(完整版)答案应用随机过程a
- 格式:doc
- 大小:226.01 KB
- 文档页数:6
随机过程作业第一章 P9例题6:随机过程X(t)=A+Bt, t ≥0, 其中A 和B 是独立随机变量,分布服从正态分布N(0, 1)。
求X(t)的一维和二维分布。
解 先求一维分布。
当t 固定,X(t)是随机变量,因为 EX(t)=EA+tEB=0, DX(t)=DA+2t DB=1+2t故X(t)具有正态分布N(0, 1+2t )。
这亦是随机过程X(t)的一维分布。
再求二维分布。
当1t , 2t 固定, X(1t )=A+B 1t , X(2t )=A+B 2t因A 、B 独立同正态分布,故(A, B)T 亦为二维正态分布。
则其线性变换也服从正态分布。
且所以二维分布是数学期望为(0, 0)T,协方差矩阵 的二维正态分布。
P10例题7:随机过程X(t)=Acost, -∞<t<∞,其中A 是随机变量,且有分布列 A 1 2 3 P 1/3 1/3 1/3 求 (1) 一维分布函数(2) 二维分布函数解 (1) 先求所以222211211)DX(t ,1)DX(t , 0)EX(t ,0)(t t t EX +=+===212121211))(())()X(t ())X(t ),(cov(t t Bt A Bt A E t X E t X +=++==⎥⎦⎤⎢⎣⎡++++222121211111t t t t t t )3π,0x x F )2πF(x;x F ;,( ),4;(21π( ;) 4F x π。
X()cos ,442A A ππ==显然,三值,,易知它仅取2232 22{()42P X π=={cos 42P A π==1P{A 1},3==31}223)4({ ,31 }2)4({====ππX P X P 同理,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<= 2 23 x 1,2 23x 2 ,32 2 x 22 ,3122 x 0 )4; ( ,πx F进而有P18例题1:具有随机初相位的简谐波 其中a 与 是正常数,而 服从在区间[0,2 ]上的均匀分布, 求X(t)的数学期望方差和相关函数。
随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。
(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。
答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。
假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。
(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。
电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。
因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。
均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。
应用随机过程张波课后答案【篇一:随机过程期末论文】ass=txt>【摘要】:通过市场调查研究发现,很多现象是可以用随机过程来描述的。
比如说,企业在人力资源需求方面就是一个随着时间不断变化的随机过程。
本文试图将马尔科夫链引入,并运用其原理以及特性,对企业人力资源需求方面进行分析和预测,从而帮助企业明确未来人力需求趋势,做好人才储备工作。
【关键字】:马尔科夫链;人力资源;预测;需求一、马尔科夫链原理简介一个经济系统x(t)是随时间t变化的随机变量。
人们可根据该经济系统在时刻t0所处的状态推出它在任何一个较后时刻t(t0)的状态。
由此原则,可得到这样一个基本方法:系统内x(t)在给定的时刻tn的状态x(tn)=xn,可根据它在任何较早时刻tn?1(tn)所处的状态x(tn?1)=xn-1推出,而不依赖于系统在时刻以tn?1前的历史状态。
满足这一条件的系统所观测结果的随机过程,就称之为马尔科夫过程。
而马尔科夫链是状态离散的一类特殊马尔可夫过程, 即过程的发展可看作是在某些值(称为过程的“状态”)之间一系列转移, 而且具有下面性质:一旦过程处于一给定状态, 则过程未来发展只依赖于这个状态, 而与它过去到达过的状态无关。
假设过程的时间参数集任意n个时刻为t1t2......tn,系统x(t)在时刻ti 处于状态xi,即x(ti)=xi(i=1,2,...,n-1),则x(tn)的条件概率分布只依赖于x(tn-1)=xn-1最近的已知值,即:p{x(tn)?xn|x(t1)=x1,...,x(tn-1)=xn-1}=p{x(tn)xn|x(tn-1)=xn-1} 可以直观地解释为当给定过程“现在”的条件下,它的“将来”与“过去”无关。
二、状态转移矩阵运用马尔科夫链进行预测的关键在于:建立状态转移概率矩阵(指系统在时刻t所处状态,转变为时刻t+1所处状态时与之相对应的一个条件概率)。
因此,企业人力资源需求的预测,其关键也就在于通过调查,确定预测期内企业对人才需求的状况。
(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。
(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。
答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。
假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。
(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。
电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。
因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。
均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。
随机过程习题解答(一)第一讲作业:1、设随机向量的两个分量相互独立,且均服从标准正态分布。
(a)分别写出随机变量和的分布密度(b)试问:与是否独立?说明理由。
解:(a)(b)由于:因此是服从正态分布的二维随机向量,其协方差矩阵为:因此与独立。
2、设和为独立的随机变量,期望和方差分别为和。
(a)试求和的相关系数;(b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。
解:(a)利用的独立性,由计算有:(b)当的时候,和线性相关,即3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为,且是一个周期为T的函数,即,试求方差函数。
解:由定义,有:4、考察两个谐波随机信号和,其中:式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。
(a)求的均值、方差和相关函数;(b)若与独立,求与Y的互相关函数。
解:(a)(b)第二讲作业:P33/2.解:其中为整数,为脉宽从而有一维分布密度:P33/3.解:由周期性及三角关系,有:反函数,因此有一维分布:P35/4. 解:(1) 其中由题意可知,的联合概率密度为:利用变换:,及雅克比行列式:我们有的联合分布密度为:因此有:且V和相互独立独立。
(2)典型样本函数是一条正弦曲线。
(3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且所以。
(4)由于:所以因此当时,当时,由(1)中的结论,有:P36/7.证明:(1)(2) 由协方差函数的定义,有:P37/10. 解:(1)(2)当i=j 时;否则令,则有第三讲作业:P111/7.解:(1)是齐次马氏链。
经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。
(2)由题意,我们有一步转移矩阵:P111/8.解:(1)由马氏链的马氏性,我们有:(2)由齐次马氏链的性质,有:,因此:P112/9.解:(1)(2)由(1)的结论,当为偶数时,递推可得:;计算有:,递推得到,因此有:P112/11.解:矩阵的特征多项式为:由此可得特征值为:,及特征向量:,令矩阵则有:因此有:P112/12.解:设一次观察今天及前两天的天气状况,将连续三天的天气状况定义为马氏链的状态,则此问题就是一个马氏链,它有8个状态。
习 题一、习题编号本次作业:1,2, 7,9,12,17,18,19,23,25 二、习题解答1.1 设随机试验E 是将一枚硬币抛两次,观察H -正面,T -反面出现的情况,试分析它的概率空间(),,P Ω。
解1.1: 样本空间:Ω = {HH, HT, TH, TT}集类:F = { Ø, Ω, {HH}, {HT}, {TH}, {TT},{HH,HT}, {HH, TH}, {HH,TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH, HT, TH}, {HH, HT, TT}, {HT, TH, TT}, {TH, TT, HH}, }概率:P: P{HH} = P{HT} = P{TH} = P{TT} = 1/41.2 设,A B ∈Ω,集类{},A B =。
试求:()σ的所有元素。
解1.2:因为:{},A B =所以:(){},,,σ=∅Ω1.3 设四个黑球与两个白球随机地等分为A 与B 两组,记A 组中白球的数目为X ;然后随机交换A 与B 中一个球,再记交换后A 组中白球的数目为Y 。
试求:(1)X 的分布律;(2)Y|X 的分布律;(3)Y 的分布律。
解1.3:(1)总计有2个白球,因此,X 的取值为0,1,2。
等分共有36C 种分法,等分后,X 取值分别为0,1,2的概率为:3211244242333666012012131()()555XX C C C C C P X P X C C C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (2)交换一个球后,1)如果X 中没有白球,则交换后Y 可能取值为0、1 2)如果X 中有一个白球,则交换后Y 可能取值为0、1、2 3)如果X 中有两个白球,则交换后Y 可能取值为1、2|0|01|00|11|12|11|22|21225221(|)3399933Y XP Y X ⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)20()(|)()i P Y P Y X i P X i ====∑2(0)(0|)()1123359515i P Y P Y X i P X i =======⨯+⨯=∑2(1)(1|)()21532135953535i P Y P Y X i P X i =======⨯+⨯+⨯=∑2(2)(2|)()23110953515i P Y P Y X i P X i =======+⨯+⨯=∑故Y 的分布律为:012131()555YP Y ⎛⎫ ⎪ ⎪⎪⎝⎭1.4 设A 与B 是概率空间(),,P Ω上的事件,且()01P B <<,试证明:A 与B独立的充要条件为:()()|=|P A B P A B 。
2. (1) 求参数为的()b p ,分布的特征函数,其概率密度为Γ()()是正整数p b x x e x p b x p bx p p ,0 000,1>⎪⎩⎪⎨⎧≤>Γ=−−(2)求其期望和方差。
(3)证明对具有相同参数的b Γ分布,关于参数具有可加性。
p 函数有下面的性质:解 (1) 首先,我们知道Γ()()! 1−=Γp p根据特征函数的定义,有()[]()()()()()()()()()()()()()()()()()()()()pp p x jt b p p xjt b p p x jt b p p xjt b p p xjt b p p bxp p jtxjtxjtXX jt b b jt b p p b dxe x jt b p p b dx e x jt b p p b dx e x jt b p p b e x jt b p b dx e x p b dx e x p b edx x p e e E t f ⎟⎟⎠⎞⎜⎜⎝⎛−=−−Γ=−−Γ==−−Γ=−−Γ+−−Γ=Γ=Γ===∫∫∫∫∫∫∞−−−∞−−−∞−−−∞−−−∞−−−−−∞∞∞−!1!11110010202010110L所以()pX jt b b t f ⎟⎟⎠⎞⎜⎜⎝⎛−=(2)根据期望的定义,有[]()()()()()()()bpdx x p b p dx e x p b b p dx e x bp p b e x bp b dx e x p b dx e x p b x dx x xp X E m bx p p bx p p bxp p bx p p bx p p X ==Γ=Γ+−Γ=Γ=Γ===∫∫∫∫∫∫∞∞−∞−−∞−−∞−∞−∞−−∞∞−010100011类似的,有[]()()()()()()()()()()()()()2201200010101222111111b p p dx x p b p p dx e x p b b p p dx e x b p p b dx e x bp p b e x bp b dx e x p b dx e x p b x dx x p x XE bxp p bxp p bxp p bxp p bx p p bx p p +=+=Γ+==+Γ=+Γ+−Γ=Γ=Γ==∫∫∫∫∫∫∫∞∞−∞−−∞−∞−∞−+∞−+∞−−∞∞−L的方差为X 所以,[]()222221b pb p b p p mXE D XX =⎟⎠⎞⎜⎝⎛−+=−=(3)()()()jt jnt jt e n e e t f −−=115. 试证函数为一特征函数,并求它所对应的随机变量的分布。
随机过程习题及答案第二章随机过程分析1.1学习指导1.1.1要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。
1.随机过程的概念随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。
可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。
2.随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。
ξ(t 1)小于或等于某一数值x 1的概率为P [ξ(t 1)≤x 1],随机过程ξ(t )的一维分布函数为F 1(x 1,t 1)=P [ξ(t 1)≤x 1](2-1)如果F 1(x 1,t 1)的偏导数存在,则ξ(t )的一维概率密度函数为对于任意时刻t 1和t 2,把ξ(t 1)≤x 1和ξ(t 2)≤x 2同时成立的概率称为随机过程?(t )的二维分布函数。
如果存在,则称f 2(x 1,x 2;t 1,t 2)为随机过程?(t )的二维概率密度函数。
对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程?(t )的n 维分布函数。
如果存在,则称f n (x 1,x 2,…,x n ;t 1,t 2,…,t n )为随机过程?(t )的n 维概率密度函数。
3.随机过程的数字特征随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。
随机过程?(t )在任意给定时刻t 的取值?(t )是一个随机变量,其均值为其中,f 1(x ,t )为?(t )的概率密度函数。
随机过程?(t )的均值是时间的确定函数,记作a (t ),它表示随机过程?(t )的n 个样本函数曲线的摆动中心。
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=〔其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑〕令 0()(1)n n S x n x ∞==+∑那么 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰22201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 那么211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰〕2、〔1〕 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有一样的参数的b 的Γ分布,关于参数p 具有可加性。
解 〔1〕设X 服从(,)p b Γ分布,那么10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ 〔2〕'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 假设(,)i i X p b Γ 1,2i = 那么121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
山东财政学院2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A )(考试时间为120分钟)参考答案及评分标准考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ)1. 严平稳过程一定是宽平稳过程。
(ⅹ )2. 非周期的正常返态是遍历态。
(√ )3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。
(ⅹ )4. 有限马尔科夫链没有零常返态。
(√ )5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(〉nd iip 。
(ⅹ )二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。
2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。
三. 简答题(每小题5分,共10分)1. 简述马氏链的遍历性。
答:设)(n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(〉=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。
2. 非齐次泊松过程与齐次泊松过程有何不同?答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。
它反映了其变化与时间相关的过程。
如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。
四. 计算、证明题(共70分)1. 请写出C —K 方程,并证明之. (10分)解:2. 写出复合泊松过程的定义并推算其均值公式. (15分)解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y1,那么{}0),(≥t t X 复合泊松过程3. 顾客以泊松过程到达某商店,速率为小时人4=λ,已知商店上午9:00开门,求到9:30时仅到一位顾客,而到11:30时总计已达5位顾客的概率。
应用随机过程张波课后答案应用随机过程张波课后答案【篇一:随机过程期末论文】ass=txt>【摘要】:通过市场调查研究发现,很多现象是可以用随机过程来描述的。
比如说,企业在人力资源需求方面就是一个随着时间不断变化的随机过程。
本文试图将马尔科夫链引入,并运用其原理以及特性,对企业人力资源需求方面进行分析和预测,从而帮助企业明确未来人力需求趋势,做好人才储备工作。
【关键字】:马尔科夫链;人力资源;预测;需求一、马尔科夫链原理简介一个经济系统x(t)是随时间t变化的随机变量。
人们可根据该经济系统在时刻t0所处的状态推出它在任何一个较后时刻t(t0)的状态。
由此原则,可得到这样一个基本方法:系统内x(t)在给定的时刻tn的状态x(tn)=xn,可根据它在任何较早时刻tn?1(tn)所处的状态x(tn?1)=xn-1推出,而不依赖于系统在时刻以tn?1前的历史状态。
满足这一条件的系统所观测结果的随机过程,就称之为马尔科夫过程。
而马尔科夫链是状态离散的一类特殊马尔可夫过程, 即过程的发展可看作是在某些值(称为过程的“状态”)之间一系列转移, 而且具有下面性质:一旦过程处于一给定状态, 则过程未来发展只依赖于这个状态, 而与它过去到达过的状态无关。
假设过程的时间参数集任意n个时刻为t1t2......tn,系统x(t)在时刻ti 处于状态xi,即x(ti)=xi(i=1,2,...,n-1),则x(tn)的条件概率分布只依赖于x(tn-1)=xn-1最近的已知值,即:p{x(tn)?xn|x(t1)=x1,...,x(tn-1)=xn-1}=p{x(tn)xn|x(tn-1)=xn-1} 可以直观地解释为当给定过程“现在”的条件下,它的“将来”与“过去”无关。
二、状态转移矩阵运用马尔科夫链进行预测的关键在于:建立状态转移概率矩阵(指系统在时刻t所处状态,转变为时刻t+1所处状态时与之相对应的一个条件概率)。
随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。
解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。
解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。
山东财政学院
2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A )
(考试时间为120分钟)
参考答案及评分标准
考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉
一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ)
1. 严平稳过程一定是宽平稳过程。
(ⅹ )
2. 非周期的正常返态是遍历态。
(√ )
3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。
(ⅹ )
4. 有限马尔科夫链没有零常返态。
(√ )
5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(〉nd ii
p 。
(ⅹ )
二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。
2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。
三. 简答题(每小题5分,共10分)
1. 简述马氏链的遍历性。
答:设)
(n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(〉=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。
2. 非齐次泊松过程与齐次泊松过程有何不同?
答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。
它反映了其变化与时间相关的过程。
如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。
四. 计算、证明题(共70分)
1. 请写出C —K 方程,并证明之. (10分)
解:
2. 写出复合泊松过程的定义并推算其均值公式. (15分)
解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y
1,那么{}0),(≥t t X 复合泊松过程
3. 顾客以泊松过程到达某商店,速率为小时
人4=λ,已知商店上午9:00开门,求到9:30时仅到一位顾客,而到11:30时总计已达5位顾客的概率。
(10分) 4. 设{}1,≥n X n 是一马氏链,{}2,1,0=I ,
⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡=4143041214
104143P ,初始分布{}.2,1,0,31)0(0====i i X p p i 试求(1){}1,020==X X p (7分)
(2){}12=X p (8分)
解:(1){}{}{})2(01002020)0(0101,0p p X X p X p X X p ======= 由于⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡===4116516316321165161165852)2(PP P P 可知,165)2(01=
p ,于是, {}{}{}48
516531)0(0101,0)2(01002020=⨯========p p X X p X p X X p (2)由全概率公式,
{}12=X p ={}{}010020===X X p X p +{}{}111020===X X p X p
+{}{}212020===X X p X p
=)2(010)0(p p +)2(111)0(p p +)2(212)0(p p =31(165+21+169)=24
11 5. 设{}1,≥n X n 是一随机游动,{}ΛΛ,,2,1,0j I =,转移概率为:
⎪⎩⎪⎨⎧=====+=-+Λ
Λ,3,2,1,,2,1,0,1,1,1,0,0j q p j p p q p q p j j j j
(1)画出转移概率图,写出一步转移概率阵. (5分)
(2)说明这是何种类型的随机游动(有无反射壁或吸收壁?哪几个状态是?)(5分)
(3) 求其平稳分布 Λ,2,1,0,=j j π(10分)
解:(1)图略。
⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=ΛΛΛΛΛΛΛΛΛ000
00000
0q p q p q p q P (2)是具有一个反射壁的随机游动,状态0是反射壁。
(3)设马氏链存在极限分布{}i π,则有方程组
Λ,3,2,1,11
010=⎩⎨⎧=+=++-j q p q q j j j ππππππ 解得 0011πππq
p q q =-= j j j j j j q p q p ππππππ)q p (1111+=+=++-+-,即由
得 11-+-=-j j j j p q p q ππππ
从而有,0112ππππp q p q -=-
得 0212)(πππq p q p ==,类推,得 0)(ππj j q p =,因而,当1)(<q
p 时, 由10=∑∞
=j j π,可得,q p -
=10π a, 当2
1<p 时,该随机游动时正常返,马氏链是遍历的,Λ,2,1,0),1()(0=-=j q p q
p j j π,j 状态的平均返回时间j j πμ1=
b ,当21=p 时,,1=q p 级数∑∞=0)(j j q
p 发散,随机为零常返,,1=j μ∞=j μ c. 当21>p 时,无极限分布,各状态为非常返。