常数)。
X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)ln (),()(kZ F X E Z k =并求是常数)。
解(1)11{()}{()}[()]P F x y P x F y F F y y --<=<==(01y ≤≤) ∴00()0111y F y yy y <⎧⎪=≤≤⎨⎪>⎩∴()F x 在区间[0,1]上服从均匀分布()F x ∴的特征函数为11001()(1)jtx jtx jt X e f t e dx e jt jt ===-⎰ (2)ln ()()()[]jtz jt F x Z f t E e E e ===1ln 01jt ye dy ⋅⎰=111jty dy jt =+⎰4、设12n X X X ,,相互独立,且有相同的几何分布,试求1nkk X =∑的分布。
湖南大学本科课程《随机过程》习题集主讲教师:何松华 教授第一章:概述及概率论复习1.1 设一批产品共50个,其中45个合格,5个为次品,从这一批产品中任意抽取3个,求其中有次品的概率。
1.2 设一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第3次才取得合格品的概率。
1.3 设一袋中有N 个球,其中有M 个红球,甲、乙两人先后各从袋中取出一个球,求乙取得红球的概率(甲取出的球不放回)。
1.4 设一批产品有N 个,其中有M 个次品,每次从其中任取一个来检查,取出后再放回,求连续n 次取得合格品的概率。
1.5设随机变量X 的概率分布函数为连续的,且0()00xA Be x F x x λ-⎧+≥=⎨<⎩其中λ≥0为常数,求常数A 、B 的值。
1.6设随机变量X 的分布函数为 ()() (-<<)F x A Barctg x x =+∞∞(1) 求系数A 、B ;(2)求随机变量落在(-1,1)内的概率;(3)求其概率密度函数。
1.7已知二维随机变量(X,Y)的联合概率密度分布函数为6(2)0,1(,)0XY xy x y x y f x y elsewhere --≤≤⎧=⎨⎩(1)求条件概率密度函数|(|)X Y f x y 、|(|)Y X f y x ;(2)问X 、Y 是否相互独立?1.8已知随机变量X 的概率密度分布函数为22()()]2X X X x m f x σ-=- 随机变量Y 与X 的关系为 Y=cX+b ,其中c ,b 为常数。
求Y 的概率密度分布函数。
1.9设X 、Y 是两个相互独立的随机变量,其概率密度分布函数分别为101()0X x f x elsewhere ≤≤⎧=⎨⎩,0()0y Y e y f y elsewhere-⎧<=⎨⎩ 求随机变量Z=X+Y 的概率密度分布函数。
1.10设随机变量Y 与X 的关系为对数关系,Y=ln(X),随机变量Y 服从均值为m Y 、标准差为σY 的正态分布,求X 的概率密度分布。
第5章1. 设{},0t B t ≥是一维标准Brown 运动, 判断它是否均方连续, 是否均方可微. 解:由均方连续准则,Brown 运动{},0t B t ≥的相关函数(,)R s t 为()()()()()22(,)s t s s s t t s t t E B B B B s s t R s t E B B E B B B B t t s⎧-+=≤⎪==⎨-+=≤⎪⎩故()000,R t t t =连续,故Brown 运动是均方连续的。
由均方可微准则,对Brown 运动,1[(,)(,)(,)(,)]1m in(,)m in(,)m in(,)1R t h t k R t h t R t t k R t t hkh k t h t k t h t t t k t k hk k hh++-+-++⎧≤⎪++-+-++⎪==⎨⎪≤⎪⎩ 当0,0h k →→时极限不存在,故Brown 运动不是均方可微的。
2. 设()()2212,~0,0,,,X Y N σσρ. 令0,tt t u X X tY Y X du =+=⎰, 2tt u Z X du =⎰,0s t ∀≤≤.1) 证明t X 在0t >上均方可微; 2) 求,t t Y Z 的均方导数.证:1)()()()()221122,,,()()s t s t R s t E X X E X sY X tY s t st σρσσσ∀==++=+++根据均方可微准则,相关函数(,)R s t 在(),t t 点广义二次可微:()()()()()()()()()()()(),0222211221122,022222112211222222,01lim[(,)(,)(,)(,)]1lim[2222]1limh k h k h k R t h t k R t h t R t t k R t t hkt h k t h t k t h t h t hkt k t k t t t hk hk σρσσσσρσσσσρσσσσρσσσσσ→→→++-+-++=++++++-++++-+++++++⎡⎤==⎣⎦故t X 在0t >上均方可微。