初一平面图形的认识2知识点
- 格式:docx
- 大小:11.44 KB
- 文档页数:3
目录第七章平面图形的认识〔二〕1第八章幂的运算2第九章整式的乘法与因式分解3第十章二元一次方程组4第十一章一元一次不等式4第十二章证明9第七章平面图形的认识〔二〕一、知识点:1、“三线八角〞①如何由线找角:一看线,二看型。
同位角是“F〞型;错角是“Z〞型;同旁角是“U〞型。
②如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等错角相等两直线平行两直线平行错角相等同旁角互补两直线平行两直线平行同旁角互补4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行〔或在同一直线上〕并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
假设三角形的三边分别为a 、b 、c ,那么 b a c b a +<<-6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的角和:三角形的3个角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个角的和;三角形的一个外角大于与它不相邻的任意一个角。
8、多边形的角和:n 边形的角和等于〔n-2〕•180°;任意多边形的外角和等于360°。
第八章 幂的运算幂〔power 〕指乘方运算的结果。
a n 指将a 自乘n 次(n 个a 相乘〕。
把a n 看作乘方的结果,叫做a 的n 次幂。
对于任意底数a,b ,当m,n为正整数时,有a m•a n =a m+n (同底数幂相乘,底数不变,指数相加)a m÷a n =a m-n (同底数幂相除,底数不变,指数相减)(a m)n =a mn (幂的乘方,底数不变,指数相乘)(ab)n =a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a 0=1(a ≠0) (任何不等于0的数的0次幂等于1)a -n =1/a n (a ≠0) (任何不等于0 的数的-n 次幂等于这个数的n 次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n 的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念求n 个一样因数的积的运算,叫做乘方,乘方的结果叫做幂。
苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习《平面图形的认识(二)》全章复习与巩固(基础)知识讲解【学习目标】1. 区别平行线的判定与性质,并能灵活运用;2. 了解图形平移的概念及性质;3. 熟练掌握三角形的三边关系及内角和定理,并能灵活应用;4、掌握多边形的内角和公式与外角和定理.【知识网络】【要点梳理】要点一、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直. 要点二、图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:决定平移的两个要素:(1)平移的方向;(2)平移的距离.2.平移的性质:(1)图形的平移不改变图形的形状与大小,只改变图形的位置.(2)图形平移后,对应点的连线平行或在同一直线上且相等.(3)图形经过平移,对应线段互相平行或在同一条直线上且相等,对应角相等. 要点三、认识三角形1.三角形的分类(1)按角分: 三角形 2.三角形的三边关系三角形的任意两边之和大于第三边; 三角形任意两边之差小于第三边.要点诠释:(1)判断给定三条线段能否构成一个三角形:看较小两边的和是否大于最长边.(2)已知三角形的两边长,确定第三边的范围:两边之差的绝对值<第三边<两边之和.3.三角形的三条主要线段(1)在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中线。
七年级平面图形知识点平面图形是一门基础数学课程,也是几何学的一个重要分支。
在七年级课程中,学生需要学习平面图形的基本概念、性质、分类和运算等知识点。
本篇文章将系统地介绍七年级平面图形的相关知识点。
1. 点、线、面的概念在平面几何中,点、线、面是最基本的图形概念。
点是没有长度、宽度、高度的零维几何图形,用字母表示,如A、B、C等;线是由一条无限延长的、无宽度的连接两个点的几何图形,用字母表示或用其中任意两个点的大写字母表示,如AB、BC、DE等;面是由三条或三条以上的线段所组成的平坦图形,用大写字母表示,如△ABC、矩形ABCD等。
2. 角的概念及分类角是由两条射线共同确定的图形部分称为角。
可以用字母表示,如∠ABC、∠PQR等。
按照角的大小可分为锐角、直角和钝角;按照角的位置可分为内角、外角、相邻角、对顶角等。
3. 三角形的分类三角形是由三个线段所组成的平面图形,是平面图形中最基本、最简单的形状之一。
按照三边长的关系,三角形可分为等边三角形、等腰三角形和一般三角形;按照三个角的大小关系,三角形可分为锐角三角形、直角三角形和钝角三角形。
4. 四边形的分类四边形是由四条线段所组成的平面图形。
目前,已发现的四边形形态有数百种,其中比较典型的有矩形、正方形、平行四边形、菱形等。
按照对角线的位置,四边形可分为平行四边形、菱形;按照四个角的大小关系,四边形可分为矩形、正方形、梯形等。
5. 圆的概念及性质圆是平面内与一个确定点距离相等的点的集合。
圆上的任意一点到圆心的距离都相等。
圆上的某一弧对应一个圆心角,圆心角的大小等于这个弧所对应的圆心角。
圆周角等于重合角,被弦截下的圆周角大小与所对的圆心角大小相等。
6. 平面几何的基本公理在平面几何中,人们依赖于公理和定理来推导证明。
公理是不依赖于其他命题和定义,是基本的而且不可证明的命题。
平面几何的公理一般包括点的基本性质、直线的基本性质、平行性公理、排斥公理、等距代换公理等。
七年级平面图形知识点归纳在初中数学中,平面图形是一个非常重要的知识点。
本文将从基础概念、常用公式和解题方法三个方面进行讲解,希望能够帮助同学们更好地掌握平面图形。
一、基础概念平面图形是指在平面内的图形,包括点、线、面和曲线等。
常见的平面图形包括:直线、线段、射线、角、图形的边和表面等。
直线是没有端点的无限延伸,可以用两个点来确定。
线段是有两个端点的部分,射线则是有一个端点的部分。
角是由两条射线和它们的公共端点所组成的一个部分。
根据角的大小,可以分为锐角、直角和钝角。
图形的边是指图形的各条线段,表面则是指图形的边所围成的部分。
二、常用公式1. 长方形的面积公式:面积 = 长 ×宽2. 正方形的面积公式:面积 = 边长²3. 三角形的面积公式:面积 = 底边 ×高 ÷ 24. 圆的面积公式:面积= π × 半径²5. 矩形的周长公式:周长 = 2 × (长 + 宽)6. 三角形的周长公式:周长 = 边长之和7. 圆的周长公式:周长= 2 × π × 半径三、解题方法1. 认真分析题目中所给出的条件,确定需要求解的内容。
2. 根据所给出的条件选择合适的公式进行运算。
3. 在计算时注意单位的转换,例如长度单位从厘米转换成米等。
4. 最后检查计算结果,看是否符合实际意义,如是否存在负数或者逻辑上的矛盾等。
举例:小明的房间是一个矩形,长为4米,宽为3米。
现在要粘墙纸,假设每卷墙纸长度是10米,宽度是1.5米,问他需要购买几卷墙纸?解:由题意可知,小明的房间是一个长为4米,宽为3米的矩形,所以房间的墙纸需求量为:(周长×房间高度)÷每卷长×宽 = (4+3+4+3)×2.5÷10×1.5 ≈3由此可知,小明需要购买3卷墙纸。
总结:平面图形作为初中数学的重要知识点,同学们需要具备扎实的基本概念和熟练的运用技巧。
平面图形的认识(二)平行一、平行:1、在同一平而内,不相交的两条直线叫做平行线.2、平行线的定义包含三层意思:①“在同一平而内”是前提条件;②“不相交”是指两条直线没有交点:③平行线指的是”两条直线S而不是两条射线或两条线段.3、平行公理:经过一条直线外一点有一条并且只有一条直线与已知直线平行・4、推论:(平行线的传递性):设罕b、c是三条直线,如果&二、三线八角:两条直线AB、CD与直线EF相交,交点分别为E、F,如图,则称直线AB、CD彼直线EF所截,直线EF为截线•两条宜线AB、CD被直线EF所截可得8个角,即所谓“三线八角J(一).这八个角中有:1、对顶角:Z1 与Z3, Z2 与Z4, Z5 与Z7, Z6 与Z8.2、邻补角有:Z1 与Z2, Z2 与Z3, Z3 与Z4, Z4 与Zl, Z5 与Z6, Z6 与Z7,(二)、同位角,内错角,同旁内角:K同位角:两条直线被第三条直线所截,任二条直线的同侧,且在第三条直线的同旁的二个角叫同位角.如图中的Z1与Z5分别在直线AB、CD的上侧,又在第三条直线EF的右侧,所以Z1与Z5 是同位角,它们的位置相同,在图中还有Z2与Z6, Z4与Z8, Z3与Z7也是同位角.2、内错角:两条直线被第三条直线所截,在二条直线的内侧,且在第三条直线的两旁的二个角叫内错角.如上图中Z2与Z8在直线AB. CD的内侧(即AB、CD之间),且在EF的两旁,所以Z2与Z8是内错角•同理,Z3与Z5也是内错角.3、同旁内角:两条直线被第三条直线所截,在两条直线的内侧,且在第三条宜线的同旁的两个角叫同旁内角.如上图中的Z2与Z5在直线AB、CD内侧又在EF的同旁,所以Z2与Z5是同旁内角,同理, Z3与Z8也是同旁内角.4、因此,两条直线被第三条宜线所截,共得4对同位角,2对内错角,2对同旁内角.三、直线平行的条件(判定):1、两条直线被第三条直线所截,如果同位角相等,那么这两条宜线平行,简记为:同位角相等,两直线平行2、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简记为:内错角相等,两直线平行3、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简记为:同旁内角互补,两直线平行四.平行线的性质:1、两条平行线被第三条直线所截,同位角相等.简记为:两直线平行,同位角相等2、两条平行线被第三条宜线所截,内错角相等.简记为:两直线平行,内错角相等3、两条平行线被第三条直线所截.同旁内角互补,简记为:两直线平行,同旁内角互补平移一.平移的概念:把图形上所有点都按同一方向移动相同的距离叫作平移。
第七章 平面图形的认识(二)一、知识梳理1、在同一平面上,两条直线的位置关系有 或者 .练习:平面内三条直线的交点个数可能有 ( )A. 1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个2、判定与性质:什么叫做平行线?在同一平面内, 的两直线叫平行线。
的两直线平行。
判 定性 质(1) ,两直线平行。
(2) ,两直线平行。
(3) ,两直线平行。
(1)两直线平行, 。
(2)两直线平行, 。
(3)两直线平行,互补。
如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
(等积变形)(2)如图,长方形ABCD 的面积为16,四边形BCFE 为梯形,BC 与DE 交于点G,则阴)如图,对面积为,使得记其面积为S 1;第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A 5B 5C 5,则其面积S 5= .(4)已知方格纸中的每个小方格是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,在小方格的顶点上确定一点C ,连接AB ,AC ,BC ,使△ABC 的面积为3个平方单位.则这样的点C 共有 个.(1)如图,边长为3cm ,与5cm 的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积是______cm 2(π取3).F3、图形的平移 在平面内,将一个图形沿着________________移动____________,这样的____________叫做图形的平移。
4、平移的性质(1)平移不改变图形的_______、________,只改变图形的_________。
平面图形的认识(二)知识点总复习及强化练习【知识梳理】1.平行线的认识(1)认识三线八角:如图,两条直线被第三条直线所截,分成了八个角。
(2)平行的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
(3)平行的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
2.三角形的认识(1)三角形的三边关系:两边之和大于第三边,两边之差小于第三边。
(2)三角形的内角和:三角形的内角和是180°(3)三角形内外角关系:一个外角大于和它不相邻的任意一个内角,等于和它不相邻的两个内角和。
(4)三角形的分类:直角三角形;锐角三角形;钝角三角形。
(5)三角形的三线:角平分线;中线;高线。
3.多边形的外角和与内角和公式。
【例题精讲】题型一:平行的判定与性质例1.如图所示,AB∥CD,AF平分∠CAB,CF平分∠ACD.计算(1)∠B+∠E+∠D=________;(2)∠AFC=________.例2.如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为__________.题型二:折叠问题例1.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=__________.与AD交于点G,例2.如图,把矩形ABCD沿EF折叠,点A、B分别落在A′、B′处.A′B′若∠1 =50°,则∠AEF=()A.110°B.115°C.120°D.130°题型三:多边形的内角和与外角和例1.一多边形内角和为2340°,若每一个内角都相等,求每个外角的度数.......。
例2.一个零件的形状如图,按规定∠A=90°,∠ABD和∠ACD,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.例3.如图,已知∠DAB+∠D=180°,AC平分∠A,且∠CAD=25°,∠B=95°(1)求∠DCA的度数;(2)求∠ACE的度数.题型四:拓展延伸例1.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=200,则图③中∠CFE度数是多少?(2)若∠DEF=α,把图③中∠CFE用α表示.例2.如图,△ABC中,BE,CD为角平分线且交点为点O,当∠A=600时,(1)求∠BOC的度数;(2)当∠A=1000时,求∠BOC的度数;(3)若∠A=α时,求∠BOC的度数。
教学主题平面图形的认识(二)教学目标掌握平行的判定和性质、图形的平移、三角形、多边形对的内角和与外角和重要知识点1.平行的判定和性质2.图形的平移3.三角形、多边形对的内角和与外角和易错点平行的判定和性质图形的平移三角形、多边形对的内角和与外角和教学过程平行线及其判定【要点梳理】要点一、平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.要点二、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点三、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行线的定义及表示例1.下列叙述正确的是()A.两条直线不相交就平行B.在同一平面内,不相交的两条线叫做平行线C.在同一平面内,不相交的两条直线叫做平行线D.在同一平面内,不相交的两条线段叫做平行线【答案】C举一反三:【变式】下列说法错误的是()A.无数条直线可交于一点B.直线的垂线有无数条,但过一点与垂直的直线只有一条C.直线的平行线有无数条,但过直线外一点的平行线只有一条D.互为邻补角的两个角一个是钝角,一个是锐角【答案】D类型二、平行公理及推论例2.下列说法中正确的有()①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行.A.1个 B 2个C.3个D.4个【答案】 A举一反三:【变式】直线a∥b,b∥c,则直线a与c的位置关系是.【答案】平行类型三、两直线平行的判定例3.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C举一反三:【变式1】如图,下列条件中,不能判断直线1l ∥2l 的是( ).A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=1800【答案】B【变式2】已知,如图,BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,求证:AB//CD .【答案】∵ ∠1=∠2∴ 2∠1=2∠2 ,即∠ABC =∠BCD∴ AB//CD (内错角相等,两直线平行)例4.如图所示,由(1)∠1=∠3,(2)∠BAD =∠DCB ,可以判定哪两条直线平行.解:(1)由∠1=∠3,可判定AD ∥BC (内错角相等,两直线平行);(2)由∠BAD =∠DCB ,∠1=∠3得:∠2=∠BAD -∠1=∠DCB -∠3=∠4(等式性质),即∠2=∠4可以判定AB ∥CD (内错角相等,两直线平行).例5.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?【答案与解析】解:这两条直线平行.理由如下:如图:∵ b⊥a, c⊥a∴∠1=∠2=90°∴b∥c (同位角相等,两直线平行) .举一反三:【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ -∠1=∠MGE -∠2 (等式性质),即∠3=∠4.∴AB∥CD (同位角相等,两直线平行).【巩固练习】一、选择题1.下列关于作图的语句正确的是().A.画直线AB=10厘米.B.画射线OB=10厘米.C.已知A,B,C三点,过这三点画一条直线.D.过直线AB外一点画一条直线和直线AB平行.2.有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)直线外一点与直线上各点连接的所有线段中,垂线段最短(4)平行于同一条直线的两条直线平行.其中正确的个数是()A.1个B.2个C.3个D.4个3.若直线a∥b,b∥c,则a∥c的依据是().A.平行的性质B.等量代换C.平行于同一直线的两条直线平行.D.以上都不对4.下列说法中不正确的是().A.同位角相等,两直线平行.B.内错角相等,两直线平行.C.同旁内角相等,两直线平行.D.在同一平面内,垂直于同一条直线的两直线平行.5.如图所示,给出了过直线l外一点P作已知直线l的平行线的方法,其依据是().A.同位角相等,两直线平行. B.内错角相等,两直线平行.C.同旁内角互补,两直线平行. D.以上都不对.6.如图所示,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.其中能判定AB∥CD的序号是( ).A.1 B.2 C.3 D.4二、填空题7.两条射线或线段平行,是指 .8.如图所示,直线a,b被c所截,∠1=30°,∠2:∠3=1:5,则直线a与b的位置关系是________.9.如图,直线a和b被直线c所截,∠1=110°,当∠2=________时,有直线a∥b成立.10.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是.11.小军在一张纸上画一条直线,再画这条直线的平行线,然后依次画前一条直线的平行线,当他画到第十条直线时,第十条直线与第一条直线的位置关系是________.12.已知直线a、b都过点M,且直线a∥l,b∥l,那么直线a、b是同一条直线,根据是________.三、解答题13.读下列语句,用直尺和三角尺画出图形.(1)点P是直线AB外的一点,直线CD经过点P,且CD与AB平行;(2)直线AB与CD相交于点O,点P是AB、CD外的一点,直线EF经过点P,且EF∥AB,与直线CD 相交于点E.14.已知如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CD与AB平行吗?写出推理过程.15.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【答案与解析】一、选择题1.【答案】D2.【答案】D.【解析】(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线平行,正确;正确的有4个,故选:D.3.【答案】C【解析】这是平行线的传递性,其实质是平行公理的推论.4. 【答案】C【解析】同旁内角互补,两直线平行.5. 【答案】A【解析】这种作法的依据是:同位角相等,两直线平行.6. 【答案】C【解析】∠1=∠2,但∠1、∠2不是截AB、CD所得的内错角,所以不能判定AB∥CD.二、填空题7. 【答案】射线或线段所在的直线平行;8.【答案】平行;【解析】由已知可得:∠2=30°,所以∠1=∠2,可得:a∥b.9.【答案】70°;10.【答案】80°.【解析】因为a与b平行,所以∠1=∠3,又∠2=100°,所以∠3=80°,∴∠1=80°.11.【答案】平行;【解析】平行公理的推论12.【答案】过直线外一点有且只有一条直线与这条直线平行;【解析】这是平行公理的具体内容.三、解答题13.【解析】解:14.【解析】解:CD∥AB.理由如下:∵BF、DE分别是∠ABC、∠ADC的角平分线,要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点三、图形的平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或在同一条直线上)且相等;(2)平移后,对应角相等;(3)平移后,各组对应点的连线平行(或在同一条直线上)且相等;(4)平移后,新图形与原图形是一对全等图形.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质例1.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°【答案】B .举一反三:【变式】如图,已知1234//,//l l l l ,且∠1=48°,则∠2= ,∠3= ,∠4= .【答案】48°,132°,48°类型二、两平行线间的距离例2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则()A.S1>S2B.S1=S2C.S1<S2D.不确定【答案】B举一反三:【变式】如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4 B.5 C.10 D.无法判断【答案】B.类型三、图形的平移例3.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.解:如图所示,例4.如图所示,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为________.【答案】30°举一反三:【变式】如图所示,三角形FDE经过怎样的平移可以得到三角形ABC()A.沿EC的方向移动DB长B.沿BD的方向移动BD长C.沿EC的方向移动CD长D.沿BD的方向移动DC长【答案】A类型四、平行的性质与判定综合应用例5.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【答案】C举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行【巩固练习】一、选择题1.下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是().A.①B.②和③C.④D.①和④2.(2015•枣庄)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°3.下列图形中,由AB∥CD,能得到∠1=∠2的是().4.如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是().A.70°B.80°C.100°D.110°5.(南通)如图所示,已知AD与BC相交于点O,CD∥OE∥AB.如果∠B=40°,∠D=30°,则∠AOC 的大小为().A.60°B.70°C.80°D.120°6.(山东德州)如图所示,直线l1//l2,∠1=40°,∠2=75°,则∠3等于().A.55°B.30°C.65°D.70°7.如图所示的图形中的小三角形可以由△ABC平移得到的有().A.3个B.4个C.5个D.6个二、填空题8.如图,已知AB∥CD,S△ACD=6cm2,则S△BCD=6cm2.9. 如图所示,△ABC经过平移得到△A′B′C′,图中△_________与△_________大小形状不变,线段AB 与A′B′的位置关系是________,线段CC′与BB′的位置关系是________.10. (浙江湖州)如图所示,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2=______度.11.如图,在四边形ABCD中,若∠A+∠B=180°,则∠C+∠D=_______.12.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=________.13.如图所示,AB∥CD,且∠BAP=60°-a,∠APC=45°+a,∠PCD=30°-a,则a=________.三、解答题14.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.15. 如图,a∥b∥c,∠1=60°,∠2=36°,AP平分∠BAC,求∠PAQ的度数.16. 如图,将四边形ABCD平移到四边形EFGH的位置,根据平移后对应点所连的线段平行且相等,写出图中平行的线段和相等的线段.【答案与解析】一、选择题∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.15.【解析】解:∵a∥b∥c,∴∠BAQ=∠1=60°,∠CAQ=∠2=36°,∠BAC=60°+36°=96°,又AP平分∠BAC,∠BAP=12×96°=48°,∴∠PAQ=∠BAQ-∠BAP=60°-48°=12°.16.【解析】解:平行的线段:AE∥BG∥DH,相等的线段:AE=BF=OG=DH.认识三角形【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点三、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形.②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形要点四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段三角形的高三角形的中线三角形的角平分线名称文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A作AD⊥BC于点D.取BC边的中点D,连接AD.作∠BAC的平分线AD,交BC于点D.标示图形符号语言1.AD是△ABC的高.2.AD是△ABC中BC边上的高.3.AD⊥BC于点D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)1.AD是△ABC的中线.2.AD是△ABC中BC边上的中线.3.BD=DC=12BC4.点D是BC边的中点.1.AD是△ABC的角平分线.2.AD平分∠BAC,交BC于点D.3.∠1=∠2=12∠BAC.推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一个三角形有三条角平分线,它们交于三角形内一一点.点.要点五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.【典型例题】类型一、三角形的定义及表示例1.如图,图中共有三角形()A.4个B.5个C.6个D.8个【答案】D.举一反三:【变式】如图,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系例2. (四川南充)三根木条的长度如图所示,能组成三角形的是()【答案】D举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能;(2)不能;(3)能.例3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c << 举一反三:【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可) 【答案】5,注:答案不唯一,填写大于4,小于12的数都对. 类型三、三角形中重要线段例4. 小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C 举一反三:【变式】如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .【答案】A .例5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【答案与解析】 答:AC 的长为5cm . 举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S =△,则S 阴影为________.【答案】1类型四、三角形的稳定性例6.如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?解:三角形的稳定性.【巩固练习】一、选择题1.如图,以BC为边的三角形有()个.A.3个B.4个C.5个D.6个2.如图所示的图形中,三角形的个数共有().A.1个B.2个C.3个D.4个3.已知三角形两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为第三边的是().A.13 cm B.6 cm C.5 cm D.4 cm4.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是().A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是().A.直线B.线段C.射线D.以上答案都不对6.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是().A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是().A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.不一定在三角形内部的线段是(填“角的平分线”或“高线”或“中线”).10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________cm.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则________=_______=12________;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13.如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.如果知道三角形的一边之长和这边上的高,三角形________确定.(填“能”或“不能”)三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.17.如图所示,已知AD,AE分别是ΔABC的中线、高,且AB=5cm,AC=3cm,则ΔABD与ΔACD的周长之差为多少,ΔABD与ΔACD的面积有什么关系.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题(2)当-1<a <0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a =0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k ,3k ,5k ,则2k+3k =5k 不满足三角形三边关系.所以不能围成三角形. 16.【解析】解:AD 、AF 分别是△ABC ,△ABE 的角平分线.BE 、DE 分别是△ABC ,△ADC 的中线,AG 是△ABC ,△ABD ,△ACD ,△ABG ,△ACG ,△ADG 的高.17.【解析】解: (1)ΔABD 与ΔACD 的周长之差=(AB +BD +AD)-(AD +CD +AC),而BD =CD.所以上式=AB -AC =5-3=2.(2)S ΔABD =21BD ·AE ,S ΔACD =21CD ·AE 。
初一平面图形的认识2知识点
1. 平面图形的分类
在初一的数学学习中,我们会接触到许多不同的平面图形。
根据图
形的特征和性质,我们可以将平面图形分为以下几类:
1.1 直线直线是最基本的平面图形,可以用于连接两个点。
直线
是由无数个点组成的,延伸的方向上没有尽头。
1.2 射线射线是由一个起点向一个方向延伸出去的直线。
射线只
有一个端点,并且在延伸的方向上没有尽头。
1.3 线段线段是由两个端点确定的直线部分。
线段有确定的长度,起点和终点之间没有延伸。
1.4 角角是由两条射线共享一个端点组成的图形。
角可以通过两
条射线的夹角来衡量,常用单位是度或弧度。
1.5 矩形矩形是一个具有四个直角的四边形。
矩形的对边相等且
平行,对角线相等。
1.6 正方形正方形是一种特殊的矩形,它的四个角都是直角,并
且四条边相等。
1.7 三角形三角形是一个由三条线段组成的图形。
根据边的长度
和角的大小,三角形可以进一步分为等边三角形、等腰三角形和一般
三角形。
1.8 平行四边形平行四边形是一种具有两对平行边的四边形。
平
行四边形的对边相等且平行。
2. 平面图形的性质和特征
了解平面图形的性质和特征有助于我们更好地认识和理解它们。
2.1 直线的性质 - 直线没有宽度和长度,可以延伸到无穷远。
-
直线上的任意两点可以被直线上的任意一点所连接。
- 直线上的两个
相邻角互补,即它们的和为180°。
2.2 角的性质 - 角的单位通常使用度或弧度来衡量。
- 角的大小
可以用角度来表示,度数为0到360之间。
- 两个互补角的和为90°,两个补角的和为180°。
2.3 矩形的性质 - 矩形的对边相等且平行。
- 矩形的所有内角都
是直角(90°)。
- 矩形的对角线相等且互相平分。
2.4 三角形的性质 - 三角形的三个内角的和为180°。
- 等边三
角形的三条边相等,三个内角也相等(都是60°)。
- 等腰三角形的两个底角相等。
2.5 平行四边形的性质 - 平行四边形的对边相等且平行。
- 平行
四边形的对角线互相平分。
- 平行四边形的相邻内角互补(和为180°)。
3. 平面图形的应用
平面图形广泛应用于我们的日常生活和各个领域。
以下是一些常见
的平面图形的应用示例:
3.1 矩形和正方形 - 矩形和正方形可以用于设计和制作桌子、窗户、电视等物品。
- 矩形和正方形可以用于设计和制作地砖、墙砖等
建筑材料。
3.2 三角形 - 三角形可以用于设计和制作三角形警示牌、路标等
交通标志。
- 三角形可以用于设计和制作三角形锥、火把等户外用品。
3.3 平行四边形 - 平行四边形可以用于设计和制作行李箱、书包
等物品。
- 平行四边形可以用于设计和制作街道标志、广告牌等宣传
用品。
结论
初一平面图形的认识是数学学习的重要一环,通过了解和掌握不同
平面图形的分类、性质和应用,我们可以更好地理解和应用数学知识。
在日常生活中,平面图形也随处可见,它们在设计、建筑、交通等领
域发挥着重要作用。
通过学习平面图形,我们可以培养自己的空间思
维能力,提升解决问题的能力。