2019年高考数学一轮复习(北师大版文科) 单元评估检测7 立体几何初步 文 北师大版
- 格式:doc
- 大小:312.50 KB
- 文档页数:9
2019届北师大版(文科数学) 立体几何 (2) 单元测试一、选择题 1.(必修2 P 10B 组T 1改编)如图,若Ω是长方体ABCD -A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1后得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥A 1D 1,则下列结论中不正确的是( )A .EH ∥FGB .四边形EFGH 是矩形C .Ω是棱柱D .Ω是棱台解析:选D .因为EH ∥A 1D 1,A 1D 1∥B 1C 1,EH ⊄平面BCC 1B 1,所以EH ∥平面BCC 1B 1. 又因为平面EFGH ∩平面BCC 1B 1=FG ,所以EH ∥FG ,且EH =FG ,由长方体的特征知四边形EFGH 为矩形,Ω为五棱柱,所以选项A ,B ,C 都正确.故选D .2.(必修2 P 61练习、P 71练习T 2、P 73练习T 1改编)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ∥α,m ∥β,则α∥βC .若α⊥γ,β⊥γ,则α∥βD .若m ⊥α,n ⊥α,则m ∥n解析:选D .A 中,两直线可能平行,相交或异面;B 中,两平面可能平行或相交;C 中,两平面可能平行或相交;D 中,由线面垂直的性质定理可知结论正确,故选D .3.(必修2 P 78A 组T 7改编)正四棱锥的三视图如图所示,则它的外接球的表面积为( )A .25πB .252πC .253πD .254π解析:选C .由三视图画出直观图与其外接球示意图,且设O 1是底面中心.由三视图知,O 1A =2,O 1P =3,所以正四棱锥P -ABCD 的外接球的球心O 在线段O 1P 上.设球O 的半径为R .由O 1O 2+O 1A 2=OA 2得(3-R )2+(2)2=R 2. 所以R =523.则外接球的表面积为S =4πR 2=4π·⎝⎛⎭⎫5232=253π. 4.(必修2 P 79 B 组 T 2改编)如图,在正方体ABCD -A 1B 1C 1D 1中,B 1D ∩平面A 1BC 1=H . 有下列结论. ①B 1D ⊥平面A 1BC 1;②平面A 1BC 1将正方体体积分成1∶5两部分; ③H 是B 1D 的中点;④平面A 1BC 1与正方体的六个面所成的二面角的余弦值都为33.则正确结论的个数有( )A .1B .2C .3D .4解析:选C .对于①,连接B 1C 与A 1D ,由正方体性质知,BC 1⊥B 1C ,BC 1⊥A 1B 1, 又A 1B 1∩B 1C =B 1,A 1B 1,B 1C ⊂平面A 1B 1CD . 所以BC 1⊥平面A 1B 1CD . 又B 1D ⊂平面A 1B 1CD . 所以B 1D ⊥BC 1.同理B 1D ⊥A 1B ,A 1B ∩BC 1=B . 所以B 1D ⊥平面A 1BC 1,故①正确.对于②.设正方体棱长为a . 则V 三棱锥B -A 1B 1C 1=13·12a ·a ·a =16a 3.所以平面A 1BC 1将正方体分成两部分的体积之比为16a 3∶(a 3-16a 3)=1∶5.故②正确.对于③,设正方体棱长为a , 则A 1B =2a .由V B 1-A 1BC 1=16a 3,得13×34×(2a )2·B 1H =16a 3, 所以B 1H =33a ,而B 1D =3a . 所以B 1H ∶HD =1∶2,即③错误.对于④,由对称性知,平面A 1BC 1与正方体六个面所成的二面角的大小都相等. 由①知B 1H ⊥平面A 1BC 1,而A 1B 1⊥平面B 1BCC 1. 所以∠A 1B 1H 的大小即为所成二面角的大小. cos ∠A 1B 1H =B 1H A 1B 1=33aa =33.故④正确.故选C .二、填空题5.(必修2 P 53 B 组 T 2改编)已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,点A 1在底面ABC 上的射影D 为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为________.解析:连接A 1D ,AD ,A 1B ,易知∠A 1AB 为异面直线AB 和CC 1所成的角,设三棱柱的侧棱长与底面边长均为1,则AD =32,A 1D =12,A 1B =22,由余弦定理得cos ∠A 1AB =1+1-122×1×1=34. 答案:346.(必修2 P 79 B 组 T 1改编)如图在直角梯形ABCD 中,BC ⊥DC ,AE ⊥DC ,M ,N 分别是AD ,BE 的中点,将△ADE 沿AE 折起.则下列说法正确的是________.(填上所有正确说法的序号)①不论D 折至何位置(不在平面ABC 内)都有MN ∥平面DEC ; ②不论D 折至何位置都有MN ⊥AE ;③不论D 折至何位置(不在平面ABC 内)都有MN ∥AB ; ④在折起过程中,一定存在某个位置,使EC ⊥AD ; ⑤无论D 折至何位置,都有AE ⊥DC . 解析:如图,设Q ,P 分别为CE ,DE 的中点,可得四边形MNQP 是矩形,所以①②正确;不论D 折至何位置(不在平面ABC 内)都有MN 与AB 是异面直线,不可能MN ∥AB ,所以③错;当平面ADE ⊥平面ABCD 时,可得EC ⊥平面ADE ,故EC ⊥AD ,④正确.无论D 折到何位置,均有AE ⊥平面CDE .故AE ⊥CD .故⑤正确.答案:①②④⑤ 三、解答题7.(必修2 P 79B 组T 1改编)如图,边长为33的正方形ABCD 中,点E ,F 分别是边AB ,BC 上的点,将△AED ,△DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A ′.(1)求证:A ′D ⊥EF .(2)当BE =BF =13BC 时,求三棱锥A ′EFD 的体积.解:(1)证明:因为A ′D ⊥A ′E ,A ′D ⊥A ′F ,A ′E ∩A ′F =A ′,所以A ′D ⊥平面A ′EF , 因为EF ⊂平面A ′EF , 所以A ′D ⊥EF .(2)由(1)知,A ′D ⊥平面A ′EF ,所以A ′D 的长即为三棱锥D -A ′EF 的高,则A ′E =A ′F =23BC =23,EF =BE 2+BF 2=6,作A ′O ⊥EF 于点O , 所以A ′O =A ′E 2-⎝⎛⎭⎫12EF 2=422,则V A ′EFD =V D -A ′EF =13A ′D ·S △A ′EF =13×33×12EF ·A ′O =13×33×12×6×422=3212. 8.(必修2 P 78 A 组 T 4改编)如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 、M 分别是C 1B 1,C 1D 1和AB 的中点.(1)求证:MD 1∥平面BEFD . (2)求M 到平面BEFD 的距离. 解:(1)证明:连接BF .因为M 、F 分别为AB 与C 1D 1的中点,且ABCD -A 1B 1C 1D 1是正方体. 所以MB ═∥D 1F .所以四边形MBFD 1为平行四边形, 所以MD 1∥BF .又MD 1⊄平面BEFD ,BF ⊂平面BEFD . 所以MD 1∥平面BEFD . (2)过E 作EG ⊥BD 于G . 因为正方体的棱长为2,所以BE =5,BG =12(BD -EF )=12(22-2)=22.所以EG =BE 2-BG 2=5-12=322. 所以S △EBD =12BD ×EG =12×22×322=3.又S △MBD =12MB ×AD =12×1×2=1.E 到平面ABCD 的距离为2,设M 到平面BEFD 的距离为d . 由V 三棱锥M -BDE =V 三棱锥E -MBD 得13S △EBD ·d =13S △MBD ×2. 所以d =S △MBD ×2S △EBD =1×23=23.所以M 到平面BED 的距离为23.。
课时作业(三十八)1. C[解析] 设两个球的半径分别为r1,r2.∵两个球的表面积之比为1∶4,∴===,解得=(负值舍去),∴这两个球的体积之比===,即两个球的体积之比为1∶8.2. D[解析] 根据三视图知,该几何体是棱长为2的正方体挖去半个圆锥体后剩余的部分,其直观图如图所示,则它的体积V=23-××π×12×2=8-π.3. A[解析] 由三视图可得该几何体为三棱柱,其底面是斜边长为4,斜边上的高为,则易知底面面积为2,底面周长为6+2,又三棱柱的高为4,故其表面积S=2×2+4×(6+2)=24+12.4.[解析] 根据正视图和俯视图可以推知折起后二面角C-BD-A的平面角为直角,则三棱锥C-ABD 的侧视图是两直角边长均为1的等腰直角三角形,所以侧视图的面积S=×1×1=.5.[解析] 设正方体的棱长为a,球的半径为R,则πR3=,∴R=,∴a=2R=3,∴a=.6. A[解析] 由直观图可知,在直观图中多边形为正方形,位于y'轴上的对角线长为,所以原图为平行四边形,且位于y轴上的对角线长为2.7. B[解析] 由三视图可知该几何体为棱长均为2的正三棱柱.设外接球的球心为O,其中一个底面三角形外接圆的圆心为O1,球的半径为R,外接圆的半径为r,则R2=r2+O1O2,即R2=+1=,∴外接球的表面积S=,故选B.8. D[解析] 由三视图可知该几何体是一个半圆柱和一个三棱柱的组合体,故其表面积为π×1×2+π+22×2+2××2×=3π+8+2,故选D.9. D[解析] 该几何体由底面为直角梯形的直四棱柱截去一个三棱锥所得,其直观图如图所示,则该几何体的体积V=×(2+1)×2×2-××1×1×2=.10. D[解析] 设正方体的棱长为1,则三棱锥P-BCD的正视图是底面边长为1,高为1的三角形,面积为.三棱锥P-BCD的俯视图面积最大时,点P在A1处,此时俯视图的面积为1,故三棱锥P-BCD的俯视图与正视图面积之比的最大值为2,故选D.11. B[解析] 由三视图可知,该几何体的外接球即为棱长为2的正方体的外接球,则外接球的直径2R==2半径R=.12. 1[解析] ∵∠BAC=90°,AB=AC=2,∴三角形ABC的外心D为BC的中点,则BD=.由球O的表面积为12π,可得球的半径OB=OA=OC=,∴球心O到平面ABC的距离OD=-=-=1.13.解:(1)由题意,作出四棱台A1B1C1D1-ABCD的直观图,如图所示,其中AA1是棱台的高,AA1=1.易知侧面A1B1BA,侧面A1D1DA是相同的直角梯形,侧面B1C1CB,侧面D1C1CD是相同的直角梯形,四棱台的上、下底面是正方形.所以,四棱台A1B1C1D1-ABCD的表面积为2×+2×+12+22=8+3.(2)因为四棱台A1B1C1D1-ABCD的高为1,上、下底面正方形的边长之比为1∶2,所以四棱锥P-ABCD的高为2,所以V1=×(12+22+)×1=,V2=×22×2=,所以=.14.解:(1)如图所示,连接OM,则OM⊥AB.=,∴r=,设OM=r,则OB=-r.在Rt△BMO中,sin∠MBO==-∴空心球的表面积S=4πr2=π.(2)在△ABC中,∵∠ACB=90°,∠ABC=30°,BC=,∴AC=1,∴旋转体的体积V=V圆锥-V球=π·AC2·BC-πr3=π×12×-π×=π.15. A[解析] 该几何体为两个大小相同的三棱柱的组合体,三棱柱的底面是直角边为1的直角三角形,高为2,∴该几何体的体积V=2××12×2=2.故选A.16. C[解析] 由题意知可采用割补法解题,考虑到四面体A-BCD的四个面为全等的三角形,所以可将该四面体放到一个长、宽、高分别为x,y,z的长方体中,并且x2+y2=100,x2+z2=136,y2+z2=164,则该四面体与长方体有相同的外接球.设外接球的半径为R,则有(2R)2=x2+y2+z2=200,∴4R2=200,∴外接球的表面积S=4πR2=200π.加练一课(五)空间几何体与球的切﹑接问题1. C[解析] 设正方体的边长为a,则球的半径为a,所以球的表面积S1=4πR2=4π×a2=3πa2,正方体的表面积S2=6a2,所以所求比值=.2. A[解析] 由题意得,球的直径是长方体的体对角线长,设球的半径为R,则2R==2,得R=所以球O的体积V=πR3=π(3=.3. B[解析] 气球最大时,与棱长为a的正方体框架相切,球的直径等于正方体的面对角线,即球的直径为a,半径为,故气球表面积的最大值为4πr2=2πa2.4. A[解析] 该几何体为圆柱中挖去一个半球,圆柱的底面半径和高均为r,半球的半径为r,∴该几何体的体积V=π×r2·r-×πr3=πr3=9π,∴r=3.∴S侧=π×2r·r=2πr2=18π,S底=π×r2=9π,S半球=×4π×r2=2πr2=18π,∴该几何体的表面积S表=18π+9π+18π=45π.5. C[解析] 如图所示,可将三棱锥扩展为正方体,则三棱锥的外接球即为正方体的外接球,外接球的直径就是正方体的体对角线的长度,∴球的半径R==,球的表面积为4πR2=4π×=3π.6. C[解析] 根据三视图还原四棱锥P-ABCD的直观图,如图所示.由题意知,平面PAD⊥平面ABCD,△PAD为等腰三角形,PA=PD=3,AD=4,四边形ABCD为矩形,CD=2.过△PAD的外心F作平面PAD的垂线,过矩形ABCD的中心H(对角线AC与BD的交点)作平面ABCD的垂线,两条垂线交于一点O,则点O即为四棱锥外接球的球心.连接OB,OP,设OH=x,则OB2=x2+,OP2=(--x)2+1.因为OB2=OP2,所以x=,∴OB==,∴该四棱锥的外接球的表面积为4π·OB2=.7. D[解析] 由题意,球心O与B的距离为×2=,B到平面ACB1的距离为×2=,球的半径为1,球心O到平面ACB1的距离为-=,∴平面ACB1截此球所得截面圆的半径为-=,∴所得截面的面积为π×=.8. A[解析] 由题意知,PA,PF,PE两两垂直,且PA=2,PE=PF=1,以PA,PE,PF为共顶点的三条棱构造一个长方体,则四面体PAEF的四个顶点在这个长方体的外接球上,∴这个球的半径R==,∴该球的表面积S=4πR2=4π×=6π.9. C[解析] 由题意,没有水的部分的体积是正四面体体积的.∵正四面体的各棱长均为4,∴正四面体体积为××42×-=,∴没有水的部分的体积是,设其棱长为a,则×a2×a=,∴a=2.设小球的半径为r,则4×××22r=,∴r=,∴球的表面积S=4π×=.10. B[解析] 过P作PE∥AB交球面于E.连接BE,CE,则BE∥AP,CE∥DP,则三棱柱APD-BEC为正三棱柱.∵△PAD为正三角形,∴△PAD的外接圆的半径为,∴球O的半径R==.∴球O的表面积S=4πR2=.11. A[解析] 根据三视图可知,该几何体是个球与一个三棱锥的组合体.球的半径为2,三棱锥的底面是等腰直角三角形,面积S=×2×2=4,高为2,所以三棱锥的体积为×4×2=,故组合体的体积V=×π×23+=,故选A.12.[解析] 设正方体的棱长为a,则6×a2=18,即a=.∵正方体内接于球,∴球的半径R=a=,∴球的体积V=π×=.13.[解析] 设球O的半径为R.因为该球与圆柱的上、下底面及母线均相切,所以圆柱的底面圆的半径为R,圆柱的高为2R.故圆柱O1O2的体积V1=2πR3,球O的体积V2=πR3,所以==.14.12π[解析] 由题意得球的半径为×=,所以球的表面积是4π×()2=12π.15.[解析] 将正四面体放在棱长为a的正方体之内,使正四面体的棱为正方体的面对角线,则正四面体的棱长为a,且由题意有a2+a2+a2=22,则a2=,所以a=,即四面体ABCD的棱长为.16. 36[解析] 如图所示,当OC垂直于平面AOB时,三棱锥O-ABC的体积最大.设球O的半径为R,此时V三棱锥O-ABC=V三棱锥C-AOB=××R2·R=,解得R=,∴球O的表面积S=4πR2=4π×=36.课时作业(三十九)1. A[解析] 因为梯形有两边平行,所以梯形可以确定一个平面,所以①正确;三条平行直线不一定共面,如直三棱柱的三条平行的棱,所以②不正确;有三个公共点的两个平面不一定重合,如两个平面相交,三个公共点都在交线上,所以③不正确;三条直线两两相交,可以确定的平面个数是1或3,所以④不正确.故选A.2. D[解析] 根据题意,两点确定一条直线,那么若直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内.3. D[解析] 构造如图所示的正方体ABCD-A1B1C1D1,取l1为AD,l2为AA1,l3为A1B1,当取l4为B1C1时,l1∥l4,当取l4为BB1时,l1⊥l4,故排除A,B,C,选D.4.90°[解析] 如图所示,设G是AC的中点,连接EG,FG.因为E,F分别是AB,CD的中点,故EG∥BC且EG=BC=1,FG∥AD,且FG=AD=1,即∠EGF为所求异面直线AD和BC所成的角,又EF=,由勾股定理的逆定理可得∠EGF=90°.5.③④[解析] 由图可知AM与CC1是异面直线,AM与BN是异面直线,BN与MB1为异面直线.因为D1C∥MN,所以直线MN与AC所成的角就是D1C与AC所成的角,易知D1C与AC所成的角为60°.6. A[解析] 直线EF和GH相交,设交点为M.∵EF⊂平面ABD,HG⊂平面CBD,∴M∈平面ABD,且M∈平面CBD,∵平面ABD∩平面BCD=BD,∴M∈BD,∴EF与HG的交点在直线BD上.7. D[解析] 根据异面直线的定义可知,在图②④中,直线GH与MN是异面直线.在图①中,由G,M均为棱的中点可知GH∥MN.在图③中,连接GM,∵G,M均为棱的中点,∴四边形GMNH为梯形,则GH与MN相交.故选D.8. B[解析] 如图所示,取AC的中点N,连接A1N,BN.∵M为A1C1的中点,∴MC∥A1N,∴∠BA1N是直线CM与A1B所成的角.设三棱柱的棱长为2,则A1B=2,A1N=.由题意知BN⊥平面ACC1A1,∴BN⊥A1N,∴cos∠BA1N===.故选B.9. D[解析] 如图所示,连接体对角线AC1,显然AC1与棱AB,AD,AA1所成的角都相等,所成角的正切值都为.联想正方体的其他体对角线,如BD1,则BD1与棱BC,BA,BB1所成的角都相等,因为BB1∥AA1,BC∥AD,所以体对角线BD1与棱AB,AD,AA1所成的角都相等.同理,体对角线A1C,DB1也与棱AB,AD,AA1所成的角都相等.过点A分别作BD1,A1C,DB1的平行线都满足题意,故这样的直线l可以作4条.10.[解析] 设AC∩BD=O,连接VO.因为四棱锥V-ABCD是正四棱锥,所以VO⊥平面ABCD,所以BD ⊥VO.又四边形ABCD是正方形,所以BD⊥AC,又VO∩AC=O,所以BD⊥平面VAC,所以BD⊥VA,即异面直线VA与BD所成角的大小为.11.45°[解析] 如图所示,S-ABCDEF为正六棱锥,O是底面正六边形ABCDEF的中心.连接FC,OB,OS.∵ABCDEF为正六边形,∴△BOC为等边三角形.∴OB=OC=BC=1,又∵DE∥FC,∴∠SCO就是异面直线SC与DE所成角.又SO=OC=1,SO⊥OC,∴∠SCO=45°.则异面直线SC与DE所成角的大小为45°.12.[解析] 如图所示,连接HE,取HE的中点K,连接GK,PK,则GK∥DH,故∠PGK即为异面直线PG 与DH所成的角或其补角.设这个正四面体的棱长为2,在△PGK中,PG=,GK=,PK==,故cos∠PGK=-=,即异面直线PG与DH所成的角的余弦值是.13.证明:(1)因为G,H分别是FA,FD的中点,所以GH∥AD,GH=AD,又因为BC∥AD,BC=AD,所以BC∥GH,BC=GH,所以四边形BCHG是平行四边形.(2)因为BE∥FA,BE=FA,所以BE∥FG,BE=FG,所以四边形BGFE是平行四边形,所以BG∥EF.又因为四边形BCHG是平行四边形,所以BG∥CH,所以EF∥CH.所以C,H,F,E四点共面.又D∈FH,FH⊂平面CHFE,所以D∈平面CHFE,所以C,D,F,E四点共面.14.解:(1)在四棱锥P-ABCD中,因为PO⊥平面ABCD,所以∠PBO是PB与平面ABCD所成的角,即∠PBO=60°.因为BO=AB·sin 30°=1,PO⊥OB,所以在Rt△POB中,PO=BO·tan 60°=, 又因为底面菱形的面积S菱形ABCD=2.所以四棱锥P-ABCD的体积V=×2×=2.(2)取AB的中点F,连接EF,DF.因为E为PB的中点,所以EF∥PA.所以∠DEF为异面直线DE与PA所成的角(或其补角).在Rt△AOB中,AO=AB·cos 30°==OP,所以在Rt△POA中,PA=,所以EF=.因为四边形ABCD为菱形,且∠DAB=60°,所以△ABD为正三角形,所以DF=.又因为∠PBO=60°,BO=1,所以PB=2,所以PB=PD=BD,即△PBD为正三角形,所以DE=.所以cos∠DEF=-=-==.15.[解析] 由题意,当△PEQ的周长取得最小值时,点P在B1C1上.在平面B1C1CB上,设E关于B1C的对称点为N,关于B1C1的对称点为M,则EM=2,EN=,∠MEN=135°,∴MN=--.16.[解析] 取BF的中点N,连接MN,EN,则EN∥AF,所以直线EN与EM所成的角就是异面直线EM 与AF所成的角.在△EMN中,当点M与点P重合时,EM⊥AF,所以当点M逐渐趋近于点Q时,直线EN 与EM的夹角越来越小,cos θ越来越大.故当点M与点Q重合时,cos θ取最大值.设正方形的边长为4,连接EQ,NQ,在△EQN中,由余弦定理,得cos∠QEN=-==-,所以cos θ的最大值为.课时作业(四十)1. C[解析] A选项中的两条直线可能平行也可能异面或相交;B选项中,若两垂直平面与已知直线所成的角都是45°,则满足条件但不满足结论;D选项中的两平面也可能相交.易知C选项的命题正确.2. B[解析] 如图所示,连接BD,与AC交于点O,连接OE.在正方体ABCD-A1B1C1D1中,∵E为DD1的中点,∴O是BD的中点,∴OE∥BD1,∵OE⊂平面ACE,BD1⊄平面ACE,∴BD1∥平面ACE.3. C[解析] 若l∥α,则在α内的直线与l平行或异面,故①正确,②错误.由面面平行的性质知③正确.对于④,在β内有无数条直线与l平行,故④错误.故选C.4.l⊄α[解析] 由直线与平面平行的判定定理可知,⇒l∥α,故答案为l⊄α.5.AC=BD [解析] 在三棱锥A-BCD中,∵E,F,G,H分别是棱AB,BC,CD,DA的中点,∴EH BD,FG BD,∴EH FG,∴四边形EFGH为平行四边形.∵四边形EFGH为菱形,∴EF=EH,又EF AC,∴AC=BD,即当AC,BD满足条件AC=BD时,四边形EFGH为菱形.6. C[解析] 如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD,∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD,∴CD∥平面EFGH.同理AB∥平面EFGH.故选C.7. C[解析] 若l∥α,l∥β,则α∥β或α∩β=a,故A为假命题;若α⊥β,l∥α,则l⊂β,或l∥β,或l⊥β,故B为假命题;若l⊥α,l∥β,则过l作平面γ,设γ∩β=c,则l∥c,故c⊥α,又c⊂β,故α⊥β,即C为真命题;若l∥α,α∥β,则l⊂β,或l∥β,故D为假命题.故选C.8. B[解析] 设l∩α=P,则α内经过点P的直线都与l相交,可排除A;α内不经过点P的直线与l不相交,可排除D;若α内有直线与l平行,则有l∥α,与已知条件矛盾,可排除C.故选B.9. A[解析] ∵在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1.连接AD1,∵BC1∥AD1,∴FG∥AD1,∵FG⊄平面AA1D1D,AD1⊂平面AA1D1D,∴FG∥平面AA1D1D,故①正确;连接A1C1,∵EF∥A1C1,A1C1与平面BC1D1相交,∴EF与平面BC1D1相交,故②错误;∵FG∥BC1,FG⊄平面BC1D1,BC1⊂平面BC1D1,∴FG∥平面BC1D1,故③正确;∵EF与平面BC1D1相交,∴平面EFG与平面BC1D1相交,故④错误.故选A.10. B[解析] 取B1C1的中点M,BB1的中点N,连接A1M,A1N,MN.可以证明平面A1MN∥平面AEF,所以点P位于线段MN上.因为A1M=A1N==,MN==,所以当点P位于M或N处时,A1P最大,当点P位于MN的中点O处时,A1P最小,易知A1O==,所以A1O≤A1P≤A1M,即≤A1P≤,所以线段A1P长度的取值范围是,故选B.11.A1C1,BB1[解析] ∵点E,F分别是棱B1C1,A1B1的中点,∴EF∥A1C1,又EF⊂平面ACEF,A1C1⊄平面ACEF,∴A1C1∥平面ACEF.∵AB∥A1B1,A1B1=2AB,FB1=A1B1,∴AB FB1,∴四边形ABB1F是平行四边形,∴AF∥BB1,又AF⊂平面ACEF,BB1⊄平面ACEF,∴BB1∥平面ACEF.12.M∈线段FH [解析] 连接FH,HN,FN.由题意知HN∥平面B1BDD1,FH∥平面B1BDD1,且FH∩HN=H,∴平面NHF∥平面B1BDD1,∴当M在线段HF上运动时,有MN∥平面B1BDD1.13.证明:(1)连接SB.∵E,G分别是BC,SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD.∵F,G分别是DC,SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1.又EG∥平面BDD1B1,EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.14.解:(1)证明:如图所示,取PA的中点E,连接EN,BE.∵E是PA的中点,N是PD的中点,∴EN=AD,EN∥AD.又∵BC=AD,BC∥AD,∴EN∥BC,EN=BC,∴四边形BCNE是平行四边形.∴CN∥BE,又∵BE⊂平面ABP,CN⊄平面ABP,∴NC∥平面PAB.(2)Q是PA的一个四等分点,且PQ=PA.证明如下:取PE的中点Q,连接MQ,NQ.∵M是PB的中点,∴MQ∥BE.又∵CN∥BE,∴MQ∥CN,∴Q∈平面MCN,又∵Q∈PA,∴PA∩平面MCN=Q,∴PQ=PE=PA,∴Q是PA的靠近P的一个四等分点.15.解:(1)证明:因为点F在平面ABED内的正投影为G,所以FG⊥平面ABED,所以FG⊥GE.因为BC=EF=,FG=,所以GE=.因为四边形ABED是边长为2的菱形,且∠ABE=,所以AE=2,则AG=.过点G作GH∥AD交DE于点H,连接FH.可得==,又AD=2,所以GH=,又CM=CF,CF=2,所以MF=,所以GH=MF.又GH∥AD∥MF,所以四边形GHFM为平行四边形,得MG∥FH,又因为GM⊄平面DEF,FH⊂平面DEF,所以GM∥平面DEF.(2)连接GD.由(1)知GM∥平面DEF,所以V三棱锥M-DEF=V三棱锥G-DEF,又因为V三棱锥G-DEF=V三棱锥F-DEG=FG·S△DEG=FG·S△DAE=,所以V三棱锥M-DEF=.课时作业(四十一)1. C[解析] 由a⊥α,α⊥β,得a∥β或a⊂β,又b⊥β,所以a⊥b;反之若a⊥b,则α⊥β也成立.2. B[解析] 若α⊥β,m⊂α,n⊂β,则m与n相交、平行或异面,故A错误;∵m⊥α,m∥n,∴n⊥α,又∵n∥β,∴α⊥β,故B正确;若m⊥n,m⊂α,n⊂β,则α与β平行或相交,故C错误;若α∥β,m⊂α,n⊂β,则m∥n或m,n异面,故D错误.3. C[解析] ∵α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l.4. 4[解析] ∵PA⊥平面ABC,∴PA⊥AB,PA⊥AC,PA⊥BC,则△PAB,△PAC为直角三角形.又BC⊥AC,且AC∩PA=A,∴BC⊥平面PAC,∴BC⊥PC.因此△ABC,△PBC也是直角三角形.5.②[解析] 因为l⊥α,m∥α,所以l⊥m,①为假命题;因为l⊥α,α∥β,所以l⊥β,又m⊂β,所以l⊥m,②为真命题;由l⊥m,直线m⊂平面β,不能推出直线l垂直于平面β,所以不能得到α∥β,③为假命题;对于④,直线l与m 还可以相交或异面,④为假命题.6. B[解析] α⊥β,且m⊂α⇒m⊂β,或m∥β,或m与β相交,故A不正确;m∥n,且n⊥β⇒m⊥β,故B正确;α⊥β,且m∥α⇒m⊂β,或m∥β,或m与β相交,故C不正确;由m⊥n,且n∥β,知m⊂β或m∥β或m与β相交,故D不正确.7. B[解析] 当AC=1时,因为CD=1,AD=,所以AC2+CD2=AD2,即AC⊥CD,又BC⊥CD,BC∩AC=C,所以CD⊥平面ACB,所以CD⊥AB.故选B.8. A[解析] 设点C到平面A1DM的距离为h,则由已知,得DM=A1M==a,A1D=a,=×a×-=a2.连接CM,CA1,则S△CDM=a2,由三棱锥-=三棱锥-,得·h=S△CDM·a,即a2·h=a2·a,所以h=a,即点C到平面A1DM的距离为a,故选A.9. C[解析] 如果平面α外的直线a不平行于平面α,则a与α相交,则α内不存在与a平行的直线,故A正确;如图所示,α⊥γ,α∩γ=a,β⊥γ,β∩γ=b,α∩β=l,在γ内取一点P,过P作PA⊥a于A,作PB⊥b于B,由面面垂直的性质可得PA⊥l,PB⊥l,则l⊥γ,故B正确; 如果平面α⊥平面β,那么平面α内的直线l与平面β有三种位置关系:l∥β,l⊂β,l与β相交,故C错误;一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交,故D正确.故选C.10. A[解析] 如图所示,记AC与BD的交点为O,连接EM,EN.对于①,在正四棱锥S-ABCD中,AC⊥BD,SO⊥底面ABCD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD.∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故①正确.对于②,由异面直线的定义可知,当点P不与点M重合时,EP与BD是异面直线,EP∥BD不恒成立,因此②不正确.对于③,由①可知,平面EMN∥平面SBD,∴EP∥平面SBD,因此③正确.对于④,由①可得,EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E矛盾,因此当P与M不重合时,EP与平面SAC不垂直,即④不正确.故选A.11.①②③[解析] 由题意知PA⊥平面ABC,∴PA⊥BC.又AC⊥BC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥AF.∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.12.a或2a [解析] 由题意易知B1D⊥平面ACC1A1,所以B1D⊥CF.要使CF⊥平面B1DF,只需CF⊥DF即可.令CF⊥DF,设AF=x,则A1F=3a-x.由Rt△CAF∽Rt△FA1D,得=,=,即-整理得x2-3ax+2a2=0,解得x=a或x=2a.13.解:(1)证明:连接AF,则AF=,又DF=,AD=2,∴DF2+AF2=AD2,∴DF⊥AF.∵PA⊥平面ABCD,∴DF⊥PA,又PA∩AF=A,∴DF⊥平面PAF,又PF⊂平面PAF,∴DF⊥PF.(2)连接EP,ED,EF.∵S△EFD=S矩形ABCD-S△BEF-S△ADE-S△CDF=2-=,∴V三棱锥P-EFD=S△EFD·PA=××1=.设点E到平面PFD的距离为h,则由V三棱锥E-PFD=V三棱锥P-EFD,得S△PFD·h=×·h=,解得h=,即点E 到平面PFD的距离为.14.证明:(1)取PC的中点N,连接MN,BN,如图所示.∵N为PC的中点,M为PD的中点,∴MN∥CD,MN=CD,又AB∥CD,AB=CD,∴MN∥AB,MN=AB,∴四边形ABNM是平行四边形.∴AM∥BN,又∵AM⊄平面PBC,BN⊂平面PBC,∴AM∥平面PBC.(2)在等腰梯形ABCD中,取CD的中点T,连接AT,BT.∵AB=CD,AB∥CD,∴AB∥DT,AB=DT,∴四边形ABTD为平行四边形.又AB=AD,∴四边形ABTD为菱形,∴AT⊥BD.同理,四边形ATCB为菱形,∴AT∥BC,又AT⊥BD,∴BC⊥BD.∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,CP⊥CD,∴CP⊥平面ABCD,又BD⊂平面ABCD,∴CP⊥BD,又∵BC⊥BD,BC∩CP=C,∴BD⊥平面PBC,又BD⊂平面BDP,∴平面BDP⊥平面PBC.15.解:(1)当AP=AB时,有AD∥平面MPC.理由如下.如图所示,连接BD交MC于N,连接NP.在梯形MBCD中,DC∥MB,∴==.∵在△ADB中,=,∴AD∥PN.∵AD⊄平面MPC,PN⊂平面MPC,∴AD∥平面MPC.(2)∵平面AMD⊥平面MBCD,平面AMD∩平面MBCD=DM,AM⊂平面AMD,AM⊥DM,∴AM⊥平面MBCD.∴V三棱锥P-MBC=×S△MBC×=××2×1×=.在△MPC中,MP=AB=,MC=,PC==,∴S△MPC=××-=,∴点B到平面MPC的距离d=三棱锥-==.。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行2.若3sin (0)52x x π=--<<,则tan x =_____________.二、填空题3.如图,有一圆柱形的开口容器(下表面密封),其轴截面是边长为2的正方形,P 是BC 中点,现有一只蚂蚁位于外壁A 处,内壁P 处有一米粒,则这只蚂蚁取得米粒所需经过的最短路程为 .4.把半径为3cm ,中心角为π32的扇形卷成一个圆锥形容器,这个容器的容积为:__________.5.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________(2013年高考上海卷(理))6.空间中可以确定一个平面的条件是 _.(填序号) ①两条直线; ②一点和一直线; ③一个三角形; ④三个点.7.设,,a b g 为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若,,//,//,m n m n ⊂⊂a a b b 则//a b ; ②//,,l ⊂a b a 若则//l b ; ③,,,//,l m n l m ===若ab bg ga 则 //m n ; ④若⊥⊥a gb g ,,则//a b ; 则其中所有正确命题的序号是 ▲ .8.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.9.设正四棱锥的侧棱长为1,则其体积的最大值为 ▲ .10.如图,在边长为a 的正方体ABCD-A 1B 1C 1D 1中,E 是棱AB 上一点,M 是棱D 1C 1上一点,则三棱锥M-DEC 的体积是 ▲11.给出下列命题:DABC1C1D 1A1BD C1A 1B 1C 1D .EBAM.(第6题图)(1)若直线a 在平面α外,则直线a 与平面α没有公共点;(2)两个平面平行的充分条件是其中一个平面内有无数条直线平行于另一个平面; (3)设a 、b 、c 是同一平面内三条不同的直线,若a ⊥b ,a ⊥c ,则b ∥c ; (4)垂直于同一平面的两个平面平行;(5)若,a b 为异面直线,则过不在,a b 上的任一点,可作一个平面与,a b 都平行. 上面命题中,真命题...的序号是 .12.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 . (2011年高考全国卷理科16)13.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,,AB BC PA AB BC ⊥==,则PB 与平面ABC 所成的角为_______,PC 与平面PAB 所成的角的正切值等于____________ CBAP14.在长方体1111ABCD A B C D -中,若13,4AB BC AA ===,求1A B 和1B C 所成角的余弦值。
《金版新学案》高三一轮总复习[B师大]数学文科高效测评卷(七)第七章立体几何—————————————————————————————————————【说明】本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题格内,第Ⅱ卷可在各题后直接作答,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)只有一项是符合题目要求的)1.在空间中,“两条直线没有公共点”是“这两条直线平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.下列四个命题中,真命题的个数为()①如果两个平面有三个公共点,那么这两个平面重合②两条直线可以确定一个平面③若M∈α,M∈β,α∩β=l,则M∈l④空间中,相交于同一点的三条直线在同一平面内A.1 B.2C.3 D.43.一个空间几何体的主视图、左视图都是面积为32,且一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为()A.2 3 B.4 3C.4 D.84.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A .54B .54πC .58D .58π5.设三条不同的直线a 、b 、c ,两个不同的平面α,β,b α,c α.则下列命题不成立的是( )A .若α∥β,c ⊥α,则c ⊥βB .“若b ⊥β,则α⊥β”的逆命题C .若a 是c 在α的射影,b ⊥a ,则c ⊥bD .“若b ∥c ,则c ∥α”的逆否命题6.已知m ,n 为不同的直线,α,β为不同的平面,给出下列命题:①⎩⎪⎨⎪⎧ m ⊥αm ⊥n ⇒n ∥α;②⎩⎪⎨⎪⎧m ⊥βn ⊥β⇒n ∥m ; ③⎩⎪⎨⎪⎧m ⊥αm ⊥β⇒β∥α;④⎩⎪⎨⎪⎧m ⊂αn ⊥βα⊥β⇒m ∥n .其中正确的是( ) A .②③ B .③④ C .①②D .①②③④7.设P 是平面α外一点,且P 到平面α内的四边形的四条边的距离都相等,则四边形是( )A .梯形B .圆外切四边形C .圆内接四边形D .任意四边形8.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b .其中真命题的序号是( ) A .①② B .②③ C .①④D .③④9.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2 D .5πa 210.正四棱柱ABCD -A1B 1C 1D 1中,AB =3,BB 1=4,长为1的线段PQ在棱AA1上移动,长为3的线段MN在棱CC1上移动,点R在棱BB1上移动,则四棱锥R-PQMN的体积是()A.6 B.10C.12 D.不确定11.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m ∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β12.设α,β,γ是三个互不重合的平面,m,n是直线,给出下列命题:①α⊥β,β⊥γ,则α⊥γ;②若α∥β,mβ,m∥α,则m∥β;③若m,n在γ内的射影互相垂直,则m⊥n;④若m∥α,n∥β,α⊥β,则m⊥n.其中正确命题的个数为()A.0 B.1C.2 D.3第Ⅱ卷(非选择题共90分)) 13.如图,一个空间几何体的主视图左视图和左视图都是边长为2的正三角形,俯视图是一个圆,那么该几何体的体积是________.14.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的图的序号).15.如图,在长方体ABCD-A1B1C1D1中,AB=6,AD=4,AA1=3,分别过BC,A1D1的两个平行截面将长方体分成三部分,其体积分别记为V1=VAEA1-DFD1,V2=VEBE1A1-FCF1D1,V3=VB1E1B-C1F1C.若V1∶V2∶V3=1∶4∶1,则截面A1EFD1的面积为________.16.如图,在棱长为a的正方体ABCD-A1B1C1D1中,点E为AA1的中点,在对角面BDD1B1上取一点M,使AM+ME最小,其最小值为________.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)一几何体的三视图如下:(1)画出它的直观图,并求其体积;(2)你能发现该几何体的哪些面互相垂直?试一一列出.18.(12分)如图,在三棱锥P-ABC中,△PAC和△PBC是边长为2的等边三角形,AB =2,O是AB中点.(1)在棱P A上求一点M,使得OM∥平面PBC;(2)求证:平面P AB⊥平面ABC.19.(12分)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).20.(12分)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF ∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B-DEF的体积. 【解析方法代码108001099】21.(12分)一个空间几何体G-ABCD的三视图如图所示,其中A i、B i、C i、D i、G i(i =1,2,3)分别是A、B、C、D、G五点在直立、侧立、水平三个投影面内的投影.在主视图中,四边形A1B1C1D1为正方形,且A1B1=2a;在左视图中,A2D2⊥A2G2;在俯视图中,A3G3=B3G3.(1)根据三视图作出空间几何体G-ABCD的直观图,并标明A、B、C、D、G五点的位置;(2)在空间几何体G-ABCD中,过点B作平面AGC的垂线,若垂足H在直线CG上,求证:平面AGD⊥平面BGC;(3)在(2)的条件下,求三棱锥D-ACG的体积及其外接球的表面积.22.(14分)如图所示,在三棱柱ABC-A1B1C1中,侧面A1ABB1和BCC1B1是两个全等的正方形,AC1⊥平面A1DB,D为AC的中点.(1)求证:平面A1ABB1⊥平面BCC1B1;(2)求证:B1C∥平面A1DB;(3)设E是CC1上一点,试确定点E的位置,使平面A1DB⊥平面BDE,并说明理由.答案一、选择题1.B 在空间中,两条直线没有公共点,可能是两条直线平行,也可能是两条直线异面,两条直线平行则两条直线没有公共点,∴“两条直线没有公共点”是“这两条直线平行”的必要不充分条件.2.A ①两个平面有三个公共点,若这三个公共点共线,则这两个平面相交,故①不正确;两异面直线不能确定一个平面,故②不正确;在空间交于一点的三条直线不一定共面(如墙角),故④不正确;据平面的性质可知③正确.3.C 由几何体的三视图可得,此几何体是由两个正四棱锥底面重合在一起组成的,由主视图的面积为32,得菱形的边长为1,此几何体的表面积为S =8×12×1×1=4. 4.A 设圆台的上、下底面半径分别为r ,R ,截去的圆锥与原圆锥的高分别为h ,H ,则r R =hH, 又πR 2=9·πr 2,∴R =3r , ∴H =3h .∴13πR 2·H -13πr 2h =52. 即13πR 2·H -13π·19R 2·13=52,∴13πR 2H =54. 5.B 命题C 即为三垂线定理;命题D 中的原命题即为线面平行的判定定理,所以D 正确;命题A 显然成立;对于命题B ,若α⊥β,则b 与β的位置关系都有可能.6.A 命题①的结论中,应为n ∥α或n ⊂α.命题①错误;命题②即为直线与平面垂直的性质定理.命题②正确;命题③显然成立;命题④的结论中,应为m ∥n 或m 与n 相交或m 与n 成异面直线才成立.命题④错误.7.B P 到平面α内的四边形的四条边的距离都相等,则P 在平面α内的射影到四边形的四条边的距离也都相等,故四边形有内切圆.8.C 由平行公理可知①正确;②不正确,若三条直线在同一平面内,则a ∥c ;③不正确,a 与b 有可能平行,也有可能异面或相交;由线面垂直的性质可知④正确.9.B 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a . 如图,设O 、O 1分别为下、上底面中心,且球心O 2为O 1O 的中点,又AD =32a ,AO =33a ,OO 2=a2, 设球的半径为R ,则R 2=AO 22=13a 2+142=712a 2.∴S 球=4πR 2=4π×712a 2=73πa 2.10.A 四棱锥R -PQMN 的底面积为 S =S △PQM +S △MNP =12PQ ·AC +12MN ·AC =12(PQ +MN )·AC =12(1+3)×32=6 2. 其高h =322,V R -PQMN =13Sh =13×62×322=6. 11.D ∵m ∥α,m ∥β,α∩β=l ,∴m ∥l . ∵AB ∥l ,∴AB ∥m .故A 一定正确.∵AC ⊥l ,m ∥l ,∴AC ⊥m .从而B 一定正确. ∵A ∈α,AB ∥l ,l α,∴B ∈α. ∴AB β,l β.∴AB ∥β.故C 也正确.∵AC ⊥l ,当点C 在平面α内时,AC ⊥β成立,当点C 不在平面α内时,AC ⊥β不成立.故D 不一定成立.12.B 本题为线面位置关系的判定,注意对线面平行与垂直的判定定理与性质定理的应用.①错,当两平面同时垂直于一个平面时,这两个平面也可以平行,如正方体相对的两个平面;②正确,不妨过直线m 作一平面与α,β同时相交,交线分别为a ,b ,由α∥β知a ∥b ,又m ∥α⇒m ∥a ,∴m ∥b ,又m ⊄β,∴m ∥β;③错,不妨设该直线为正方体的两对角线,其在底面的射影为正方形的两对角线,它们是互相垂直的,但正方体的两对角线不垂直;④错,以正方形两平行棱,或一条棱及与其相交的面对角线为例,可找到反例.二、填空题13.解析: 由三视图知该几何体是底面半径为1,高为3的圆锥. 因此,其体积V =132×3=33π.答案:33π 14.解析: 图①为空间四边形D ′OEF 在前面(或后面)上的投影.图②为空间四边形D ′OEF 在左面(或右面)上的投影.图③为空间四边形D ′OEF 在上面(或下面)上的投影.答案: ①②③15.解析: 设AE =x ,BE =6-x ,V 1=VAEA 1-DFD 1,V 2=VEBE 1A 1-FCF 1D 1,V 3=VB 1E 1B -C 1F 1C ,且V 1∶V 2∶V 3=1∶4∶1,所以12×(3x )×4∶(6-x )×3×4∶12×(3x )×4=1∶4∶1,解得x =AE =2,∴A 1E =A 1A 2+AE 2=13, ∴SA 1EFD 1=413. 答案: 41316.解析: 取CC 1的中点F ,连接EF ,EF 交平面BB 1D 1D 于点N ,且EN =FN , 所以F 点是E 点关于平面BB 1D 1D 的对称点, 则AM +ME =AM +MF ,所以当A ,M ,F 三点共线时,AM +MF 最小,即AM +ME 最小, 此时AM +MF =AF =AC 2+⎝⎛⎭⎫CC 122=3a2. 答案:32a 三、解答题17.解析: (1)该几何体的直观图如图,棱锥P -ABC ,其中PC ⊥面ABC ,∠ABC =90°,△ABC 斜边AC 上的高为125 cm ,PC=6 cm ,AC =5 cm ,∴V P -ABC =13×12×5×125×6=12(cm 3).(2)互相垂直的面分别有:面PAC ⊥面ABC ,面PBC ⊥面ABC ,面PBC ⊥面PAB . 18.解析: (1)当M 为棱P A 中点时,OM ∥平面PBC . 证明如下:∵M ,O 分别为P A ,AB 中点, ∴OM ∥PB .又PB ⊂平面PBC ,OM ⊄平面PBC , ∴OM ∥平面PBC . (2)证明:连结OC ,OP .∵AC =CB =2,O 为AB 中点,AB =2,∴OC ⊥AB ,OC =1.同理,PO ⊥AB ,PO =1.又PC =2,∴PC 2=OC 2+PO 2=2,∴∠POC =90°.∴PO ⊥OC .∵PO ⊥OC ,PO ⊥AB ,AB ∩OC =O ,∴PO ⊥平面ABC .∵PO ⊂平面PAB ,∴平面PAB ⊥平面ABC .19.解析: (1)由题意可知矩形的高即圆柱的母线长为9.6-8×2r 8=1.2-2r , ∴塑料片面积S =πr 2+2πr (1.2-2r )=πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r ).∴当r =0.4时,S 有最大值,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.20.解析:(1)证明:如图,设AC 与BD 交于点G ,则G 为AC 的中点.连接EG ,GH ,由于H 为BC 的中点,故GH 綊12. 又EF 綊12AB ,∴EF 綊GH . ∴四边形EFHG 为平行四边形.∴EG ∥FH .而EG ⊂平面EDB ,FH ⊄平面EDB ,∴FH ∥平面EDB .(2)证明:由四边形ABCD 为正方形,得AB ⊥BC .又EF ∥AB ,∴EF ⊥BC .而EF ⊥FB ,∴EF ⊥平面BFC .∴EF ⊥FH .∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC .∴FH ⊥平面ABCD .∴FH ⊥AC .又FH ∥EG ,∴AC ⊥EG .又AC ⊥BD ,EG ∩BD =G ,∴AC ⊥平面EDB .(3)∵EF ⊥FB ,∠BFC =90°,∴BF ⊥平面CDEF .∴BF 为四面体B -DEF 的高.又BC =AB =2,∴BF =FC = 2.V B -DEF =13×12×1×2× 2 =13. 21.解析: (1)空间几何体的直观图如图所示,由题意可知,平面ABCD ⊥平面ABG ,四边形ABCD 为正方形,且AG =BG ,AB =2a .(2)证明:因为过B 作平面AGC 的垂线,垂足H 在直线CG 上,所以BH ⊥平面AGC .因为AG ⊂平面AGC ,所以BH ⊥AG .又因为BC ⊥AB ,所以BC ⊥平面AGB ,所以BC ⊥AG .又因为BC ∩BH =B ,所以AG ⊥平面BGC .又因为AG ⊂面AGD ,故平面AGD ⊥平面BGC .(3)由(2)知,AG ⊥GB ,AG ⊥CG ,所以△ABG 为等腰直角三角形.过点G 作GE ⊥AB 于点E ,则GE 为G 点到平面ABCD 的距离,且GE =12AB =a ,AG =BG =2a .所以V D -ACG =V G -ADC =13×12AD ×DC ×GE =23a 3. 取AC 的中点M ,因为△AGC 和△ACD 均为直角三角形,所以MD =MG =MA =MC =12AC =2a . 所以M 是四棱锥D -ACG 的外接球的球心,半径为2a ,所以S 球=4π×(2a )2=8πa 2.22.解析: (1)证法一:∵AC 1⊥平面A 1DB ,A 1B ⊂平面A 1DB ,∴AC 1⊥A 1B ,又在正方形A 1ABB 1中,A 1B ⊥AB 1,AC 1∩AB 1=A ,∴A 1B ⊥平面AC 1B 1,又B 1C 1⊂平面AC 1B 1,∴A 1B ⊥B 1C 1.又∵在正方形BCC 1B 1中,B 1C 1⊥BB 1,又BB 1∩A 1B =B ,∴B 1C 1⊥平面A 1ABB 1,B 1C 1⊂平面B 1BCC 1,∴平面A 1ABB 1⊥平面BCC 1B 1.证法二:由已知可知三棱柱是直三棱柱,∴四边形A 1ACC 1为矩形.又AC 1⊥平面A 1DB ,A 1D ⊂平面A 1DB ,∴AC1⊥A1D.又D为AC的中点,∴AA1∶AD=AC∶CC1,1AC2=AA1·CC1=AB2,2∴AC=2AB,∴AB⊥BC,又BC⊥BB1且BB1∩AB=B,∴BC⊥平面A1ABB1,又BC⊂平面BCC1B1,∴平面A1ABB1⊥平面BCC1B.(2)证明:连结AB1交A1B于点O,连接OD,∴O为AB1中点,又D为AC中点,∴在△ACB1中,OD∥CB1.∵CB1⊄平面A1DB,OD⊂平面A1DB,∴B1C∥平面A1DB.(3)取CC1中点E,连接BE,又D为AC中点,∴在△ACC1中,DE∥AC1,又AC1⊥平面A1DB.∴DE⊥平面A1DB.又∵DE⊂平面BDE,∴平面A1DB⊥平面BDE,即当E为CC1中点时,平面A1DB⊥平面BDE.。
北京师范大学附属实验中学2019届高三下学期第一次质量评估文科数学试题本试卷共5页,满分150分.考试用时120分钟.一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合,,则A. B.C. D.以上都不对【答案】C【解析】,选C.2.银川市食品研究部门为了解一种酒品的储藏年份与芳香度之间的相关关系,在市场上收集了一部分不同年份的该酒品,并测定了其芳香度如下表.由最小二乘法得到回归方程,但不小心在检测后滴到表格上一滴检测液,污损了一个数据,请你推测该数据为( ).A. 6.8B. 6.28C. 6.5D. 6.1【答案】D【解析】【分析】求出,代入到回归直线方程,得到的值,利用平均数公式列方程即可求解污损处的数据.【详解】由表中数据,回归方程,,设污损的数据为,,解得,故选D .【点睛】本题主要考查回归方程的性质以及平均数公式的应用,属于简单题. 在求解回归直线方程的问题时一定要注意应用回归方程的重要性质:回归直线过样本点中心.3.等比数列的前项和,成等差数列,,则()A. 15B. -15C. 4D. -4【答案】A【解析】【分析】利用成等差数列求出公比即可得到结论.【详解】由题成等差数列.,即即解得,故选:A.【点睛】本题考查等比数列的前n项和的计算,根据条件求出公比是解决本题的关键.4.小明与爸爸放假在家做蛋糕,小明做了一个底面半径为10cm的等边圆锥(轴截面为等边三角形)状蛋糕,现要把1g芝麻均匀地全撒在蛋糕表面,已知1g芝麻约有300粒,则贴在蛋糕侧面上的芝麻约有A. 200B. 100C. 114D. 214【答案】A【解析】【分析】利用圆锥的侧面积和表面积公式,分别求得圆锥的侧面积和表面积的比值,即可得到答案。
【详解】由题意可知圆锥形的蛋糕的底面半径为,母线长为,所以圆锥的侧面积为,圆锥的表面积为,所以贴在蛋糕侧面上的芝麻约有,故选A。
单元评估检测(七) 立体几何初步(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.中央电视台正大综艺以前有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )图1A2.(2017·衡阳模拟)如果一个几何体的三视图如图2所示,正视图与侧视图是边长为2的正三角形,俯视图轮廓为正方形(单位:cm),则此几何体的侧面积是( )图2A.2 3 cm2B.4 3 cm2C.8 cm2D.14 cm2C3.若三棱锥的三视图如图3所示,则该三棱锥的体积为( )图3A.80 B.40C .803D .403D4.(2017·泉州模拟)设α,β是两个不同的平面,l ,m 是两条不同的直线,以下命题正确的是( )A .若l ∥α,α∥β,则l ∥βB .若l ∥α,α⊥β,则l ⊥βC .若l ⊥α,α⊥β,则l ∥βD .若l ⊥α,α∥β,则l ⊥βD5.正四面体P ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是( )A .BC ∥平面PDFB .平面PDF ⊥平面ABC C .DF ⊥平面PAED .平面PAE ⊥平面ABC B6.(2017·武汉模拟)在正三棱柱ABC A 1B 1C 1中,若AB =2,AA 1=1,则点A 到平面A 1BC 的距离为( )【导学号:00090399】A .34B .32C .334D . 3B7.如图4,四面体ABCD 中,AB =DC =1,BD =2,AD =BC =3,二面角A BD C 的平面角的大小为60°,E ,F 分别是BC ,AD 的中点,则异面直线EF 与AC 所成的角的余弦值是( )图4A .13B .33C .63D .223B8.如图5,在正方体ABCD A 1B 1C 1D 1中,下列结论错误的是( )图5A .直线BD 1与直线B 1C 所成的角为π2B .直线B 1C 与直线A 1C 1所成的角为π3C .线段BD 1在平面AB 1C 内的投影是一个点 D .线段BD 1恰被平面AB 1C 平分 D9.如图6,在矩形ABCD 中,AB =3,BC =1,E 为线段CD 上一动点,现将△AED 沿AE 折起,使点D 在平面ABC 上的投影K 在直线AE 上,当E 从D 运动到C ,则K 所形成集合的长度为( )图6A .32B .233C .π2D .π3D10.(2017·九江模拟)棱长为43的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些小球的最大半径为( )【导学号:00090400】A . 2B .22C .24D .26B11.(2017·南阳模拟)如图7是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )图7A .6+2π3B .8+π3C .4+2π3D .4+π3C12.下列命题中错误的是( )A .如果α⊥β,那么α内一定有直线平行于平面βB .如果α⊥β,那么α内所有直线都垂直于平面βC .如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面βD .如果α⊥γ,β⊥γ,α∩β=l ,那么l ⊥γ B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.半径为336π的球的体积与一个长、宽分别为6,4的长方体的体积相等,则长方体的表面积为________.8814.(2017·运城模拟)如图8,三棱柱ABC A 1B 1C 1的体积为V 1,四棱锥A BCC 1B 1的体积为V 2,则V 1V 2=________.图83215.如图9,在直三棱柱ABC A 1B 1C 1中,底面是∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .图9a 或2a16.(2017·菏泽模拟)如图10,ABCD A 1B 1C 1D 1为正方体,下面结论:图10①BD ∥平面CB 1D 1; ②AC 1⊥BD ; ③AC 1⊥平面CB 1D 1;④异面直线AD 与CB 1所成角为60°.错误的有________.(把你认为错误的序号全部写上) ④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2017·南昌模拟)如图11所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2 m ,高为7 m ,制造这个塔顶需要多少面积的铁板?图11制造这个塔顶需要8 2 m 2的铁板.18.(12分)如图12,已知四棱锥P ABCD ,PD ⊥底面ABCD ,且底面ABCD 是边长为2的正方形,M ,N 分别为PB ,PC 的中点.图12(1)证明:MN ∥平面PAD .(2)若PA 与平面ABCD 所成的角为45°,求四棱锥P ABCD 的体积V . [解] (1)因为M ,N 分别是棱PB ,PC 的中点,所以MN ∥BC , 又四边形ABCD 是正方形,所以AD ∥BC ,于是MN ∥AD .⎭⎪⎬⎪⎫MN ∥ADAD ⊂平面PAD MN ⊄平面PAD ⇒MN ∥平面PAD . (2)由PD ⊥底面ABCD ,知PA 与平面ABCD 所成的角为∠PAD ,所以∠PAD =45°, 在Rt △PAD 中,知PD =AD =2,故四棱锥P ABCD 的体积V =13×4×2=83.19.(12分)如图13,在三棱柱ABC A 1B 1C 1中,侧面ABB 1A 1⊥底面ABC ,CA =CB ,D ,E ,F 分别为AB ,A 1D ,A 1C 的中点,点G 在AA 1上,且A 1D ⊥EG .图13(1)求证:CD ∥平面EFG . (2)求证:A 1D ⊥平面EFG . 略20.(12分)(2016·全国卷Ⅲ)如图14,四棱锥P ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.图14(1)证明MN ∥平面PAB ;(2)求四面体N BCM 的体积. 【导学号:00090401】 (1)略 (2)45321.(12分)(2017·新乡模拟)如图15①,在三角形PCD 中,AB 为其中位线,且2BD =PC ,若沿AB 将三角形PAB 折起,使∠PAD =θ,构成四棱锥P ABCD ,且PC PF =CD CE=2,如图15②. (1)求证:平面BEF ⊥平面PAB .(2)当异面直线BF 与PA 所成的角为60°时,求折起的角度θ.图15[解] (1)因为2BD =PC ,所以∠PDC =90°,因为AB ∥CD ,且PC PF =CD CE=2,所以E 为CD 的中点,F 为PC 的中点,CD =2AB ,所以AB ∥DE 且AB =DE ,所以四边形ABED 为平行四边形,所以BE ∥AD ,BE =AD , 因为BA ⊥PA ,BA ⊥AD ,且PA ∩AD =A ,所以BA ⊥平面PAD ,因为AB ∥CD ,所以CD ⊥平面PAD ,又因为PD ⊂平面PAD ,AD ⊂平面PAD ,所以CD ⊥PD 且CD ⊥AD ,又因为在平面PCD 中,EF ∥PD (三角形的中位线),于是CD ⊥FE . 因为在平面ABCD 中,BE ∥AD , 于是CD ⊥BE ,因为FE ∩BE =E ,FE ⊂平面BEF ,BE ⊂平面BEF ,所以CD ⊥平面BEF , 又因为CD ∥AB ,AB 在平面PAB 内,所以平面BEF ⊥平面PAB .(2)因为∠PAD =θ,取PD 的中点G ,连接FG ,AG ,所以FG ∥CD ,FG =12CD ,又AB ∥CD ,AB =12CD ,所以FG∥AB ,FG =AB ,从而四边形ABFG 为平行四边形,所以BF ∥AG ,所以BF 与PA 所成的角即为AG 与PA 所成的角,即∠PAG =60°,因为PA =AD ,G 为PD 中点,所以AG ⊥PD ,∠APG =30°,所以∠PDA =30°,所以∠PAD =180°-30°-30°=120°.故折起的角度为120°.22.(12分)正方形ADEF 与梯形ABCD 所在平面互相垂直,AD ⊥CD ,AB ∥CD ,AB =AD =12CD =2,点M 在线段EC 上且不与E ,C 重合.图16(1)当点M 是EC 中点时,求证:BM ∥平面ADEF . (2)当平面BDM 与平面ABF 所成锐二面角的余弦值为66时,求三棱锥M BDE 的体积. [解] (1)取ED 的中点N ,连接MN ,AN ,又因为点M 是EC 的中点, 所以MN ∥DC ,MN =12DC ,而AB ∥DC ,AB =12DC ,所以MN 綊AB ,所以四边形ABMN 是平行四边形, 所以BM ∥AN ,而BM ⊄平面ADEF ,AN ⊂平面ADEF , 所以BM ∥平面ADEF .(2)取CD 的中点O ,过点O 作OP ⊥DM ,连接BP ,BO , 因为AB ∥CD ,AB =12CD =2,所以四边形ABOD 是平行四边形, 因为AD ⊥DC ,所以四边形ABOD 是矩形, 所以BO ⊥CD ,因为正方形ADEF 与梯形ABCD 所在平面互相垂直,ED ⊥AD , 所以ED ⊥平面ADCB , 所以平面CDE ⊥平面ADCB , 所以BO ⊥平面CDE , 所以BP ⊥DM ,所以∠OPB 是平面BDM 与平面DCE (即平面ABF )所成锐二面角, 因为cos ∠OPB =66, 所以sin ∠OPB =306, 所以OB BP =306,解得BP =2305. 所以OP =BP cos ∠OPB =255,所以sin ∠MDC =OP OD =55, 而sin ∠ECD =225=55,所以∠MDC =∠ECD ,所以DM =MC ,同理DM =EM ,所以M 为EC 的中点, 所以S △DEM =12S △CDE =2,因为AD ⊥CD ,AD ⊥DE , 且DE 与CD 相交于点D , 所以AD ⊥平面CDE , 因为AB ∥CD ,所以三棱锥B DME 的高=AD =2, 所以V M BDE =V B DEM =13S △DEM ·AD =43.。
第五节 垂直关系[考纲传真] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.(对应学生用书第104页) [基础知识填充]1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l 与平面α内的任何直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理⎭⎪⎬⎪⎫l ⊥a l ⊥ba ∩b =O a αb α⇒l ⊥α2 (1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理⎭⎪⎬⎪⎫l ⊥αl β⇒α⊥β⎭⎪⎬⎪⎫α⊥βα∩β=al ⊥a l β⇒l ⊥α1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. 2.一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直. 3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( ) (2)垂直于同一个平面的两平面平行.( )(3)若两条直线与一个平面所成的角相等,则这两条直线平行.( )(4)若两个平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( ) [答案] (1)× (2)× (3)× (4)×2.(教材改编)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α,m β.( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥βD .若α∥β,则l ∥mA [∵l ⊥β,l α,∴α⊥β(面面垂直的判定定理),故A 正确.]3.(2016·浙江高考)已知互相垂直的平面α,β交于直线l .若直线m ,n 满足 m ∥α,n ⊥β,则() A .m ∥l B .m ∥n C .n ⊥lD .m ⊥nC [∵α∩β=l ,∴l β. ∵n ⊥β,∴n ⊥l .]4.如图751,已知PA ⊥平面ABC ,BC ⊥AC ,则图中直角三角形的个数为________. 【导学号:00090253】图7514 [∵PA ⊥平面ABC ,∴PA ⊥AB ,PA ⊥AC ,PA ⊥BC , 则△PAB ,△PAC 为直角三角形. 由BC ⊥AC ,且AC ∩PA =A , ∴BC ⊥平面PAC ,从而BC ⊥PC . 因此△ABC ,△PBC 也是直角三角形.]5.边长为a 的正方形ABCD 沿对角线BD 折成直二面角,则折叠后AC 的长为________.a [如图所示,取BD 的中点O ,连接A ′O ,CO ,则∠A ′OC 是二面角A ′BD C 的平面角.即∠A ′OC =90°,又A ′O =CO =22a , ∴A ′C =a 22+a 22=a ,即折叠后AC 的长(A ′C )为A .](对应学生用书第105页)如图⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:图752(1)CD ⊥AE ; (2)PD ⊥平面ABE .[证明] (1)在四棱锥P ABCD 中,∵PA ⊥平面ABCD ,CD 平面ABCD ,∴PA ⊥CD .又∵AC ⊥CD ,且PA ∩AC =A ,∴CD ⊥平面PAC .而AE 平面PAC ,∴CD ⊥AE . (2)由PA =AB =BC ,∠ABC =60°,可得AC =PA .∵E 是PC 的中点,∴AE ⊥PC .由(1)知AE ⊥CD ,且PC ∩CD =C ,∴AE ⊥平面PCD . 又PD 平面PCD ,∴AE ⊥PD . ∵PA ⊥底面ABCD ,∴PA ⊥AB .又∵AB ⊥AD ,且PA ∩AD =A ,∴AB ⊥平面PAD ,而PD 平面PAD , ∴AB ⊥PD .又AB ∩AE =A ,∴PD ⊥平面ABE . [规律方法]1.证明直线与平面垂直的常用方法 (1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”. (3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”. (4)利用面面垂直的性质定理. 2.证明线线垂直的常用方法 (1)利用特殊图形中的垂直关系. (2)利用等腰三角形底边中线的性质. (3)利用勾股定理的逆定理. (4)利用直线与平面垂直的性质.[变式训练1] 如图753所示,在四棱锥P ABCD 中,AB ⊥平面PAD ,AB ∥CD ,PD =AD ,E是PB 的中点,F 是DC 上的点,且DF =12AB ,PH 为△PAD 中AD 边上的高.图753(1)证明:PH ⊥平面ABCD ; (2)证明:EF ⊥平面PAB .[证明] (1)因为AB ⊥平面PAD ,PH 平面PAD ,所以PH ⊥AB . 因为PH 为△PAD 中AD 边上的高,所以PH ⊥AD . 因为AB ∩AD =A ,AB ,AD 平面ABCD , 所以PH ⊥平面ABCD .(2)如图所示,取PA 的中点M ,连接MD ,ME .因为E 是PB 的中点,所以ME 綊12AB .又因为DF 綊12AB ,所以ME 綊DF ,所以四边形MEFD 是平行四边形, 所以EF ∥MD .因为PD =AD ,所以MD ⊥PA . 因为AB ⊥平面PAD ,所以MD ⊥AB . 因为PA ∩AB =A ,所以MD ⊥平面PAB , 所以EF ⊥平面PAB .分别为AC ,BC的中点.图754(1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH . [证明] (1)如图所示,连接DG ,CD ,设CD ∩GF =M ,连接MH .1分在三棱台DEF ABC 中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.3分则M为CD的中点,又H为BC的中点,所以HM∥BD,由于HM平面FGH,BD平面FGH,故BD∥平面FGH. 5分(2)连接HE,GE,CD,因为G,H分别为AC,BC的中点,所以GH∥AB.6分由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE. 10分由于CF⊥BC,所以HE⊥BC.又HE,GH平面EGH,HE∩GH=H.所以BC⊥平面EGH.又BC平面BCD,所以平面BCD⊥平面EGH. 12分[规律方法] 1.面面垂直的证明的两种思路:(1)用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线;(2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角,把证明面面垂直的问题转化为证明平面角为直角的问题.2.垂直问题的转化关系:[变式训练2] (2017·全国卷Ⅰ)如图755,在四棱锥PABCD中,AB∥CD,且∠BAP=∠CDP=90°。
第七章立体几何阶段检测试题时间:120分钟分值:150分一、选择题(每小题5分,共60分)1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案:B2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:由BC綊AD,AD綊A1D1知,BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1C,EF∩D1C=F,则A1B与EF相交.答案:A3.(2017·嘉兴月考)对于空间的两条直线m,n和一个平面α,下列命题中的真命题是( )A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n解析:对A,直线m,n可能平行、异面或相交,故选项A错误;对B,直线m与n可能平行,也可能异面,故选项B错误;对C,m与n垂直而非平行,故选项C错误;对D,垂直于同一平面的两直线平行,故选项D正确.答案:D4.设P是异面直线a,b外的一点,则过点P与a,b都平行的平面()A.有且只有一个B.恰有两个C.不存在或只有一个D.有无数个解析:过点P作a1∥a,b1∥b,若过a1,b1的平面不经过a,b,则存在一个平面同时与a,b平行;若过a,b1的平面经过a或b,则不存在这样的平面同时与a,b平行.1答案:C5.若平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面解析:由平面α∥平面β知,直线AC与BD无公共点,则直线AC∥直线BD的充要条件是A,B,C,D四点共面.答案:D6.已知a,b为两条不同的直线,α,β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是()A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a,b相交,则α,β相交D.若α,β相交,则a,b相交解析:若α,β相交,则a,b可能相交,也可能异面,故D为假命题.答案:D7.一个几何体的侧视图和俯视图如图所示,若该几何体的体积为错误!,则它的正视图为()解析:由几何体的侧视图和俯视图,可知几何体为组合体,由几何体的体积为错误!,可知上方为棱锥,下方为正方体.由俯视图可得,棱锥顶点在底面上的射影为正方形一边上的中点,顶点到正方体上底面的距离为1,所以选B.答案:B8.已知一个几何体的三视图如图所示,则该几何体的体积为()A.27-错误!B.18-错误!C.27-3πD.18-3π解析:由几何体的三视图可知该几何体可以看成是底面是梯形的四棱柱挖去了半个圆柱,所以所求体积为错误!×(2+4)×2×3-错误!π×12×3=18-错误!。
重点强化训练(一) 函数的图像与性质A 组 基础达标 (建议用时:30分钟)一、选择题1.设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=( ) A .-12B.12 C .2D .-2B [因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.]2.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( ) A .-3 B .-1 C .1D .3C [用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1,故选C.]3.函数f (x )=3x+12x -2的零点所在的一个区间是( ) 【导学号:00090050】A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)C [因为函数f (x )在定义域上单调递增, 又f (-2)=3-2-1-2=-269<0,f (-1)=3-1-12-2=-136<0, f (0)=30+0-2=-1<0,f (1)=3+12-2=32>0,所以f (0)f (1)<0,所以函数f (x )的零点所在区间是(0,1).]4.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log12a )≤2f (1),则a 的取值范围是( )A .[1,2]B.⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]C [∵f (log 12a )=f (-log 2a )=f (log 2a ),∴原不等式可化为f (log 2a )≤f (1).又∵f (x )在区间[0,+∞)上是增加的,∴0≤log 2a ≤1,即1≤a ≤2.∵f (x )是偶函数,∴f (log 2a )≤f (-1).又f (x )在区间(-∞,0]上是减少的,∴-1≤log 2a ≤0,∴12≤a ≤1.综上可知12≤a ≤2.]5.(2017·陕西质检(二))若f (x )是定义在(-∞,+∞)上的偶函数,任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (1)<f (-2)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (-2)<f (1)D [由对任意的x 1,x 2∈[0,+∞),f x 2-f x 1x 2-x 1<0得函数f (x )为[0,+∞)上的减函数,又因为函数f (x )为偶函数,所以f (3)<f (2)=f (-2)<f (1),故选D.] 二、填空题6.函数y =f (x )在x ∈[-2,2]上的图像如图2所示,则当x ∈[-2,2]时,f (x )+f (-x )=________.图20 [由题图可知,函数f (x )为奇函数, 所以f (x )+f (-x )=0.]7.若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为______________.【导学号:00090051】[0,1] [设f (x )=ax 2+2x +1,由题意知,f (x )取遍所有的正实数.当a =0时,f (x )=2x +1符合条件;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4-4a ≥0,解得0<a ≤1,所以0≤a ≤1.]8.(2017·银川质检)已知y =f (x )是定义在R 上的奇函数,在(0,+∞)上是增函数,且f (2)=0,则满足f (x -1)<0的x 的取值范围是________.(-∞,-1)∪(1,3) [依题意当x ∈(1,+∞)时,f (x -1)<0=f (2)的解集为x <3,即1<x <3;当x ∈(-∞,1)时,f (x -1)<0=f (-2)的解集为x <-1,即x <-1.综上所述,满足f (x -1)<0的x的取值范围是(-∞,-1)∪(1,3).] 三、解答题9.已知函数f (x )=2x,当m 取何值时方程|f (x )-2|=m 有一个解,两个解? [解] 令F (x )=|f (x )-2|=|2x-2|,G (x )=m ,画出F (x )的图像如图所示.由图像看出,当m =0或m ≥2时,函数F (x )与G (x )的图像只有一个交点,原方程有一个解; 当0<m <2时,函数F (x )与G (x )的图像有两个交点,原方程有两个解. 10.函数f (x )=m +log a x (a >0且a ≠1)的图像过点(8,2)和(1,-1). (1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值.【导学号:00090052】[解] (1)由⎩⎪⎨⎪⎧f =2,f=-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,3分解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x .5分(2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)] =log 2x 2x -1-1(x >1).7分∵x 2x -1=x -2+x -+1x -1=(x -1)+1x -1+2≥2x -1x -1+2=4.9分当且仅当x -1=1x -1,即x =2时,等号成立. 而函数y =log 2x 在(0,+∞)上单调递增, 则log 2x 2x -1-1≥log 24-1=1,故当x =2时,函数g (x )取得最小值1.12分B 组 能力提升 (建议用时:15分钟)1.(2017·东北三省四市二联)已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为( )A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)C [f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),所以⎪⎪⎪⎪⎪⎪fx -f ⎝ ⎛⎭⎪⎫ln 1x 2=|fx +fx2=|f (ln x )|,即原不等式可化为|f (ln x )|<f (1),所以-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,所以-1<ln x <1,解得1e<x<e ,故选C.]2.已知函数f (x ),g (x )分别是定义在R 上的偶函数与奇函数,且g (x )=f (x -1),则f (2 019)的值为________.0 [g (-x )=f (-x -1),由f (x ),g (x )分别是偶函数与奇函数,得g (x )=-f (x +1),∴f (x -1)=-f (x +1),即f (x +2)=-f (x ),∴f (x +4)=f (x ),故函数f (x )是以4为周期的周期函数,则 f (2 019)=f (505×4-1)=f (-1)=g (0)=0.]3.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 【导学号:00090053】 [解] (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2), ∴令x 1=x 2=1,得f (1)=2f (1), ∴f (1)=0. 3分 (2)f (x )为偶函数.4分证明如下:令x 1=x 2=-1, 有f (1)=f (-1)+f (-1), ∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ), ∴f (x )为偶函数.7分(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数, ∴f (x -1)<2⇔f (|x -1|)<f (16). 9分又f (x )在(0,+∞)上是增加的, ∴0<|x -1|<16, 解得-15<x <17且x ≠1,11分∴x 的取值范围是{x |-15<x <17且x ≠1}. 12分重点强化训练(二) 平面向量A 组 基础达标 (建议用时:30分钟)一、选择题1.(2017·石家庄模拟)已知a ,b 是两个非零向量,且|a +b |=|a |+|b |,则下列说法正确的是 ( ) A .a +b =0 B .a =bC .a 与b 共线反向D .存在正实数λ,使a =λbD [因为a ,b 是两个非零向量,且|a +b |=|a |+|b |.则a 与b 共线同向,故D 正确.]2.若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ) A .2-1 B .1 C . 2D .2B [因为|a |=|b |=|c |=1,a·b =0,所以|a +b |2=a 2+b 2+2a·b =2,故|a +b |= 2. 展开(a -c )·(b -c )≤0,得a·b -(a +b )·c +c 2≤0, 即0-(a +b )·c +1≤0,整理,得(a +b )·c ≥1.而|a +b -c |2=(a +b )2-2(a +b )·c +c 2=3-2(a +b )·c , 所以3-2(a +b )·c ≤3-2×1=1. 所以|a +b -c |2≤1,即|a +b -c |≤1.]3.(2016·北京高考)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件D [若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.]4.在平面直角坐标系中,已知O 是坐标原点,A (3,0),B (0,3),C (cos α,sin α),若|OA →+OC →|=13,α∈(0,π),则OB →与OC →的夹角为( )A .π6B .π3C .23π D .56π A [由题意,得OA →+OC →=(3+cos α,sin α), 所以|OA →+OC →|=+cos α2+sin 2α=10+6cos α=13, 即cos α=12,因为α∈(0,π),所以α=π3,C ⎝ ⎛⎭⎪⎫12,32.设OB →与OC →的夹角为θ,则cos θ=OB →·OC →|OB →|·|OC →|=3233×1=32.因为θ∈[0,π],所以θ=π6.]5.已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A ,B 两点,且AB =3,则OA →·OB →的值是 ( ) A .-12B .12C .-34D .0A [取AB的中点C ,连接OC ,AB =3,则AC =32,又因为OA =1, 所以sin ⎝ ⎛⎭⎪⎫12∠AOB =sin ∠AOC =AC OA =32, 所以∠AOB =120°,则OA →·OB →=1×1×cos 120°=-12.]二、填空题6.设O 是坐标原点,已知OA →=(k,12),OB →=(10,k ),OC →=(4,5),若A ,B ,C 三点共线,则实数k 的值为________.11或-2 [由题意得CA →=OA →-OC →=(k -4,7),CB →=OB →-OC →=(6,k -5),所以(k -4)(k -5)=6×7,k -4=7或k -4=-6,即k =11或k =-2.]7.(2018·黄冈模拟)已知两个平面向量a ,b 满足|a |=1,|a -2b |=21,且a 与b 的夹角为120°,则|b |=________. 【导学号:00090150】 2 [由|a -2b |=21得a 2-4a·b +4b 2=21.即1+2|b |+4|b |2=21,解得|b |=2或|b |=-52(舍).]8.已知点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →=________. -25 [由|AB →|2+|BC →|2=|CA →|2得∠B =90°,cos C =45,cos A =35,AB →·BC →=0,BC →·CA →=4×5×⎝ ⎛⎭⎪⎫-45=-16,CA →·AB →=5×3×⎝ ⎛⎭⎪⎫-35=-9,所以AB →·BC →+BC →·CA →+CA →·AB →=-25.]三、解答题9.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R ). (1)若m =n =23,求|OP →|;(2)用x ,y 表示m -n ,并求m -n 的最大值. [解] (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),3分 ∴|OP →|=22+22=2 2.5分(2)∵OP →=m (1,2)+n (2,1)=(m +2n,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n , 8分两式相减,得m -n =y -x .令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.10.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.【导学号:00090151】[解] (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.3分 又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.5分(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎪⎫2x -π6+12,8分当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝ ⎛⎭⎪⎫2x -π6取最大值1.所以f (x )的最大值为32.12分B 组 能力提升 (建议用时:15分钟)1.(2018·兰州模拟)已知向量a ,b 的夹角为60°,且|a |=2,|b |=3,设OA →=a ,OB →=b ,OC →=m a -2b ,若△ABC 是以BC 为斜边的直角三角形,则m =( )【导学号:00090152】A .-4B .3C .-11D .10C [a ·b =2×3×cos 60°=3,AB →=OB →-OA →=b -a ,AC →=OC →-OA =(m -1)a -2B .∵AB ⊥AC ,∴AB →·AC →=0, 即(b -a )·[(m -1)a -2b ]=0,∴(1-m )a 2-2b 2+(m -1)a ·b +2a ·b =0, 即4(1-m )-18+3(m -1)+6=0,解得m =-11.故选C .]2.如图2,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为________.图29 [由平面向量的数量积的几何意义知,AM →·AN →等于AM →与AN →在AM →方向上的投影 之积,所以(AM →·AN →)max =AM →·AC →=⎝ ⎛⎭⎪⎫12AB →+AD →·(AB →+AD →)=12AB →2+AD →2+32AB →·AD →=9.]3.已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R . (1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.[解] (1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,令2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),∴f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).5分(2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1, ∴cos ⎝ ⎛⎭⎪⎫2A +π3=-1.7分 又π3<2A +π3<7π3,∴2A +π3=π,即A =π3. 9分 ∵a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.① ∵向量m =(3,sin B )与n =(2,sin C )共线, ∴2sin B =3sin C .由正弦定理得2b =3c ,② 由①②可得b =3,c =2.12分重点强化训练(三) 不等式及其应用A 组 基础达标(建议用时:30分钟)一、选择题1.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D .1x 2+1>1(x ∈R ) C [取x =12,则lg ⎝ ⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,排除D .]2.(2016·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( ) 【导学号:00090208】 A .-4 B .6 C .10D .17B [由约束条件作出可行域如图所示,目标函数可化为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z 最小. 又知点A 的坐标为(3,0), ∴z min =2×3+5×0=6.故选B .]3.(2016·浙江高考)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( )A .2 2B .4C .3 2D .6C [由不等式组画出可行域,如图中的阴影部分所示.因为直线x +y -2=0与直线x +y =0平行,所以可行域内的点在直线x +y -2=0上的投影构成的线段的长|AB |即为|CD |.易得C (2,-2),D (-1,1),所以|AB |=|CD |=+2+-2-2=3 2.故选C .] 4.不等式4x -2≤x -2的解集是( ) A .(-∞,0)∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)B [①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,解得x ≥4; ②当x -2<0,即x <2时,不等式可化为(x -2)2≤4, 解得0≤x <2.综上,解集为[0,2)∪[4,+∞).]5.(2015·山东高考)若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)C [因为函数y =f (x )为奇函数,所以f (-x )=-f (x ),即2-x+12-x -a =-2x +12x -a .化简可得a =1,则2x+12x -1>3,即2x+12x -1-3>0,即2x+1-x-2x-1>0,故不等式可化为2x-22x -1<0,即1<2x<2,解得0<x <1,故选C .] 二、填空题6.(2016·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-10 [画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.]7.(2016·安徽安庆二模)已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为________. 【导学号:00090209】22 [由a >0,b >0,a +b =1a +1b =a +b ab,得ab =1, 则1a +2b≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b =2时等号成立.] 8.(2018·苏州模拟)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.⎝ ⎛⎭⎪⎫-22,0 [由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f m =2m 2-1<0,f m +=2m 2+3m <0,解得-22<m <0.] 三、解答题 9.已知不等式ax -1x +1>0(a ∈R ). (1)解这个关于x 的不等式;(2)若x =-a 时不等式成立,求a 的取值范围. [解] (1)原不等式等价于(ax -1)(x +1)>0. 1分①当a =0时,由-(x +1)>0,得x <-1;②当a >0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)>0.解得x <-1或x >1a;3分③当a <0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)<0;若1a <-1,即-1<a <0,则1a<x <-1;若1a =-1,即a =-1,则不等式解集为空集; 若1a>-1,即a <-1,则 -1<x <1a.5分综上所述,当a <-1时,解集为⎩⎨⎧⎭⎬⎫x | -1<x <1a ;当a =-1时,原不等式无解;当-1<a <0时,解集为⎩⎨⎧⎭⎬⎫x | 1a<x <-1;当a =0时,解集为{x |x <-1};当a >0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >1a . 6分(2)∵x =-a 时不等式成立, ∴-a 2-1-a +1>0,即-a +1<0, 10分∴a >1,即a 的取值范围为(1,+∞).12分10.某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每辆车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆? [解] 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y . 由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作出可行域如图阴影部分所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值. 故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小.B 组 能力提升(建议用时:15分钟)1.已知a ,b 为正实数,且ab =1,若不等式(x +y )·⎝ ⎛⎭⎪⎫a x +b y >m 对任意正实数x ,y 恒成立,则实数m的取值范围是( ) A .[4,+∞) B .(-∞,1] C .(-∞,4]D .(-∞,4)D [因为a ,b ,x ,y 为正实数,所以(x +y )⎝ ⎛⎭⎪⎫a x +b y =a +b +ay x +bx y≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bxy,即a =b ,x =y 时等号成立,故只要m <4即可.]2. 若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是__________.-52[法一:由于x >0, 则由已知可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立, 而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52, ∴a ≥-52,故a 的最小值为-52.法二:设f (x )=x 2+ax +1,则其对称轴为x =-a2.①若-a 2≥12,即a ≤-1时,f (x )在⎝ ⎛⎦⎥⎤0,12上单调递减,此时应有f ⎝ ⎛⎭⎪⎫12≥0,从而-52≤a ≤-1. ②若-a 2<0,即a >0时,f (x )在⎝ ⎛⎦⎥⎤0,12上单调递增,此时应有f (0)=1>0恒成立,故a >0.③若0≤-a 2<12,即-1<a ≤0时,则应有f ⎝ ⎛⎭⎪⎫-a 2=a 24-a22+1=1-a 24≥0恒成立,故-1<a ≤0.综上可知a ≥-52,故a 的最小值为-52.]3.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m ,n ∈[-1,1],m +n ≠0时,f m +f nm +n>0.(1)用定义证明f (x )在[-1,1]上是增函数;(2)解不等式f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围. [解] (1)证明:任取x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1-x 2·(x 1-x 2).2分∵-1≤x 1<x 2≤1,∴x 1-x 2<0. 又已知f x 1+f -x 2x 1-x 2>0,∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数,4分(2)∵f (x )在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧-1≤x +12≤1,-1≤1x -1≤1,x +12<1x -1,解得⎩⎨⎧⎭⎬⎫x | -32≤x <-1.8分(3)由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1,故对x ∈[-1,1],恒有f (x )≤1, ∴要f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1成立, 故t 2-2at ≥0,记g (a )=-2ta +t 2.10分对a ∈[-1,1],g (a )≥0恒成立,只需g (a )在[-1,1]上的最小值大于等于0, ∴g (-1)≥0,g (1)≥0,解得t ≤-2或t =0或t ≥2. ∴t 的取值范围是{t |t ≤-2或t =0或t ≥2}.12分重点强化训练(四) 直线与圆A 组 基础达标 (建议用时:30分钟)一、选择题1.(2018·西安五校联考)命题p :“a =-2”是命题q :“直线ax +3y -1=0与直线6x +4y -3=0垂直”成立的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件A [两直线垂直的充要条件是6a +3×4=0,解得a =-2,命题p 是命题q 成立的充要条件.] 2.(2018·深圳模拟)已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m 的值为( ) 【导学号:00090287】 A .2B .-2C .1D .-1D [因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.]3.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A .1个 B .2个 C .3个D .4个C [圆的方程化为(x +1)2+(y +2)2=8,圆心(-1,-2)到直线距离d =|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点.]4.过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .⎝ ⎛⎦⎥⎤0,π6B .⎝ ⎛⎦⎥⎤0,π3C .⎣⎢⎡⎦⎥⎤0,π6 D .⎣⎢⎡⎦⎥⎤0,π3 D [因为l 与圆x 2+y 2=1有公共点,则l 的斜率存在,设斜率为k ,所以直线l 的方程为y +1=k (x +3),即kx -y +3k -1=0, 则圆心到l 的距离d =|3k -1|1+k2. 依题意,得|3k -1|1+k2≤1,解得0≤k ≤ 3. 故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.]5.(2017·重庆一中模拟)已知圆C :(x -1)2+(y -2)2=2,y 轴被圆C 截得的弦长与直线y =2x +b 被圆C 截得的弦长相等,则b =( ) A .- 6 B .± 6 C .- 5D .± 5D [在(x -1)2+(y -2)2=2中,令x =0,得(y -2)2=1,解得y 1=3,y 2=1,则y 轴被圆C 截得的弦长为2,所以直线y =2x +b 被圆C 截得的弦长为2,所以圆心C (1,2)到直线y =2x +b 的距离为1, 即|2×1-2+b |5=1,解得b =± 5.] 二、填空题6.经过两条直线3x +4y -5=0和3x -4y -13=0的交点,且斜率为2的直线方程是__________.2x -y -7=0 [由⎩⎪⎨⎪⎧3x +4y -5=0,3x -4y -13=0,得⎩⎪⎨⎪⎧x =3,y =-1,即两直线的交点坐标为(3,-1),又所求直线的斜率k =2.则所求直线的方程为y +1=2(x -3),即2x -y -7=0.]7.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =__________. 2 [因为点P (2,2)为圆(x -1)2+y 2=5上的点,由圆的切线性质可知,圆心(1,0)与点P (2,2)的连线与过点P (2,2)的切线垂直. 因为圆心(1,0)与点P (2,2)的连线的斜率k =2,故过点P (2,2)的切线斜率为-12,所以直线ax -y +1=0的斜率为2,因此a =2.]8.已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为__________.0或6 [由x 2+y 2+2x -4y -4=0得(x +1)2+(y -2)2=9,所以圆C 的圆心坐标为C (-1,2),半径为3,由AC ⊥BC 可知△ABC 是直角边长为3的等腰直角三角形.故可得圆心C 到直线x -y +a =0的距离为322.由点到直线的距离得|-1-2+a |2=322,解得a =0或a =6.] 三、解答题9.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.【导学号:00090289】[解] 将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.2分 (1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34.5分(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |=2,8分解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.12分10.在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程. [解] 曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3,-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,+222+D+22+F =0,-222+D-22+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.6分所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆x 2+y 2=4上, 10分所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆(因为O ,M ,P 三点不共线,所以应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285. 12分B 组 能力提升 (建议用时:15分钟)1.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [将直线l 的方程化为一般式得kx -y +1=0, 所以圆O :x 2+y 2=1的圆心到该直线的距离d =1k 2+1.又弦长为21-1k 2+1=2|k |k 2+1, 所以S △OAB =12·1k 2+1·2|k |k 2+1=|k |k 2+1=12,解得k =±1.因此可知“k =1”是“△OAB 的面积为12”的充分不必要条件.]2.过点P (1,1)的直线将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为__________.x +y -2=0 [设过P 点的直线为l ,当OP ⊥l 时,过P 点的弦最短,所对的劣弧最短,此时,得到的两部分的面积之差最大. 由点P (1,1)知k OP =1, 所以所求直线的斜率k =-1.由点斜式得,所求直线方程为y -1=-(x -1),即x +y -2=0.]3.已知圆C :x 2+y 2-6x -4y +4=0,直线l 1被圆所截得的弦的中点为P (5,3). (1)求直线l 1的方程;(2)若直线l 2:x +y +b =0与圆C 相交,求b 的取值范围;(3)是否存在常数b ,使得直线l 2被圆C 所截得的弦的中点落在直线l 1上?若存在,求出b 的值;若不存在,说明理由.[解] (1)圆C 的方程化为标准方程为(x -3)2+(y -2)2=9,于是圆心C (3,2),半径r =3. 若设直线l 1的斜率为k ,则k =-1k PC =-112=-2. 所以直线l 1的方程为y -3=-2(x -5),即2x +y -13=0.3分(2)因为圆的半径r =3,所以要使直线l 2与圆C 相交,则有|3+2+b |2<3,5分所以|b +5|<32,于是b 的取值范围是-32-5<b <32-5. 8分(3)设直线l 2被圆C 截得的弦的中点为M (x 0,y 0),则直线l 2与CM 垂直, 于是有y 0-2x 0-3=1, 整理可得x 0-y 0-1=0.又因为点M (x 0,y 0)在直线l 2上,所以x 0+y 0+b =0.所以由⎩⎪⎨⎪⎧x 0-y 0-1=0,x 0+y 0+b =0,解得⎩⎪⎨⎪⎧x 0=1-b 2,y 0=-1+b2. 10分代入直线l 1的方程得1-b -1+b2-13=0, 于是b =-253∈(-32-5,32-5),故存在满足条件的常数B . 12分重点强化训练(五) 统计与统计案例A 组 基础达标 (建议用时:30分钟)一、选择题1.(2017·石家庄模拟)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ) 【导学号:00090343】A .101B .808C .1 212D .2 012B [由题意知抽样比为1296,而四个社区一共抽取的驾驶员人数为12+21+25+43=101,故有1296=101N ,解得N =808.]2.设某大学的女生体重y (单位:kg)写身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg D [∵0.85>0,∴y 与x 正相关,∴A 正确; ∵回归直线经过样本点的中心(x ,y ),∴B 正确; ∵Δy =0.85(x +1)-85.71-(0.85x -85.71)=0.85, ∴C 正确.]3.亚冠联赛前某参赛队准备在甲、乙两名球员中选一人参加比赛.如图9所示的茎叶图记录了一段时间内甲、乙两人训练过程中的成绩,若甲、乙两名球员的平均成绩分别是x 1,x 2,则下列结论正确的是( )图9A.x1>x2,选甲参加更合适B.x1>x2,选乙参加更合适C.x1=x2,选甲参加更合适D.x1=x2,选乙参加更合适A[根据茎叶图可得甲、乙两人的平均成绩分别为x1≈31.67,x2≈24.17,从茎叶图来看,甲的成绩比较集中,而乙的成绩比较分散,因此甲发挥得更稳定,选甲参加比赛更合适.]4.(2018·黄山模拟)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:若x,y( )【导学号:00090344】A.8.1万盒B.8.2万盒C.8.9万盒D.8.6万盒A[由题意知x=3,y=6,则a=y-0.7x=3.9,∴x=6时,y=8.1.]5.(2018·郑州模拟)利用如图10所示算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=10内的个数为( )图10A.2 B.3C.4 D.5B[执行题中的程序框图,打印的点的坐标依次为(-3,6),(-2,5),(-1,4),(0,3),(1,2),(2,1),其中点(0,3),(1,2),(2,1)位于圆x2+y2=10内,因此打印的点位于圆x2+y2=10内的共有3个.] 二、填空题6.在某市“创建文明城市”活动中,对800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图11),但是年龄组为[25,30)的数据不慎丢失,据此估计这800名志愿者年龄在[25,30)内的人数为________.图11160 [设年龄在[25,30)内的志愿者的频率是P,则有5×0.01+P+5×0.07+5×0.06+5×0.02=1,解得P=0.2.故估计这800名志愿者年龄在[25,30)内的人数是800×0.2=160.]7.某新闻媒体为了了解观众对央视《开门大吉》节目的喜爱与性别是否有关系,随机调查了观看该节目的观众110名,得到如下的列联表:参考附表:99% [假设喜爱该节目和性别无关,分析列联表中数据,可得χ2=-2 60×50×60×50≈7.822>6.635,所以有99%的把握认为“喜爱《开门大吉》节目与否和性别有关”.]8.(2017·太原模拟)数列{a n}满足a n=n,阅读如图12所示的算法框图,运行相应的程序,若输入n=5,a n =n ,x =2的值,则输出的结果v =________.图12129 [该算法框图循环4次,各次v 的值分别是14,31,64,129,故输出结果v =129.] 三、解答题9.(2018·合肥模拟)全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI),数据统计如下表:(1)图13(2)由频率分布直方图,求该组数据的平均数与中位数;(3)在空气质量指数分别为(50,100]和(150,200]的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A “两天空气质量等级都为良”发生的概率. [解] (1)∵0.004×50=20n,∴n =100,∵20+40+m +10+5=100,∴m =25.40100×50=0.008;25100×50=0.005;10100×50=0.002;5100×50=0.001.2分由此完成频率分布直方图,如图:4分(2)由频率分布直方图得该组数据的平均数为25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95, 6分∵[0,50)的频率为0.004×50=0.2,[50,100)的频率为0.008×50=0.4, ∴中位数为50+0.5-0.20.4×50=87.5.8分(3)由题意知在空气质量指数为(50,100]和(150,200]的监测天数中分别抽取4天和1天, 在所抽取的5天中,将空气质量指数为(50,100]的4天分别记为a ,b ,c ,d ;将空气质量指数为(150,200]的1天记为e ,从中任取2天的基本事件为(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),共10个,10分其中事件A “两天空气质量等级都为良”包含的基本事件为 (a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共6个. 11分 所以P (A )=610=35.12分10.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y 关于t (2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款.附:回归方程y =bt +a 中,b =∑i =1nt i y i -n t y∑i =1nt 2i -n t 2,a =y -b t .[解] (1)列表计算如下:这里n =5,t =1n ∑i =1n t i =155=3,y =1n ∑i =1n y i =365=7.2.2分又l tt =∑i =1nt 2i -n t 2=55-5×32=10,l ty =∑i =1nt i y i -n t -y -=120-5×3×7.2=12,从而b =l ty l tt =1210=1.2, a =y -b t =7.2-1.2×3=3.6,故所求回归方程为y =1.2t +3.6.7分(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y =1.2×6+3.6=10.8(千亿元).B 组 能力提升 (建议用时:15分钟)1. 如图14所示的算法框图,若输出k 的值为6,则判断框内可填入的条件是( ) 【导学号:00090345】图14A .s >12B .s >35C .s >710D .s >45C [第一次执行循环:s =1×910=910,k =8,s =910应满足条件;第二次执行循环:s =910×89=810,k =7,s =810应满足条件,排除选项D ;第三次执行循环:s =810×78=710,k =6,不再满足条件,结束循环.因此判断框中的条件为s >710.]2.(2017·西安调研)已知某产品连续4个月的广告费用x 1(千元)与销售额y 1(万元),经过对这些数据的处理,得到如下数据信息:①∑i =14x i =18,∑i =14y i =14;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y =bx +a 中的b =0.8(用最小二乘法求得).那么,广告费用为6千元时,可预测销售额约为________万元.4.7 [因为∑i =14x i =18,∑i =14y i =14,所以x =4.5,y =3.5,因为回归直线方程y =bx +a 中的b =0.8, 所以3.5=0.8×4.5+a ,所以a =-0.1,所以y =0.8x -0.1.x =6时,可预测销售额约为4.7万元.]3.某工厂36名工人的年龄数据如下表.(1)44,列出样本的年龄数据;(2)计算(1)中样本的均值x 和方差s 2;(3)36名工人中年龄在x -s 与x +s 之间有多少人?所占的百分比是多少(精确到0.01%)? [解] (1)36人分成9组,每组4人,其中第一组的工人年龄为44,所以它在组中的编号为2, 所以所有样本数据的编号为4n -2(n =1,2,…,9), 其年龄数据为:44,40,36,43,36,37,44,43,37. 5分(2)由均值公式知:x =44+40+…+379=40,由方差公式知:s 2=19[(44-40)2+(40-40)2+…+(37-40)2]=1009.8分 (3)因为s 2=1009,s =103,所以36名工人中年龄在x -s 和x +s 之间的人数等于年龄在区间[37,43]上的人数, 即40,40,41,…,39,共23人.所以36名工人中年龄在x -s 和x +s 之间的人数所占的百分比为2336×100%≈63.89%.。
单元评估检测(七) 立体几何初步
(120分钟150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的)
1.中央电视台正大综艺以前有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )
图1
A
2.(2017·衡阳模拟)如果一个几何体的三视图如图2所示,正视图与侧视图是边长为2的正三角形,俯视图轮廓为正方形(单位:cm),则此几何体的侧面积是( )
图2
A.2 3 cm2B.4 3 cm2
C.8 cm2D.14 cm2
C
3.若三棱锥的三视图如图3所示,则该三棱锥的体积为( )
图3
A.80 B.40
C .80
3
D .403
D
4.(2017·泉州模拟)设α,β是两个不同的平面,l ,m 是两条不同的直线,以下命题正确的是( )
A .若l ∥α,α∥β,则l ∥β
B .若l ∥α,α⊥β,则l ⊥β
C .若l ⊥α,α⊥β,则l ∥β
D .若l ⊥α,α∥β,则l ⊥β
D
5.正四面体P ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是( )
A .BC ∥平面PDF
B .平面PDF ⊥平面AB
C C .DF ⊥平面PAE
D .平面PA
E ⊥平面ABC B
6.(2017·武汉模拟)在正三棱柱ABC A 1B 1C 1中,若AB =2,AA 1=1,则点A 到平面A 1BC 的距离为( )
【导学号:00090399】
A .
3
4
B .
32
C .334
D . 3
B
7.如图4,四面体ABCD 中,AB =DC =1,BD =2,AD =BC =3,二面角A BD C 的平面角的大小为60°,E ,F 分别是BC ,AD 的中点,则异面直线EF 与AC 所成的角的余弦值是( )
图4
A .13
B .
33
C .63
D .223
B
8.如图5,在正方体ABCD A 1B 1C 1D 1中,下列结论错误的是( )
图5
A .直线BD 1与直线
B 1
C 所成的角为π
2
B .直线B 1
C 与直线A 1C 1所成的角为π
3
C .线段B
D 1在平面AB 1C 内的投影是一个点 D .线段BD 1恰被平面AB 1C 平分 D
9.如图6,在矩形ABCD 中,AB =3,BC =1,E 为线段CD 上一动点,现将△AED 沿AE 折起,使点D 在平面ABC 上的投影K 在直线AE 上,当E 从D 运动到C ,则K 所形成集合的长度为( )
图6
A .
32
B .233
C .π2
D .π3
D
10.(2017·九江模拟)棱长为43的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些小球的最大半径为( )
【导学号:00090400】
A . 2
B .
22 C .2
4
D .
26
B
11.(2017·南阳模拟)如图7是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )。