应用随机过程习题
- 格式:ppt
- 大小:73.50 KB
- 文档页数:33
1、设在底层乘电梯的人数服从均值5λ=的泊松分布,又设此楼共有N+1层。
每一个乘客在每一层楼要求停下来离开是等可能的,而且与其余乘客是否在这层停下是相互独立的。
求在所有乘客都走出电梯之前,该电梯停止次数的期望值。
2、设齐次马氏链{(),0,1,2,}X n n = 的状态空间{1,2,3}E =,状态转移矩阵1102211124412033P=(1)画出状态转移图;(2)讨论其遍历性;(3)求平稳分布;(4)计算下列概率: i ){(4)3|(1)1,(2)1};P X X X === ii ){(2)1,(3)2|(1)1}P X X X ===.3、设顾客以泊松分布抵达银行,其到达率为λ,若已知在第一小时内有两个顾客抵达银行,问:(1)此两个顾客均在最初20分钟内抵达银行的概率是多少? (2)至少有一个顾客在最初20分钟抵达银行的概率又是多少?4、设2()X t At Bt C ++,其中A , B , C 是相互独立的标准正态随机变量,讨论随机过程{(),}X t t −∞<<+∞的均方连续、均方可积和均方可导性.5、设有实随机过程{(),}X t t −∞<<+∞,加上到一短时间的时间平均器上作它的输入,如下图所示,它的输出为1(),()()d tt TY t Y t X u u T −=∫,其中t 为输出信号的观测时刻,T 为平均器采用的积分时间间隔。
若()cos X t A t =,A 是(0, 1)内均匀分布的随机变量。
(1)求输入过程的均值和相关函数,问输入过程是否平稳? (2)证明输出过程()Y t 的表示式为sin 2()cos()22T T Y t A t T=⋅−.(3)证明输出的均值为sin 12[()]cos()222T T E Y t t T =−,输出相关函数为12(,)R t t = 2sin 1232T T12cos()cos()22T Tt t −−,问输出是否为平稳过程?6、甲、乙两人进行比赛,设每局比赛甲胜的概率为p ,乙胜的概率为q ,和局的概率为R ,1p q r ++=,设每局比赛后胜者记“1”,分负者记“-1”分,和局记“0”分。
随机过程及应用习题课三11. 设()cos ,X t A B t t =+-∞<<+∞,其中A 和B 为相互独立均服从(0,1)N 的随机变量.(1)证明{(),}X t t -∞<<+∞为正态过程;(2)求其一维、二维概率密度和一维、二维特征函数.2. 设{(),(,)}X t t ∈-∞+∞是均值函数为0,自相关函数()(,)/2X R s t s t s t =+-- 的正态过程,证明1()()Y t X t =,0t >,2()(),0Y t X t t =-≥是相互独立的正态过程。
3. 设0{()}W t +∞是参数为2σ的维纳过程,试证明1()0()0tW t W t tt ?>?'=??=?是参数为2σ的维纳过程。
4. 设{(),0}W t t ≥是参数为2σ的维纳过程,证明12()()0t W t c W t c=?≥是参数为2σ的维纳过程。
5. 设{(),0}W t t ≥是参数为2σ的维纳过程,证明2()()W t W t =-是参数为2σ的维纳过程。
6. 设{(),0}W t t ≥是参数为2σ的维纳过程,证明3,0()()()0t W t W t a W a a ≥=+->是参数为2σ的维纳过程7. 设{(),0}W t t ≥是参数为2σ的维纳过程,令231()0()00t W t W t tt ?>?'=??=? (1)(){},0W t t '≥是否为正态过程;(2)(){},0W t t '≥是否为维纳过程。
8. 设{(),0}X t t ≥是具有零均值和协方差(,)C s t 的正态过程,则对于任意的非负数,s t 和τ,证明:(1)2[()](,)()E X t C t t D t ==;(2)222[()]2(,)2()D X t C t t D t ==;2(3)222cov((),())2(,)X s X t C s t =;(4)[()()](,)E X t X t C t t ττ+=+;(5)2[()()](,)(,)(,)D X t X t C t t C t t C t t ττττ+=++++;(6)cov[()(),()()](,)(,)(,)(,)X s X s X t X t C s t C s t C s t C s t ττττττ++=+++++ 9. 设{(),0}W t t ≥是参数24σ=的维纳过程,令(3)(1),(4)(2).X W W Y W W =-=-求:()D X Y +和cov(,).X Y10. 设0{()}W t +∞是为参数为2σ的Wiener 过程,求下列过程的均值函数和自相关函数。
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
习 题一、习题编号本次作业:1,2, 7,9,12,17,18,19,23,25 二、习题解答1.1 设随机试验E 是将一枚硬币抛两次,观察H -正面,T -反面出现的情况,试分析它的概率空间(),,P Ω。
解1.1: 样本空间:Ω = {HH, HT, TH, TT}集类:F = { Ø, Ω, {HH}, {HT}, {TH}, {TT},{HH,HT}, {HH, TH}, {HH,TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH, HT, TH}, {HH, HT, TT}, {HT, TH, TT}, {TH, TT, HH}, }概率:P: P{HH} = P{HT} = P{TH} = P{TT} = 1/41.2 设,A B ∈Ω,集类{},A B =。
试求:()σ的所有元素。
解1.2:因为:{},A B =所以:(){},,,σ=∅Ω1.3 设四个黑球与两个白球随机地等分为A 与B 两组,记A 组中白球的数目为X ;然后随机交换A 与B 中一个球,再记交换后A 组中白球的数目为Y 。
试求:(1)X 的分布律;(2)Y|X 的分布律;(3)Y 的分布律。
解1.3:(1)总计有2个白球,因此,X 的取值为0,1,2。
等分共有36C 种分法,等分后,X 取值分别为0,1,2的概率为:3211244242333666012012131()()555XX C C C C C P X P X C C C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (2)交换一个球后,1)如果X 中没有白球,则交换后Y 可能取值为0、1 2)如果X 中有一个白球,则交换后Y 可能取值为0、1、2 3)如果X 中有两个白球,则交换后Y 可能取值为1、2|0|01|00|11|12|11|22|21225221(|)3399933Y XP Y X ⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)20()(|)()i P Y P Y X i P X i ====∑2(0)(0|)()1123359515i P Y P Y X i P X i =======⨯+⨯=∑2(1)(1|)()21532135953535i P Y P Y X i P X i =======⨯+⨯+⨯=∑2(2)(2|)()23110953515i P Y P Y X i P X i =======+⨯+⨯=∑故Y 的分布律为:012131()555YP Y ⎛⎫ ⎪ ⎪⎪⎝⎭1.4 设A 与B 是概率空间(),,P Ω上的事件,且()01P B <<,试证明:A 与B独立的充要条件为:()()|=|P A B P A B 。
应用随机过程试题及答案一.概念简答题(每题5 分,共40 分)1. 写出卡尔曼滤波的算法公式2. 写出ARMA(p,q)模型的定义3. 简述Poisson 过程的随机分流定理4. 简述Markov 链与Markov 性质的概念5. 简述Markov 状态分解定理6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分)1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) ,2 k kk X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X是相互独立的。
试求1 Y 与2 Y 的概率分布及其联合概率分布。
2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y}4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。
试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t,协方差1 2 ( , ) X C t t。
B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为P= 0 ,求其相应的极限分布。
6.设I={1,2,3,4},其一步转移概率矩阵P= 1 1 0 0 2 2 10 0 0 1 ,试画出状态传递图,对其状态进行分类,确定哪些状态是常返态,并确定其周期。
B 卷(共9 页)第5 页河北科技大学2010——2011 学年第一学期《应用随机过程》试卷(B)答案一.概念简答题(每题5 分,共40 分)1. 写出卡尔曼滤波的算法公式答:X(k|k-1)=AX(k-1|k-1)+BU(k) (1)P(k|k-1)=AP(k-1|k-1)A’+Q…(2) X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))…(3) Kg(k)=P(k|k-1)H’/(HP(k|k-1)H’+R)…(4) P(k|k)=(I-Kg(k)H) P(k|k-1)…(5) 2.写出ARMA(p,q)模型的定义答: 自回归移动平均ARMA(p,q) 模型为1 1 2 2 1 1 2 2 t tt p t p t t q t q X XXX ?其中,p 和q 是模型的自回归阶数和移动平均阶数;, ? ? 是不为0 的待定系数;t ?是独立的误差项;t X 是平稳、正态、零均值的时间序列。
习题1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞且1221(),()33P P ωω==,分别求:(1)一维分布函数(0,)F x 和(,)4F x π;(2)二维分布函数(0,;,)4F x y π;(3)均值函数()X m t ; (4)协方差函数(,)X C s t .2. 利用抛掷一枚硬币一次的随机试验,定义随机过程12cos ()2t X t πωω⎧=⎨⎩出现正面出现反面且“出现正面”与“出现反面”的概率相等,各为12,求 1)画出{()}X t 的样本函数2){()}X t 的一维概率分布,1(;)2F x 和(1;)F x3){()}X t 的二维概率分布121(,1;,)2F x x3. 通过连续重复抛掷一枚硬币确定随机过程{()}X tcos ()2t t X t t π⎧=⎨⎩在时刻抛掷硬币出现正面在时刻抛掷硬币出现反面求:(1)1(,),(1,)2F x F x ; (2)121(,1;,)2F x x4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ.(1)分别求3,,,424t ππππωωωω=时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程:()X t t ξη=+ ()t -∞<<+∞其中r. v. (,)ξη的协方差矩阵为1334C ⎛⎫= ⎪⎝⎭,求随机过程{(),}X t t -∞<<+∞的协方差函数.6. 考虑随机游动{(),0,1,2,}Y n n =1()(),1,2,,(0)0nk Y n X k n Y ====∑其中()(0,1,2,)X k k =是相互独立同服从2(0,)N σ的正态随机变量. 试求: (1)()Y n 的概率密度;(2)((),())Y n Y m 的联合概率密度(m n ≥).7. 给定随机过程{(),}X t t T ∈,定义另一个随机过程:1,(),()0,().X t x Y t X t x <⎧=⎨≥⎩试证:{(),}Y t t T ∈的均值和自相关函数分别为{(),}X t t T ∈的一维分布函数和二维分布函数. 8. 设随机过程()cos()β=+ΘX t A t其中β为正常数,r. v. ~(0,1),~(0,2)A N U πΘ二者相互独立. 试求随机过程{(),}X t t -∞<<+∞的均值函数()m t 、方差函数()D t 和相关函数(,)R s t .9. 已知随机变量,ξη相互独立都服从正态分布2(0,)N σ,分别设:(1)()X t t ξη=+; (2)()cos X t t ξ=,令01max ()t Z X t ≤≤=,分别两种情形求()E Z .10. 一个通讯系统,以每T 秒为一周期输出一个幅度为A 的信号,A 为常数,信号输出时间~(0,)i X U T ,且持续到周期结束,设每个信号的输出时间i X 相互独立,设()Y t 为t 时刻接收到的信号幅度,求{()}Y t 的一维概率分布。
湖南科技学院二○一 年 学期期末考试数学与应用数学 专业 年级 应用随机过程试题考试类型:闭卷 试卷类型:C 卷 考试时量: 120分钟F一 、填空题(每空4分共24分)1、过程12{()cos sin ;0}X t Z at Z at t =+≥,其中1Z ,2Z 独立同分布,其共同分布为2(0,)N σ,a 为常数,则均值函数(())E X t = ,方差函数(())Var X t = ,协方差函数(,)s t γ= .2、计数过程{}(),0N t t ≥为参数为2的泊松过程,则{}(20)(18)2P N N -== ,((3))=E N .3、()1()N t i i S t Y ==∑是复合Poisson 过程,其中{}(),0N t t ≥为参数为3的泊松过程,1Y 服从正态分布(1,4)N ,则[(5)]E S = .二 、判断题(小题2分,共16分)1、 设{}(),0N t t ≥是强度为λ的Poisson 过程,n T 为第n 次泊松事件发生的等待时间,则{}{}()n N t n T t <⇔>. ( ) 2、{}(),0N t t ≥是更新过程,则对0t≤<+∞,有()EN t <+∞. ( )3、Poisson 过程具有独立增量性. ( )4、{}n Z 是马尔可夫链,则202(,)()n n n n P X j X i X k P X j X i ++======.题 号 一二三四五总分 统分人得 分 阅卷人复查人( )5、Brown 运动的样本路径()B t ,0t T ≤≤具有连续性. ( )6、{}n Z 是有限状态的马尔可夫链,其一步转移矩阵为P ,则其n 步转移矩阵()n n PP =.( )7、Brown 运动不是平稳增量过程. ( ) 8、{}(),0N t t ≥是Poisson 过程,n T 为第n 次泊松事件发生的等待时间,则当t →+∞时,()1()N t r t T t +=-与()()N t s t t T =-有相同的极限分布. ( )三 、计算题(共46分)1、(12分)设{}(),0N t t ≥是强度为3的Poisson 过程, 求(1){}(1)2,(3)4,(5)6P N N N ===; (2){}(5)6(3)4P N N ==;(3)求协方差函数(),s t γ,写出推导过程.2、(10分)设{}(),0N t t ≥是更新过程,第k 次更新与第1k -次更新的时间间隔k X 服从分布2(2)3k P X ==,1(3)3k P X ==.计算((1))P N n =,((2))P N n =,((3))P N n =,0,1,2,n =.3、(12分)设1{(),0}N t t≥,2{(),0}N t t ≥是强度分别为1λ,2λ 且相互独立的Poisson 过程,记k T 为1{(),0}N t t≥的第k 次事件发生的等待时间,1V 为2{(),0}N t t ≥第1次事件发生的等待时间.求1()k P T V <.4、(12分){,1,2,}n X n =为独立同分布的随机变量序列,具有如下分布1(1)(1)2n n P X P X ===-=1,2,n =令1nni i S X ==∑.(1)求随机过程{,1,2,}n S n =的均值函数和自相关函数;(2)判断{,1,2,}n S n =是否为宽平稳过程.四 、证明题(共14分)1、设{}(),0i N t t ≥,1,2,,in =是n 个相互独立的Poisson 过程,参数分别为i λ,1,2,,i n =,试证{}1()=(),0ni i N t N t t =≥∑是Poisson 过程.。
随机过程试题及答案一、选择题1. 关于随机过程的描述,错误的是:A. 随机过程是一种由随机变量组成的集合B. 随机过程是一种在时间上有序排列的随机变量序列C. 随机过程可以是离散的,也可以是连续的D. 随机过程是一种确定性的数学模型答案:D2. 以下哪种过程不是随机过程?A. 白噪声过程B. 马尔可夫过程C. 布朗运动D. 正态分布答案:D3. 随机过程的一阶矩描述的是:A. 均值B. 方差C. 偏度D. 峰度答案:A4. 当随机过程的各个时间点上的随机变量是独立同分布时,该随机过程为:A. 马尔可夫过程B. 马尔可夫链C. 平稳随机过程D. 白噪声过程答案:B5. 下列关于马尔可夫过程的说法中,正确的是:A. 当前状态只与上一状态有关,与历史状态无关B. 当前状态只与历史状态有关,与上一状态无关C. 当前状态只与上一状态和历史状态有关D. 当前状态与所有历史状态均无关答案:A二、填空题1. 随机过程中,时域函数常用的表示方法是__________。
答案:概率分布函数或概率密度函数2. 马尔可夫过程的状态转移概率只与__________相关。
答案:当前状态和下一状态3. 随机过程的时间参数称为__________。
答案:时刻或时间点4. 白噪声过程的自相关函数是一个__________函数。
答案:冲激函数5. 平稳随机过程的自相关函数只与__________相关。
答案:时间差三、解答题1. 请简要解释随机过程的概念。
随机过程是一种由随机变量组成的集合,表示一个在时间上有序排列的随机变量序列。
它可以是离散的,也可以是连续的。
随机过程的描述通常包括概率分布函数或概率密度函数,以及相关的统计特征,如均值、方差等。
随机过程可以用于对随机现象进行建模和分析。
2. 请简要说明马尔可夫过程的特点及应用。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即当前状态只与上一状态有关,与历史状态无关。
其状态转移概率只与当前状态和下一状态相关。