西南大学《数学建模》2017大作业
- 格式:doc
- 大小:417.00 KB
- 文档页数:3
2017年数学建模d题讲解
2017年的数学建模D题是一个关于城市停车管理的问题。
该题目要求参赛者设计一个数学模型来优化城市停车管理系统,以减少交通拥堵和提高停车效率。
具体来说,题目包括以下几个方面:
1. 问题背景,介绍了城市停车管理系统的现状和存在的问题,例如停车位不足、交通拥堵等。
2. 问题提出,明确了需要解决的问题,比如如何合理分配停车资源、如何减少车辆在城市中的空转时间等。
3. 数据分析,提供了相关的停车数据,包括停车位数量、停车需求量、车辆流量等,要求参赛者对这些数据进行分析。
4. 模型建立,要求参赛者建立数学模型,可以是基于排队论、优化算法、仿真模拟等方法,来解决停车管理的问题。
5. 模型求解,要求参赛者利用建立的数学模型对现实问题进行求解,并给出相应的优化方案。
6. 结果分析,参赛者需要对模型的结果进行分析,评价模型的有效性和实用性,讨论模型的局限性和改进空间。
总的来说,2017年数学建模D题是一个涉及实际城市交通管理问题的综合性题目,要求参赛者结合数学建模理论和实际数据进行综合分析和求解。
针对这个题目,参赛者需要从数学建模的角度出发,结合实际情况,从停车资源的合理分配、车辆流量的优化、交通拥堵的缓解等多个角度进行全面的分析和求解。
希望这个回答能够帮助你更好地理解2017年数学建模D题的内容。
“拍照赚钱”定价分析随着现代互联网技术发展“拍照赚钱”已经成为时下一种热门的互联网自助模式,如何对任务进行定价的合理性显得尤为重要,本文针对题目重所给的信息数据进行归纳设计和总结,研究其定价规律,并建立模型。
针对问题一,本文对附件数据进行分析,将会员点在地图中标出,发现任务点集中在佛山,广东,深圳,东莞四个城市的会员进行聚类分析。
对数据进行线性回归分析,结果表明,任务的定价与周围用户的限额总量,周围用户的平均距离都与会员点的分布有很重要的关系。
最后通过比较未完成任务与已完成任务的相关矩阵得出距离对任务的完成的影响是显著的。
针对问题二,设计新的任务定价方案是一个优化问题,以最小成本完成最大化,将附件中数据在地图中展示,我们综合考虑任务情况与会员分布的互相影响,即任务对于周围的会员存在着吸附力ci = f(s,d),它与任务价格正相关,与距离任务距离负相关问题重述1.1 问题背景随着互联网+的发展,许多产业逐渐发生偏移,传统工作方式在互联网的渗透下,不再是自己传统的工作模式,工作人员不再限制,工作地点不再固定在一个位置,增加了人群就业,提高了工作效率。
国家也积极发展众包,即汇集众力增加就业,借助互联网发展,将特定的工作不再局限于一部分人,而是面向自愿参与大众人群,最大限度利用大众的力量,提高某些传统工作的效率,降低成本的投入。
‘‘拍照赚钱’‘便是面向大众的一种众包方式,最大限度的利用人力提高工作效率,用户下载APP,注册成为app的会员,然后在APP上领取拍照任务,完成在APP领取的任务,赚取佣金。
拍照赚钱的这一种方式,对于市场调查等一类工作有很大的帮助,减少了调查的时间,缩短了调查的周期。
可以在很短时间内完成一项调查的工作,提高任务完成的效率。
而且可以保证数据的真实性。
但是,app中的任务定价是核心要素。
定价的合理是否会影响任务的完成情况。
二丶问题分析2.1 问题一问题一需要分析出附件一中未完成任务的原因,问题一中我们对于未被完成的任务先进行三方面的分析。
2017数学建模国赛题目(原创版)目录一、2017 数学建模国赛题目概述二、题目 A:空中交通管制1.题目背景及要求2.题目分析3.建模思路与方法三、题目 B:城市交通信号控制1.题目背景及要求2.题目分析3.建模思路与方法四、题目 C:新能源汽车充电设施规划1.题目背景及要求2.题目分析3.建模思路与方法五、总结正文一、2017 数学建模国赛题目概述2017 年全国大学生数学建模竞赛的题目分为 A、B、C 三个题目,分别涉及空中交通管制、城市交通信号控制和新能源汽车充电设施规划三个领域。
这些题目旨在考验参赛选手的数学建模能力、创新思维和团队协作精神,以及运用数学方法解决实际问题的能力。
二、题目 A:空中交通管制1.题目背景及要求题目 A 的背景是在未来,无人机和飞行汽车等空中交通工具将逐渐普及,如何有效地对空中交通进行管制以确保安全和效率。
题目要求参赛选手建立一个空中交通管制系统,通过优化算法和数学模型对空中交通进行实时监控和调度。
2.题目分析此题需要参赛选手充分了解无人机和飞行汽车的运行特点,以及空中交通管制的基本原理。
此外,需要运用运筹学、优化方法等相关知识,建立一个能够实现空中交通实时监控和调度的数学模型。
3.建模思路与方法首先,需要对无人机和飞行汽车的飞行数据进行收集和整理,建立一个飞行数据库。
其次,根据空中交通管制的基本原理,建立一个空中交通管制的数学模型。
最后,运用优化算法对模型进行求解,实现空中交通的实时监控和调度。
三、题目 B:城市交通信号控制1.题目背景及要求题目 B 的背景是城市交通信号控制问题,要求参赛选手设计一个信号控制系统,使得城市道路交通更加顺畅、安全和环保。
2.题目分析此题需要参赛选手充分了解城市交通信号控制的基本原理和方法,以及道路交通流的运行特点。
此外,需要运用运筹学、优化方法等相关知识,建立一个能够实现城市交通信号控制的数学模型。
3.建模思路与方法首先,需要对城市道路交通流的数据进行收集和整理,建立一个交通流数据库。
2017数学建模国赛题目
摘要:
一、2017 数学建模国赛题目概述
二、题目具体内容
三、题目解析与解题思路
四、结论
正文:
【一、2017 数学建模国赛题目概述】
2017 年数学建模国家竞赛的题目是“XXX”,要求参赛选手在规定的时间内,根据题目要求完成一篇论文,包括模型的假设、建立、求解和计算机实现以及结果的分析和检验。
【二、题目具体内容】
题目的具体内容无法提供,因为每年的数学建模国家竞赛的题目都是保密的,直到比赛开始时才公布。
但是,一般来说,数学建模题目都是围绕现实生活或科学研究中的热点问题,需要参赛选手运用自己所学的数学、物理、计算机等多方面的知识,进行综合分析和解决。
【三、题目解析与解题思路】
对于这类题目,首先需要做的是认真阅读题目,理解题目的要求和背景,然后根据题目的要求,建立数学模型,也就是用数学的语言和工具,对题目中的问题进行描述和分析。
在建立模型的过程中,需要灵活运用所学的数学知识,如微积分、线性代数、概率论等,同时也需要考虑模型的实际意义和可行性。
建立好模型后,就需要进行求解和计算机实现,这一步需要用到编程语言,如C、C++、Python 等,将模型转化为计算机可以理解和执行的代码。
最后,需要对求解结果进行分析和检验,看看是否符合实际情况,是否符合题目的要求。
【四、结论】
总的来说,2017 年的数学建模国家竞赛题目,无论是题目内容还是解题思路,都体现了数学建模竞赛的特点,即紧密联系实际,注重创新思维,强调团队合作。
2017年数学建模国赛c题数据2017年数学建模国赛C题是关于城市道路网络设计的问题。
这个问题主要是给定一个城市的起始和终止地点,要求设计一套道路网络,使得从起点到终点的距离最短,并且能够满足一定的交通流量。
首先,我们需要收集一些基本的数据,包括城市的地理信息,道路限速信息,以及人口密度等。
这些数据可以通过地理信息系统和人口统计数据来获取。
接下来,我们需要选择一些关键的地点作为路口,并设计一套合适的道路网络连接这些路口。
这个选择过程可以通过最小生成树算法来解决。
最小生成树算法是一种基于图论的算法,可以找到连接所有点的最短路径。
通过这种算法,我们可以确定需要建设的道路的位置和长度。
然后,我们需要考虑道路的限速问题。
根据交通流量和道路的特点,我们可以确定每条道路的限速。
这样可以保证车辆在道路上的行驶速度不会过快或过慢,从而提高道路的通行效率。
此外,我们还需要考虑交通流量的问题。
根据人口密度和道路的容量,我们可以估算出每条道路的交通流量。
然后,我们可以根据交通流量的大小,合理地调整道路的宽度和车道数目,以保证车辆的通行顺畅并解决交通拥堵问题。
最后,我们需要评估设计方案的效果。
通过模拟仿真和实地观察,我们可以评估设计方案的实际效果。
如果存在问题,我们可以根据评估结果进行优化调整,以进一步提高道路网络的效率和通行能力。
总的来说,城市道路网络设计是一个复杂的问题,需要综合考虑地理环境、交通流量和道路限速等多个因素。
通过合理的数据收集和分析,以及适当的建模和算法选择,我们可以设计出一套满足要求的道路网络,从而提高城市交通的便利性和效率。
单项选择题1、经济增长模型中, 经济(生产率)增长的条件是( )..整数模型.静态模型.动态模型.线性模型2、.上述A.上述C.上述D.上述B3、层次分析法中, 成对比较尺度为3, 表示为( )..强.稍强.稍弱.弱4、天气预报的评价中, 计数模型里若明天有雨概率<50%, 则( )..预报有雨.预报无效.不予统计.预报无雨5、. F. 上述A.上述B.上述C.上述D6、交通流与道路通行能力中, 车流密度较大时适用( )..整数模型.指数模型.线性模型.对数模型7、奶制品的生产与销售中, 用LINGO求解,输出丰富,利用影子价格和( ) 可对结果做进一步研究..灵敏性分析.价值系数范围.变量取值.敏感性分析8、动态优化问题指最优解是( )..数.实数.函数.整数9、软件开发人员的薪金中, ( ),有助于得到更好的结果..保留全部数据.剔除异常数据.保留异常数据.剔除部分数据10、如何施救药物中毒中, 口服活性炭来吸附药物,可使药物的排除率增加到原来(人体自身)的( ) 倍. . A. 1.5. 3. 2.5. 211、牙膏的销售量中, 建立统计回归模型时, 通过增添( ), 二次项等进行模型改进.. C. 一次项.交互项.回归项.统计项12、模型假设在合理与简化之间作出( )..取舍.选择.优化.折中13、回归模型是通过( ) 讨论如何选择不同类型的模型..变量.数据.约束.实例14、实物交换中, 同一族无差别曲线( )..没有交点.共有1个交点.每两条有2个交点.每两条有1个交点15、求解静态优化模型一般用( )..积分法.单纯形法.图解法.微分法16、.上述C.上述D.上述A.上述B17、数学建模的一般步骤包括模型准备, ( ), 模型构成, 模型检验, 模型分析, 模型求解, 模型应用..模型约束.模型假设.模型变量.模型符号18、污水均流池的设计中, 假设认为设计均流池最大容量时需留有( ) 的裕量.. 20%. 15%. 25%. 30%19、动态模型描述对象特征随( ) 的演变过程..时间或空间.时间或地点.时间.地点20、商人们怎样安全过河中, 随从们密约, 在河的任一岸, 一旦随从的人数比商人( ), 就杀人越货.. D. 多.相等.少.多或相等21、椅子在不平的地面上放稳, 假设认为地面高度( ).. E. 慢慢变化.小范围变化.连续变化.基本不变22、下列哪种模型是实物模型..水箱中的舰艇.火箭模型.分子结构图.电路图23、多元函数条件极值, 最优解在可行域的( ) 上取得..边界.顶点.内部.原点24、层次分析模型属于( ) 模型..离散.整数.非线性.线性25、传染病模型描述的是传染病的( ) 过程..增长.传播.变化.减少26、层次分析法对于不一致的成对比较阵, 建议用对应于( )的特征向量作为权向量..最小特征根.第一特征根.第二特征根.最大特征根27、机理分析和测试分析二者结合是用机理分析建立( ), 用测试分析确定模型参数..模型约束.模型内容.模型框架.模型结构28、双层玻璃窗的功效中, 双层与单层窗传导的热量之比为( ).. B. 2/(s+2). 1/(s+1). 1/(s+2). 2/(s+1)29、.提高阈值.提高卫生水平.群体免疫.提高医疗水平判断题30、实物交换中, 甲乙双方最终的交换方案是交换路径上的任一点. . A.√. B.×31、牙膏的销售量中, 价格差较小时更需要靠广告来吸引顾客的眼球.. A.√. B.×32、模型的基本特征是由构造模型的目的决定的.. A.√. B.×33、线性规划模型的最优解一定在凸多边形的某个顶点取得.. A.√. B.×34、传染病模型的模型3(SIS模型)中, 传染病有免疫性.. A.√. B.×35、地图、电路图、照片都是符号模型.. A.√. B.×36、软件开发人员的薪金中, 0-1变量的个数可比定性因素的水平少1.. A.√. B.×37、原型和直观模型是一对对偶体。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 2017年全国大学生数学建模A题1 C CT T 系统参数标定及成像摘要二十世纪中期,CT 理论的提出给科学界带来了重大影响,而伴随着科技的发展与进步,作为处理断层成像问题的 CT 系统也越来越完善。
本文通过研究典型的二维平行束CT 成像系统,标定出了具体的参数信息,并对未知样品进行了成像处理。
针对问题一,首先对附件 2 中的数据进行筛选,发现部分数据只与小圆有关,因此利用 Excel 对此部分数据进行填色处理,并且得出每列填色数据所占的表格数都为 29,继而依据圆的特性,可得出探测器单元之间的距离。
然后,根据椭圆长轴和短轴旋转 90时的数据组的个数来查找中间的旋转次数,再计算出每次旋转的角度,并且据此找到终止位置,从而可得起始位置。
接下来,应用 Matlab 对附件 2 中的数据进行灰度处理整合,作出相关的投影分布图像,明显可看出灰度处理过的图像中圆的图像为正弦线。
根据投影图找到椭圆中心对应于探测器的位置,运用 Matlab 程序运算得到此发射-接收装置的旋转中心。
最终得到CT系统旋转中心在正方形托盘中的位置为(-9.2734,5.5363);探测器单元之间的距离为 0.2857mm;起始位置与水平方向 x 轴方向呈 -61或 119,且逆时针每次旋转 1,共旋转1 / 22了 180 次。
针对问题二,通过 Matlab 整合附件 3 的数据得出未知介质的灰度图像,再与附件 2中的数据得出来的图像进行比较,初步判断未知介质的几何特征,然后根据傅里叶切片定理以及滤波反投影 CT 图像重建的方法,利用 Matlab 软件中的滤波反投影函数进一步精确地求出该介质的位置信息以及几何形状信息。
2017数学建模国赛赛题一、问题背景与分析1.1 赛题背景2017年数学建模国赛赛题旨在考察参赛选手对于数学建模的理解和应用能力。
题目涵盖多个领域的知识,要求选手在给定的条件下,运用数学方法进行分析和建模,并给出切实可行的解决方案。
1.2 问题分析本次赛题涉及到XXX方面的问题(根据赛题实际情况,替换XXX 为具体领域)。
二、问题描述2.1 赛题背景描述(根据赛题实际情况,描述涉及领域的基本背景)2.2 问题陈述(根据赛题实际情况,描述具体问题,并给出条件和要求)三、模型建立与求解3.1 假设与符号定义(根据赛题实际情况,对问题进行假设,说明符号定义)3.2 模型建立(根据赛题实际情况,运用数学方法建立相应模型,并给出相应方程式或算法)3.3 模型求解(根据赛题实际情况,运用适当的数值计算方法对模型进行求解,并给出计算结果)四、结果分析与讨论4.1 结果展示(根据赛题实际情况,给出模型求解的结果,以表格、图示等方式展示)4.2 结果分析(根据赛题实际情况,对结果进行分析和解释,讨论结果的合理性和可行性)五、模型的优缺点与改进5.1 模型的优点(根据赛题实际情况,总结模型的优点,包括准确性、可靠性、适用性等方面)5.2 模型的缺点(根据赛题实际情况,指出模型的不足之处,可能存在的局限性或假设的不合理性)5.3 模型的改进(根据赛题实际情况,提出改进模型的方法或思路)六、总结6.1 主要内容回顾(对文章中的重要内容进行回顾,概括模型建立与求解的过程)6.2 结论(根据赛题实际情况,给出问题的解决方案,并阐述解决方案的有效性和可行性)七、参考文献(如有参考文献,列出相关文献的信息)本文根据2017数学建模国赛赛题,按照论文的格式进行了文章的撰写。
通过分析问题背景与条件、建立数学模型、求解模型,最终得出了切实可行的解决方案。
在模型建立与求解的过程中,我们运用了适当的数学方法和计算算法,对结果进行了分析和讨论,并提出了模型的优缺点和改进思路。
手写数字的稀疏特征提取
手写数字识别主要研究如何利用计算机自动识别由阿拉伯数字组成的数据符号,其在邮政编码、银行票据、统计报表识别等领域用途广泛。
由于手写数字的不规范性和多样性,加上为了识别精确而对数字图像进行高点阵扫描,从而使手写数字识别所要处理的信息不仅量大,而且复杂。
如何对手写数据进行特征提取,也就是找出其重要位点,是进行手写数字识别的核心。
任务1:针对附件所给出的0-9手写数字集,分别针对每一数字集合,找出其稀疏位点,同时能对其识别准确率进行验证。
(即:用不同于该数字的其它集合来判断是否能分类正确)任务2:研究由2-3个不同手写数据集所构成的集合,获取此时的重要位点,分析这些位点与任务1中位点是否有显著差异。
任务3:给出0-9手写数字集的特征提取和识别的基本方法。
2017年数学建模题目
2017年的数学建模题目可能会涉及到很多领域和知识点,这取决于具体的
赛事和组织者。
但我可以为你提供一些可能的题目,以供参考:
1. 城市交通流量预测:根据历史数据和实时数据,预测城市交通流量,为交通规划和调度提供决策支持。
2. 气候变化对农业的影响:分析气候变化对农作物生长和产量的影响,提出应对策略和措施。
3. 机器学习在医疗诊断中的应用:利用机器学习算法对医学影像数据进行分类和诊断,提高医疗效率和准确性。
4. 电商推荐系统:根据用户的购买记录和浏览行为,为用户推荐相关商品或服务,提高用户满意度和转化率。
5. 股票价格预测:根据历史股票数据和宏观经济指标,预测股票价格的走势,为投资者提供参考。
6. 物流优化:优化物流配送路线和车辆调度,降低运输成本和提高效率。
7. 能源消耗与碳排放:分析能源消耗和碳排放的关系,提出节能减排的方案和措施。
8. 社交网络分析:分析社交网络中的用户行为和关系,挖掘潜在的用户群体和市场机会。
9. 机器翻译:利用自然语言处理技术实现不同语言之间的自动翻译,提高跨语言交流的效率和准确性。
10. 图像识别:利用计算机视觉技术识别图像中的物体和特征,应用于安全监控、智能交通等领域。
这些题目只是可能的示例,具体的题目还需要根据赛事的要求和背景来定。
西南大学网络与继续教育学院课程考试答题卷学号:1517580663001 姓名:任文莉 2016 年6 月课程名称【编号】:数学建模【0349 】(横线以下为答题区)答题不需复制题目,写明题目编号,按题目顺序答题一、名词解释1、数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。
2、原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。
3、机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。
4、概率模型:如何用随机变量和概率分布描述随机因素的影响,建立比较简单的随机模型叫概率模型。
5、二、填空题1、描述模型、预报模型、优化模型、决策模型、控制模型2、X(t)=rX(1-X/N)3、随机变量、概率分布4、19.44 万元5、19 天,2090 件6、想象和逻辑思维三、问答题1、答(1)在一般工程技术领域,数学建模仍然大有用武之地。
(2)在高新技术领域,数学建模几乎是必不可少的工具。
(3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。
2、答:确定性模型和随机性模型、静态模型和动态模型、线性模型和非线性模型、离散模型和连续模型。
3、答:(1)列出约束条件及目标函数(2)画出约束条件所表示的可行域(3)在可行域内求目标函数的最优解及最优值。
4、答:随机存储策略是反映存储策略(库存数量和进货数量)与存储费用之间关系的数学模型。
四、分析题1、答:题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个:(1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等;(2)学生:是否连续上课,专业课课时与共同课是否冲突,选修人数等;(3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件;2、答:(1)因为可行域的右上方无界,故将出现目标函数趋于无穷大的情形,结果是问题具有无界解;(2)将最优解代入约束条件可知第二个约束条件为严格不等式,而其他为严格等式。
“拍照赚钱”定价分析随着现代互联网技术发展“拍照赚钱”已经成为时下一种热门的互联网自助模式,如何对任务进行定价的合理性显得尤为重要,本文针对题目重所给的信息数据进行归纳设计和总结,研究其定价规律,并建立模型。
针对问题一,本文对附件数据进行分析,将会员点在地图中标出,发现任务点集中在佛山,广东,深圳,东莞四个城市的会员进行聚类分析。
对数据进行线性回归分析,结果表明,任务的定价与周围用户的限额总量,周围用户的平均距离都与会员点的分布有很重要的关系。
最后通过比较未完成任务与已完成任务的相关矩阵得出距离对任务的完成的影响是显著的。
针对问题二,设计新的任务定价方案是一个优化问题,以最小成本完成最大化,将附件中数据在地图中展示,我们综合考虑任务情况与会员分布的互相影响,即任务对于周围的会员存在着吸附力ci = f(s,d),它与任务价格正相关,与距离任务距离负相关问题重述1.1 问题背景随着互联网+的发展,许多产业逐渐发生偏移,传统工作方式在互联网的渗透下,不再是自己传统的工作模式,工作人员不再限制,工作地点不再固定在一个位置,增加了人群就业,提高了工作效率。
国家也积极发展众包,即汇集众力增加就业,借助互联网发展,将特定的工作不再局限于一部分人,而是面向自愿参与大众人群,最大限度利用大众的力量,提高某些传统工作的效率,降低成本的投入。
‘‘拍照赚钱’‘便是面向大众的一种众包方式,最大限度的利用人力提高工作效率,用户下载APP,注册成为app的会员,然后在APP上领取拍照任务,完成在APP领取的任务,赚取佣金。
拍照赚钱的这一种方式,对于市场调查等一类工作有很大的帮助,减少了调查的时间,缩短了调查的周期。
可以在很短时间内完成一项调查的工作,提高任务完成的效率。
而且可以保证数据的真实性。
但是,app中的任务定价是核心要素。
定价的合理是否会影响任务的完成情况。
二丶问题分析2.1 问题一问题一需要分析出附件一中未完成任务的原因,问题一中我们对于未被完成的任务先进行三方面的分析。
现代商贸工业2017年数学建模B题问题一与问题二解析—“拍照赚钱”的任务定价模型张姣丽杨荣庆钟芸(西南大学商贸学院,重庆402460)摘要:拍照赚钱APP”是基于移动互联网下的一种信息共享平台,其成功与否与任务发布者的出价密切相关。
基于此,主要研究其的任务定价问题,采用多元线性回归模型,借助SPSS软件处理数据,并通过分析任务所在的经度、纬度、任务完成情况三个影响因素对任务定价的影响。
此外,借助插值和拟合模型求出原方案的拟合函数,利用MAT-LAB计算出定价的理想值,并设计新的定价方案,利用 AHP和原方案进行比较,得出新方案优于原方案。
关键词:任务定价;多元线性回归模型;插值与拟合模型;AHP中图分类号:G4 文献标识码:A d oi:10. 19311/k i.1672-3198. 2018. 05. 085“拍照赚钱”是一种基于移动互联网络的自助式劳务众包平台,其成功与否与任务发布者的出价密切相关,因而任务定价成为该平台的运行核心。
根据数据信息剔除附件一的异常数据,筛选出有效信息。
1问题一的模型建立与求解1.1确定影响因子分析附件一的数据,任务定价作为因变量,其它因 素作为影响因子,即:(1) 任务GPS纬度。
(2) 任务GPS经度。
(3) 任务执行情况。
利用M A T L A B得出图1。
图1任务定价与任务GPS纬度,任务GPS经度3D散点图1.2模型的建立与求解多元线性回归分析一般模型为:水平。
3.2.2 组建教师微课制作团队,构建会计微课资源体系为实现微课教学的教学实效性,就需要积极组建教师微课制作团队,构建会计微课资源体系。
首先对教师团队进行合理分工,然后讨论确定每门课微课选题,主要从章节重难点内容进行微课制作,通过合理、精确选题,更好地解决传统教学中不能解决的教学问题;构建各种微课资源群,学生可根据自己的实际学习情况,有侧重点地进行巩固学习;其次将制作的微课运用到会计教学中,做好精品课程的教学设计,培养一批勤于实践探索、善于反思总结、乐于奉献的科研型骨干教师,从而提高整体教学水平,推进学校的教学改革。
2017年高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
C题颜色与物质浓度辨识
比色法是目前常用的一种检测物质浓度的方法,即把待测物质制备成溶液后滴在特定的白色试纸表面,等其充分反应以后获得一张有颜色的试纸,再把该颜色试纸与一个标准比色卡进行对比,就可以确定待测物质的浓度档位了。
由于每个人对颜色的敏感差异和观测误差,使得这一方法在精度上受到很大影响。
随着照相技术和颜色分辨率的提高,希望建立颜色读数和物质浓度的数量关系,即只要输入照片中的颜色读数就能够获得待测物质的浓度。
试根据附件所提供的有关颜色读数和物质浓度数据完成下列问题:
1.附件Data1.xls中分别给出了5种物质在不同浓度下的颜色读数,讨论
从这5组数据中能否确定颜色读数和物质浓度之间的关系,并给出一些准则来评价这5组数据的优劣。
2.对附件Data2.xls中的数据,建立颜色读数和物质浓度的数学模型,并
给出模型的误差分析。
3.探讨数据量和颜色维度对模型的影响。
2017数学建模优秀论文d题方面的数学建模就是学习如何把物理的复杂的世界用适当的数学语言描述出来,进而用数学的手段对模型加以分析,然后再用所得结论回归现实,指导实践。
下文是店铺为大家搜集整理的关于2017数学建模优秀论文的内容,欢迎大家阅读参考!2017数学建模优秀论文篇1浅谈大学生数学建模的意义【摘要】本文重点分析了数学建模对当前数学教育教学改革的现实意义,探讨了数学建模对学生应用数学能力的培养,阐述了计算机在数学建模竞赛中的作用和地位,最后介绍了数学建模对数学教学改革的启示意义。
【关键词】数学建模;综合素质;教学改革长期以来,我国的数学教学中一直普遍存在着重结论而轻过程、重形式而轻内容、重解法而轻应用等弊端,不注重学生数学能力和素质的培养;过分强调对定义、定理、法则、公式等知识的灌输与讲授,不注重这些知识的应用,割断了理论与实际的联系,造成学与用的严重脱节,致使在我们的数学教育体制下培养出来的学生的能力结构都形成了一种严重的病态,主要表现在:数学理论知识掌握得还可以,但应用知识的能力很差,不能学以致用,缺乏创造力和解决实际问题的能力,这些问题使我们的学生在走向工作岗位时上手速度慢,面对新的数学问题时束手无策,不能将所学的知识灵活运用到实际中去。
显然,这种教育体制和理念与现代教育理念是背道而驰的,是必须抛弃的。
开展数学建模教学或数学建模竞赛,能够培养学生各方面的综合能力,提高学生的综合素质,对于当前数学教育教学改革有着极为重要的现实意义。
1 数学建模能够丰富和优化学生的知识结构,开拓学生的视野数学建模所涉及到的许多问题都超出了学生所学的专业,例如“基金的最佳适用”、“会议筹备”、“地震搜索”等许多建模问题,分别属于不同的学科与专业,为了解决这些问题,学生必须查阅和学习与该问题相关的专业书籍和科技资料,了解这些专业的相关知识,从而软化或削弱了目前教育中僵死的专业界限,使学生掌握宽广而扎实的基础知识,使他们不断拓宽分析问题、解决问题的思路,朝着复合型人才和具备全面综合素质人才的方向发展。