《应用随机过程》第九版Sheldon M.Ross习题答案
- 格式:pdf
- 大小:15.10 MB
- 文档页数:114
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k === 。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解 0()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 1(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
协方差矩阵及n 维正态分布1、设n 维随机变量)(n X X ,,,X 21⋯的二阶混合中心距:[][];,,2,1,},)()({),(,n j i j X E j X X E X E X X Cov c i i j i j i ⋯=--==都存在,则称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=∑nn c c c c c c c c c n2n12n 22211n 1211为n 维随机变量)(n X X ,,,X 21⋯的协方差矩阵,它是一对称矩阵。
2、n 维正态分布定义:若n 维随机变量)(n X X ,,,X 21⋯的概率密度可以表示成以下的形式:⎭⎬⎫⎩⎨⎧-∑--∑==⋯-)()(21ex p )(det )2(1)(),,,(f 12/12/21U X U X X f x x x T n n π其中,Tn T T n X E X E X E U x x x X ))(,),(),((),,,(,),,,(21n 2121⋯=⋯=⋯=μμμ∑是)(n X X ,,,X 21⋯的协方差矩阵,则称n 维随机变量)(n X X ,,,X 21⋯为n 维正态随机变量,记为),(~),,,X (21∑⋯=μN X X X n ,),,,(f 21n x x x ⋯为n 维正态概率密度函数。
N 维正态随机变量的性质(1) n 维正态随机变量)(n X X ,,,X 21⋯的每一个分量都是正态变量;反之,若nX X ,,,X 21⋯都是正态随机变量,且相互独立,则)(n X X ,,,X 21⋯是n 维正态随机变量。
(2) n 维随机变量)(n X X ,,,X 21⋯服从n 维正态分布的充要条件是n X X ,,,X 21⋯的任意的线性组合n n X l X l X l +⋯++2211服从一维正态分布;(3) 若)(n X X ,,,X 21⋯服从n 维正态分布,设n Y Y ,,,Y 21⋯是),,3,2,1(X n j j ⋯=的线性函数,则n Y Y ,,,Y 21⋯也服从正态分布。
拓扑学尤承业答案【篇一:点集拓扑学】工业大学数学学院预备知识1.点集拓扑的定义《点集拓扑学》课程是一门现代数学基础课程,属数学与应用数学专业的理论课。
是数学与应用数学专业的主干课。
点集拓扑学(point set topology),有时也被称为一般拓扑学(general topology),是数学的拓扑学的一个分支。
它研究拓扑空间以及定义在其上的数学构造的基本性质。
这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。
它的表述形式大概在1940年左右就已经成文化了。
通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。
2.点集拓扑的起源点集拓扑学产生于19世纪。
g.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。
1906年m.-r.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始。
3.一些参考书籍(1)《拓扑空间论》,高国士,科学出版社,2000年7月第一版(2)《基础拓扑讲义》,尤承业,北京大学出版社,1997年11月第一版(3)《一版拓扑学讲义》,彭良雪,科学出版社,2011年2月第一版2第一章集合论初步在这一章中我们介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发给出集合运算、关系、映射以及集合的基数等方面的知识等。
这里所介绍的集合论通常称为“朴素的集合论”,这对大部分读者已经是足够了.那些对集合的理论有进一步需求的读者,例如打算研究集合论本身或者打算研究数理逻辑的读者,建议他们去研读有关公理集合论的专著。
1.1 集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体。
例如我们常说“正在这里听课的全体学生的集合”, “所有整数的集合”等等.集合也常称为集。
(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
2. (1) 求参数为的()b p ,分布的特征函数,其概率密度为Γ()()是正整数p b x x e x p b x p bx p p ,0 000,1>⎪⎩⎪⎨⎧≤>Γ=−−(2)求其期望和方差。
(3)证明对具有相同参数的b Γ分布,关于参数具有可加性。
p 函数有下面的性质:解 (1) 首先,我们知道Γ()()! 1−=Γp p根据特征函数的定义,有()[]()()()()()()()()()()()()()()()()()()()()pp p x jt b p p xjt b p p x jt b p p xjt b p p xjt b p p bxp p jtxjtxjtXX jt b b jt b p p b dxe x jt b p p b dx e x jt b p p b dx e x jt b p p b e x jt b p b dx e x p b dx e x p b edx x p e e E t f ⎟⎟⎠⎞⎜⎜⎝⎛−=−−Γ=−−Γ==−−Γ=−−Γ+−−Γ=Γ=Γ===∫∫∫∫∫∫∞−−−∞−−−∞−−−∞−−−∞−−−−−∞∞∞−!1!11110010202010110L所以()pX jt b b t f ⎟⎟⎠⎞⎜⎜⎝⎛−=(2)根据期望的定义,有[]()()()()()()()bpdx x p b p dx e x p b b p dx e x bp p b e x bp b dx e x p b dx e x p b x dx x xp X E m bx p p bx p p bxp p bx p p bx p p X ==Γ=Γ+−Γ=Γ=Γ===∫∫∫∫∫∫∞∞−∞−−∞−−∞−∞−∞−−∞∞−010100011类似的,有[]()()()()()()()()()()()()()2201200010101222111111b p p dx x p b p p dx e x p b b p p dx e x b p p b dx e x bp p b e x bp b dx e x p b dx e x p b x dx x p x XE bxp p bxp p bxp p bxp p bx p p bx p p +=+=Γ+==+Γ=+Γ+−Γ=Γ=Γ==∫∫∫∫∫∫∫∞∞−∞−−∞−∞−∞−+∞−+∞−−∞∞−L的方差为X 所以,[]()222221b pb p b p p mXE D XX =⎟⎠⎞⎜⎝⎛−+=−=(3)()()()jt jnt jt e n e e t f −−=115. 试证函数为一特征函数,并求它所对应的随机变量的分布。
一、设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t对应随机变量X(t)t3te如果对如果对t时取得红球t时取得白球试求这个随机过程的一维分布函数族.设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
设随机过程X(t)U cos2t U E(U)5,D(U)5.求:,其中是随机变量,且(1)均值函数;(2)协方差函数;(3)方差函数.设有两个随机过程X(t)Ut2Y(t)Ut3,U随机变量,且D(U)5.,其中是试求它们的互协方差函数。
设A,B,X(t)At3B t T(,)的均值是两个随机变量试求随机过程,函数和自相关函数.A,B,~(1,4),~(0,2),()(,)若相互独立且A N B U则m X t及R X t1t2为多少?一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令N(t)表示(0,t)时间内的体检人数,则N(t)为参数为30的poisson过程。
以小时为单位。
则E(N(1))30。
40k(30) P(N(1)40)ek!k030。
在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1,2,当1路公共汽车有N人乘坐后出发;2路公共汽车1在有N2人乘坐后出发。
设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当N1=N,1=22时,计算上述概率。