2.1合情推理与演绎推理(教学设计)(3)
- 格式:doc
- 大小:145.00 KB
- 文档页数:4
2.1。
1 合情推理1.归纳推理(1)概念:由某类事物的□01部分对象具有某些特征,推出该类错误!全部对象都具有这些特征的推理,或由错误!个别事实概括出错误!一般结论的推理,称为归纳推理(简称归纳).(2)特征:归纳推理是由错误!部分到错误!整体、由错误!个别到错误!一般的推理.(3)一般步骤:第一步,通过观察个别情况发现某些错误!相同性质;第二步,从已知的错误!相同性质中推出一个明确表述的一般性命题(猜想).2.类比推理(1)概念:由两类对象具有某些□,11类似特征和其中一类对象的某些错误!已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)特征:类比推理是由错误!特殊到错误!特殊的推理.(3)一般步骤:第一步,找出两类事物之间的错误!相似性或错误!一致性;第二步,用一类事物的错误!性质去推测另一类事物的错误!性质,得出一个明确的命题(猜想).3.合情推理(1)含义归纳推理和类比推理都是根据已有事实,经过错误!观察、错误!分析、错误!比较、错误!联想,再进行错误!归纳、错误!类比,然后提出错误!猜想的推理,我们把它们统称为合情推理.(2)合情推理的过程错误!→错误!→错误!→错误!归纳推理与类比推理的区别与联系区别:归纳推理是由特殊到一般的推理;类比推理是由个别到个别的推理或是由特殊到特殊的推理.联系:在前提为真时,归纳推理与类比推理的结论都可真或可假.1.判一判(正确的打“√",错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于类比推理.( )(2)类比推理得到的结论可以作为定理应用. ()(3)归纳推理是由个别到一般的推理.( )答案(1)×(2)×(3)√2.做一做(1)已知数列{a n}中,a1=1,a n+1=错误!(n∈N*),则可归纳猜想{a n}的通项公式为__________________.(2)数列5,9,17,33,x,…中的x等于________.(3)等差数列{a n}中有2a n=a n-1+a n+1(n≥2且n∈N*),类比以上结论,在等比数列{b n}中类似的结论是__________.答案(1)a n=错误!(n∈N*) (2)65 (3)b错误!=b n-1·b n+1(n≥2且n∈N*)探究1 数列中的归纳推理例1 已知数列{a n}的首项a1=1,且a n+1=错误!(n=1,2,3,…),试归纳出这个数列的通项公式.[解]当n=1时,a1=1,当n=2时,a2=错误!=错误!,当n=3时,a3=错误!=错误!,当n=4时,a4=错误!=错误!,…通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出数列{a n}的通项公式是a n=错误!。
2.1合情推理与演绎推理2.1.1合情推理[学习目标]1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用.[知识链接]1.归纳推理和类比推理的结论一定正确吗?答归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然性的,而是或然性的,结论不一定正确.类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.2.由合情推理得到的结论可靠吗?答一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如,费马猜想就被数学家欧拉推翻了.[预习导引]1.归纳推理和类比推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.3.合情推理的过程从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想要点一归纳推理的应用例1观察如图所示的“三角数阵”1 (1)22 (2)343 (3)4774 (4)5 1114115 (5)…………记第n(n>1)行的第2个数为a n(n≥2,n∈N*),请仔细观察上述“三角数阵”的特征,完成下列各题:(1)第6行的6个数依次为________、________、________、________、________、________;(2)依次写出a2、a3、a4、a5;(3)归纳出a n+1与a n的关系式.解由数阵可看出,除首末两数外,每行中的数都等于它上一行的肩膀上的两数之和,且每一行的首末两数都等于行数.(1)6,16,25,25,16,6(2)a2=2,a3=4,a4=7,a5=11(3)∵a3=a2+2,a4=a3+3,a5=a4+4由此归纳:a n+1=a n+n.规律方法对于数阵问题的解决方法,既要清楚每行、每列数的特征,又要对上、下行,左、右列间的关系进行研究,找到规律,问题即可迎刃而解.跟踪演练1根据下列条件,写出数列中的前4项,并归纳猜想它的通项公式.(1)a1=3,a n+1=2a n+1;(2)a1=a,a n+1=12-a n;(3)对一切的n∈N*,a n>0,且2S n=a n+1.解(1)由已知可得a1=3=22-1,a2=2a1+1=2×3+1=7=23-1,a 3=2a 2+1=2×7+1=15=24-1, a 4=2a 3+1=2×15+1=31=25-1. 猜想a n =2n +1-1,n ∈N *. (2)由已知可得a 1=a ,a 2=12-a 1=12-a ,a 3=12-a 2=2-a 3-2a ,a 4=12-a 3=3-2a 4-3a.猜想a n =(n -1)-(n -2)an -(n -1)a(n ∈N *).(3)∵2S n =a n +1,∴2S 1=a 1+1,即2a 1=a 1+1, ∴a 1=1.又2S 2=a 2+1,∴2a 1+a 2=a 2+1,∴a 22-2a 2-3=0. ∵对一切的n ∈N *,a n >0, ∴a 2=3.同理可求得a 3=5,a 4=7, 猜想出a n =2n -1(n ∈N *). 要点二 类比推理的应用例2 如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边.类比上述定理,写出对空间四面体性质的猜想.解如右图所示,在四面体P -ABC 中,设S 1,S 2,S 3,S 分别表示△P AB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面PAB ,面PBC ,面PCA 与底面ABC 所成二面角的大小. 我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ. 规律方法 (1)类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手.由平面中的相关结论可以类比得到空间中的相关结论.(2)平面图形与空间图形类比00过如下方式求得:在y 2=2px 两边同时对x 求导,得2yy ′=2p ,则y ′=py ,所以过P 的切线的斜率k =p y 0.类比上述方法求出双曲线x 2-y 22=1在P (2,2)处的切线方程为________.答案 2x -y -2=0解析 将双曲线方程化为y 2=2(x 2-1),类比上述方法两边同时对x 求导得2yy ′=4x ,则y ′=2x y ,即过P 的切线的斜率k =2x 0y 0,由于P (2,2),故切线斜率k =222=2,因此切线方程为y -2=2(x -2),整理得2x -y -2=0. 要点三 平面图形与空间图形的类比 例3 三角形与四面体有下列相似性质:(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形. 通过类比推理,根据三角形的性质推测空间四面体的性质填写下表:规律方法将平面几何中的三角形、长方形、圆、面积等和立体几何中的三棱锥、长方体、球、体积等进行类比,是解决和处理立体几何问题的重要方法.跟踪演练3类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.A.①B.①②C.①②③D.③答案C解析由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,叫类比推理,上述三个结论均符合推理结论,故均正确.1.下列说法正确的是()A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论不能判断正误答案B解析根据合情推理定义可知,合情推理必须有前提有结论.2.下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色()A.白色B.黑色C.白色可能性大D.黑色可能性大答案A解析由图知:三白二黑周而复始相继排列,36÷5=7余1.∴第36颗珠子的颜色为白色.3.将全体正整数排成一个三角形数阵:1234567891011 12 13 14 15 ……………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________. 答案 n 2-n +62解析 前n -1行共有正整数1+2+…+(n -1)个, 即n 2-n 2个,因此第n 行第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62.4.观察下列各式9-1=8,16-4=12,25-9=16,36-16=20,….这些等式反映了自然数间的某种规律,设n 表示正整数,用关于n 的等式表示为________. 答案 (n +2)2-n 2=4n +4解析 由已知四个式子可分析规律:(n +2)2-n 2=4n +4.1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想. 一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明. 2.归纳推理与类比推理都属合情推理:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.一、基础达标1.数列5,9,17,33,x ,…中的x 等于( ) A .47 B .65 C .63 D .128答案 B解析 5=22+1,9=23+1,17=24+1,33=25+1,归纳可得:x =26+1=65.2.根据给出的数塔猜测123 456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111…A .1 111 110B .1 111 111C .1 111 112D .1 111 113答案 B解析 由数塔猜测应是各位都是1的七位数,即1 111 111. 3.设0<θ<π2,已知a 1=2cos θ,a n +1=2+a n ,猜想a n =( )A .2cosθ2nB .2cosθ2n-1C .2cos θ2n +1D .2 sin θ2n答案 B解析 法一 ∵a 1=2cos θ, a 2=2+2cos θ=21+cos θ2=2cos θ2, a 3=2+a 2=2 1+cosθ22=2cos θ4,…, 猜想a n =2cosθ2n -1.法二 验n =1时,排除A 、C 、D ,故选B.4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的( )A .一条中线上的点,但不是中心B .一条垂线上的点,但不是垂心C .一条角平分线上的点,但不是内心D .中心 答案 D解析 由正四面体的内切球可知,内切球切于四个侧面的中心.5.观察下列等式:13+23=(1+2)2,13+23+33 =(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式为________. 答案 13+23+33+43+53=(1+2+3+4+5)2(或152)解析 观察前3个等式发现等式左边分别是从1开始的两个数、三个数、四个数的立方和,等式右边分别是这几个数的和的平方,因此可得第四个等式是:13+23+33+43+53=(1+2+3+4+5)2=152. 6.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第n 个等式为________. 答案 n +(n +1)+…+(3n -2)=(2n -1)27.在△ABC 中,若∠C =90°,则cos 2A +cos 2B =1,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想.解 由平面类比到空间,有如下猜想:“在三棱锥P -ABC 中,三个侧面P AB ,PBC ,PCA 两两垂直,且与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1”. 证明 设P 在平面ABC 的射影为O ,延长CO 交AB 于M ,记PO =h , 由PC ⊥P A ,PC ⊥PB 得PC ⊥面P AB ,从而PC ⊥PM ,又∠PMC =α, cos α=sin ∠PCO =h PC ,cos β=h P A ,cos γ=h PB∵V P -ABC =16P A ·PB ·PC =13⎝⎛12P A ·PB cos α+ 12PB ·⎭⎫PC cos β+12PC ·P A cos γ·h ,∴⎝⎛⎭⎫cos αPC +cos βP A +cos γPB h =1 即cos 2 α+cos 2 β+cos 2 γ=1. 二、能力提升8.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S -ABC 的体积为V ,则r =( ) A.VS 1+S 2+S 3+S 4 B .2VS 1+S 2+S 3+S 4C .3VS 1+S 2+S 3+S 4D .4VS 1+S 2+S 3+S 4答案 C 解析设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为V 四面体A -BCD=13(S 1+S 2+S 3+S 4)R ,∴R =3V S 1+S 2+S 3+S 4. 9.(2020·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n正方形数 N (n,4)=n 2 五边形数 N (n,5)=32n 2-12n六边形数 N (n,6)=2n 2-n ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 答案 1 000解析 由归纳推理可知:n 2和n 前面的系数,一个成递增的等差数列,另一个成递减的等差数列,所以N (n ,k )=k -22n 2-12n (k -4),所以N (10,24)=24-22×102-12×10(24-4)=1 100-100=1 000.10.(2020·陕西)观察下列等式: 12=112-22=-312-22+32=612-22+32-42=-10…照此规律, 第n 个等式可为________. 答案12-22+32-…+(-1)n -1n 2=(-1)n +12n (n +1)解析 分n 为奇数、偶数两种情况.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-n (n +1)2.当n 为奇数时,第n 个等式=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式:12-22+32-…+(-1)n -1n 2=(-1)n +12n (n +1).11.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解 (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.12.(1)椭圆C :x 2a 2+y 2b 2=1(a >b >0)与x 轴交于A 、B 两点,点P 是椭圆C 上异于A 、B 的任意一点,直线P A 、PB 分别与y 轴交于点M 、N ,求证:AN →·BM →为定值b 2-a 2.(2)类比(1)可得如下真命题:双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 轴交于A 、B 两点,点P 是双曲线C 上异于A 、B 的任意一点,直线P A 、PB 分别与y 轴交于点M 、N ,求证AN →·BM →为定值,请写出这个定值(不要求写出解题过程). 解 (1)证明如下:设点P (x 0,y 0),(x 0≠±a ) 依题意,得A (-a,0),B (a,0), 所以直线P A 的方程为y =y 0x 0+a(x +a ).【精品新版高中数学(2019)——提分卷】第 11 页 / 共 11 页 令x =0,得y M =ay 0x 0+a, 同理得y N =-ay 0x 0-a ,所以y M y N =a 2y 20a 2-x 20. 又点P (x 0,y 0)在椭圆上,所以x 20a 2+y 20b 2=1, 因此y 20=b 2a 2(a 2-x 20),所以y M y N =a 2y 20a 2-x 20=b 2. 因为AN →=(a ,y N ),BM →=(-a ,y M ),所以AN →·BM →=-a 2+y M y N =b 2-a 2.(2)-(a 2+b 2).三、探究与创新13.如图,在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α、β,则cos 2α+cos 2β=1,则在立体几何中,给出类比猜想.解 在长方形ABCD 中,cos 2α+cos 2β=⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2=a 2+b 2c 2=c 2c 2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α、β、γ, 则cos 2α+cos 2β+cos 2γ=1.证明如下:cos 2α+cos 2β+cos 2γ=⎝⎛⎭⎫m l 2+⎝⎛⎭⎫n l 2+⎝⎛⎭⎫g l 2=m 2+n 2+g 2l 2=l 2l 2=1.。
《合情推理与演绎推理》教学设计(4)一、考情分析从近几年的高考试题来看,归纳推理、类比推理、演绎推理等问题是高考的热点. 归纳推理、类比推理大部分在选择题或填空题中出现,为中低档题,突出“小而巧”,主要考查类比推理、归纳推理的能力.演绎推理大多出现在解答题中,为中高档题目,在知识交汇点处命题,考查学生的逻辑推理能力,以及分析问题、解决问题的能力.二、教学目标①知识与技能(1)了解合情推理的含义,能进行归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.(2)了解演绎推理的含义,理解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.②过程与方法(1)经历合情推理发现数学结论和规律的过程,感受数学再创造的快乐;(2)感受并体会演绎推理的规则与过程,规范严谨地进行逻辑推理.③情感态度与价值观(1)培养学生应用数学的意识和创新精神,体验数学发现的快乐;(2)培养学生认识数学的科学价值与人文价值,养成理性思维的习惯.教学重点和难点教学重点:运用归纳推理和类比推理发现数学规律,解决数学问题.教学难点:运用合情推理发现结论和演绎推理证明结论.教学课时:1课时三、教法分析根据上述考情和目标分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想. 结合本班学生的实际情况和数学学习能力,尽可能让学生通过独立思考和合作交流的方式自主发现规律与结论,并探究证明方法,让学生充分体验数学发现的快乐. 必要时教师恰当引导,并及时对学生的解答进行评价.四、教学程序2222124310-+-=-照此规律, 第个等式可为 .例2. 小石子中的数学问题(1)(2009湖北理)古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是 ( )(2)(2012湖北文)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列,将可被5整除的三角形数按从小到大的顺序组成一个新数列.可以推测:(Ⅰ)是数列中的第________项; (Ⅱ)21k b -=________.(用k 表示)(3)(2013湖北理)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第个三角形数为论,体验数学发现的快乐.体会高考源于课本,高于课本和在知识的交汇点命题的思想.写出足够多的项,从特殊项入手,发现一般规律.同时渗透“子数列”的思想,为高等数学级数的学习做铺垫.此题难度较大,可以小组讨论,必要时教师引导,分别从二次项和一次项系数入手纵向找规律.学生从五、方案设计说明美籍匈牙利数学家波利亚曾说:“直观洞察和逻辑证明是感知真理的两种不同方式……直观的洞察可能远远超前于形式逻辑的证明.”新课程强调着重培养学生创新精神和实践能力,而合情推理能力的培养正是实现这一目标的重要方法.本节课从近几年的高考真题和模拟题中精心选择试题,创设问题情景,鼓励学生运用合情推理大胆猜测结论,体验数学发现的乐趣,然后用演绎推理证明.养成“观察——归纳(类比)——猜想——论证”的思维习惯.。
2.1.2演绎推理教学设计整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论 不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m.(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线平面α,直线平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A课堂小结1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB⊂平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.设计者:李效三2018年5月22日星期二。
课 题:§2.1.2演绎推理教学目标:1. 知识与技能:了解演绎推理的含义以及与合情推理之间的联系与差别。
2. 过程与方法:能正确地运用演绎推理进行简单的推理。
3. 情感、态度与价值观:了解合情推理与演绎推理之间的联系与差别。
教学重点:正确地运用演绎推理进行简单的推理教学难点:了解合情推理与演绎推理之间的联系与差别。
教具准备:与教材内容相关的资料、多媒体设备等等。
教学过程:一、 复习合情推理归纳推理 :从特殊到一般 类比推理: 从特殊到特殊过程:从具体问题出发――观察、分析、比较、联想――归纳、类比――提出猜想 二、问题情景情景1:小明是一名高二年级的学生,17岁,迷恋上网络,沉迷于虚拟的世界当中。
由于每月的零花钱不够用,便向亲戚要钱,但这仍然满足不了需求,于是就产生了歹念,强行向路人抢取钱财。
但小明却说我是未成年人而且就抢了50元,这应该不会很严重吧??? 小明到底是不是犯罪呢?刑法规定:抢劫罪是以非法占有为目的,使用暴力、胁迫或其他方法,强行劫取公私财物的行为。
其刑事责任年龄起点为14周岁,对财物的数额没有要求。
小明超过14周岁,强行向路人抢取钱财50元。
所以,小明犯了抢劫罪。
情景2:观察与思考1所有的金属都能导电,铜是金属,所以铜能够导电2.一切奇数都不能被2整除,(12100+)是奇数,所以(12100+)不能被2整除. 提出问题 :像这样的推理是合情推理吗?有什么特点? 三、建构教学推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括 前提---已知的一般原理;⑵小前提---所研究的特殊情况; ⑶结论-----根据一般原理,对特殊情况做出的判断. 3.三段论的基本格式M —P (M 是P ) (大前提) S —M (S 是M ) (小前提) S —P (S 是P ) (结论)4.三段论推理的依据,用集合的观点来理解:若集合M 的所有元素都具有性质P,S 是M 的一个子集,那么S 中所有元素也都具有性质P. 四、数学运用题型一 用三段论的形式表示演绎推理例1 把下列演绎推理写成三段论的形式.(1)在一个标准大气压下,水的沸点是100 ℃,所以在一个标准大气压下把水加热到100℃时,水会沸腾;(2)0.332是有理数解:(1)在一个标准大气压下,水的沸点是100 ℃ …… 大前提 准大气压下把水加热到100 ℃ …………小前提水会沸腾………………………………… 结论 (2)所有有限小数都是有理数…………… 大前提 32是有限小数…………………… 小前提所以,0.332是有理数………………… 结论练习1:将下列演绎推理写成三段论的形式.(1)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分. (2)Rt △ABC 的内角和为180°.答案:(1)平行四边形的对角线互相平分,… 大前提 菱形是平行四边形,………………………… 小前提 菱形的对角线互相平分.…………………… 结论(2)因为三角形的内角和是180°,……………… 大前提 Rt △ABC 是三角形,…………………………… 小前提 所以Rt △ABC 的内角和是180°.………………… 结论题型二 三段论在几何证明中的应用例2.如图,在锐角三角形ABC 中,AD ⊥BC, BE ⊥AC, D,E 是垂足,求证AB 的中点M 到D,E 的距离相等.证明:因为有一个内角是直角的三角形是直角三角形, ……… (大前提) 在△ABC 中,AD ⊥BC,即∠ADB=90 ………………………… (小前提)所以△ABD 是直角三角形…………………………………… (结 论) 同理△ABE 是直角三角形因为直角三角形斜边上的中线等于斜边的一半, …………… (大前提) M 是Rt △ABD 斜边AB 的中点,DM 是斜边上的中线……… (小前提)AB DM 21=…………………………………………………… (结 论) AB EM 21=同理 所以EM DM =练习2:如图,D ,E ,F 分别是BC ,CA ,AB 上的点, ∠BFD =∠A ,DE ∥BA ,求证:ED =AF ,写出三段论形式的演绎推理.题型三 三段论在代数证明中的应用()().1,2.32上是增函数在证明函数例∞-+-=x x x f()()()上的增函数。
“合情推理—归纳推理”教学设计浙江省金华市义乌中学骆琳珺一、教学内容与内容解析1.内容:归纳推理的含义,会利用归纳进行一些简单的推理.2.内容解析:(1)推理一般包括合情推理和演绎推理,合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳、类比是合情推理常用的思维方法。
在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。
演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程。
本节课学习的归纳推理是合情推理的一种。
归纳推理是由部分到整体、个别到一般的推理,前提是其结论的必要条件。
首先,归纳推理的前提必须是真实的,否则,归纳就失去了意义。
其次,归纳推理的结论超过了前提所判定的范围,因此在归纳推理中,前提和结论之间的联系不是必然的,而是或然的,重在合乎情理。
(2)本节的内容属于数学思维方法的范畴,在教学过程中教师的立意是把归纳推理作为一个重要的数学思维的过程,让学生了解归纳推理的含义,着重学会用归纳的方法进行数学推理和猜想。
事实上,研究归纳推理的真实目的,就是把几个事实中蕴含的共性,通过变形、语言转换、多角度观察等手段,观察归纳出“共性”,进而提出猜想,并达到利用归纳推理来达到发现新事实,获得新结论的目的。
根据上述分析可知,本课的教学重点是通过具体事例,引导学生经历观察、发现它们的共性,归纳得出一些猜想,并进而体会归纳推理的含义和作用。
二、教学目标与目标解析1.了解归纳推理的含义,掌握归纳推理的一般过程,能进行一些简单的归纳推理.2.通过具体事例,引导学生经历用归纳推理发现数学规律的过程,体会归纳推理在数学发现中的作用。
三、教学问题诊断分析1.如何发现“几个事实”的“共性”,也就是“如何去观察,才能发现规律”。
学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。
2.1 第三课时演绎推理一、课前准备1.课时目标(1). 了解演绎推理的含义;(2). 能正确地运用演绎推理进行简单的推理;(3). 了解合情推理与演绎推理之间的联系与区别。
2.基础预探(1)演绎推理的定义:,这种推理称为演绎推理.要点:由_____到_____的推理.(2)三段论中包含了3个命题,称为“大前提”,它提供了一个一般原理;称为“小前提”,它指出了一个对象。
这两个判断结合起来,揭示了的内在联系,从而得到第三个命题------结论。
(3)①所有的金属都能够导电,铜是金属,所以;②太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此;③奇数都不能被2整除,2007是奇数,所以 .(4)“三段论”是演绎推理的一般模式:第一段:_________________________________________;第二段:_________________________________________;第三段:____________________________________________.二、学习引领1. 演绎推理的特点(1).演绎推理的前提是一般性原理,演绎所得的的结论是蕴含于前提之中的个别、特殊事实,结论完全蕴含于前提之中,因此演绎推理是由一般到特殊的推理;(2)、在演绎推理中,前提于结论之间存在着必然的联系,只要前提和推理形式是正确的,结论必定正确。
因此演绎推理是数学中严格的证明工具。
(3)、在演绎推理是一种收敛性的思维方法,它较少创造性,但却具有条理清晰、令人信服的论证作用,有助于科学论证和系统化。
2. 合情推理和演绎推理的关系(1)联系:两个推理是相辅相成的,演绎推理是证明数学结论,建立数学体系的重要思维过程的.但数学结论,证明思路的发现,主要靠合情推理.(2)区别:合情推理的前提为真时,结论不一定为真,而演绎推理的前提为真时,结论必定为真.3. 三段论的理解若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.三、典例导析题型一 演绎推理的一般模式例1.把下列演绎推理写成三段论的形式.(1)在一个标准大气压下,水的沸点是100 ℃,所以在一个标准大气压下把水加热到100 ℃时,水会沸腾;(2)因为2100+1是奇数,所以2100+1不能被2整除;(3)三角函数都是周期函数,y =tan α是三角函数,因此y =tan α是周期函数;(4)如果∠A 与∠B 是两条平行直线的同旁内角,那么∠A +∠B =180°;(5)菱形的对角线互相平分.思路导析:分清大前提、小前提及结论.解:(1)大前提:在一个标准大气压下,水的沸点是100℃, 小前提:一个标准大气压下把水加热到100 ℃,结论:水会沸腾.(2)大前提:一切奇数都不能被2整除,小前提:2100+1是奇数,结论:2100+1不能被2整除.(3)大前提:三角函数都是周期函数,小前提:y =tan α是三角函数,结论:y =tan α是周期函数.(4)大前提:两条直线平行,同旁内角互补,小前提:∠A 与∠B 是两平行直线的同旁内角,结论:∠A +∠B =180°.(5)大前提:平行四边形对角线互相平分,小前提:菱形是平行四边形,结论:菱形对角线互相平分规律总结: 三段论由大前提、小前提和结论组成;大前提提供一般原理,小前提提供特殊情况,两者结合起来,体现一般原理与特殊情况的内在联系,在用三段论写推理过程时,关键是明确命题的大、小前提,而大、小前提在书写过程中是可以省略的. 变式练习1指出下面推理中的错误.(1)自然数是整数, 大前提-6是整数, 小前提所以-6是自然数. 结论(2)中国的大学分布在中国各地, 大前提北京大学是中国的大学, 小前提所以北京大学分布在中国各地. 结论M Sp •题型二几何问题中三段论的应用例2在平面四边形ABCD中,AB=CD,BC=AD,求证:四边形ABCD为平行四边形.写出三段论形式的演绎推理.思路导析:为了证明这个命题为真,我们只需在前提(AB=CD且BC=AD)为真的情况下,以已知公理、已知定义、已知定理为依据,根据推理规则,导出结论为真.解:(1)连结AC.(2)AB=CD,BC=AD,CA=AC(3)平面几何中的边边边定理是:有三边对应相等的两个三角形全等.这一定理相当于:对于任意两个三角形,如果它们的三边对应相等,则这两个三角形全等,(大前提)△ABC和△CDA的三边对应相等,(小前提)△ABC与△CDA全等.(结论)符号表示:AB=CD且BC=DA且CA=AC⇒△ABC≌△CDA.(4)由全等三角形的性质可知:全等三角形的对应角相等.这一性质相当于:对于任意两个三角形,如果它们全等,则它们的对应角相等,(大前提)△ABC和△CDA全等,(小前提)它们的对应角相等,即∠1=∠2,∠3=∠4.(结论)(5)内错角相等,两直线平行;(大前提)∠1与∠2、∠3与∠4分别是AB与CD、AD与BC的内错角,(小前提)AB∥CD,AD∥BC.(结论)(6)两组对边分别平行的四边形为平行四边形,(大前提)四边形ABCD的两组对边分别平行,(小前提)四边形ABCD是平行四边形.(结论)规律总结:通过演绎推理三段论的练习,掌握严格的逻辑推理过程,正确认识演绎推理的特点.明白演绎推理是一种收敛性的思维方法,及其在科学建设中的理论化和系统化的作用.变式训练2 梯形的两腰和一底如果相等,它的对角线必平分另一底上的两个角.已知在梯形ABCD中(如图),AB=DC=AD,AC和BD是它的对角线.求证:AC平分∠BCD,DB 平分∠CBA.题型三演绎推理的应用例3 设f(x)=sin(2x +φ)(-π<φ<0),y =f(x)的图象的一条对称轴是直线x =π8. (1)求φ;(2)求y =f(x)的单调递增区间. 思路导析: (1)y =f x 在对称轴处取得最值→ →φ值 (2)y =sinx 增区间为[2kπ-π2,2kπ+π2],k ∈Z →得递增区间 解:(1)∵x =π8是函数y =f(x)的图象的对称轴, ∴sin(2×π8+φ)=±1,φ)(4Z k k ∈+=ππ ∴π4+φ=kπ+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4(2)由(1)知φ=-3π4,因此y =sin(2x -3π4) 由题意得2kπ-π2≤2x-3π4≤2kπ+π2,k ∈Z 时,即为kπ+π8≤x≤5π8+kπ,k ∈Z 时,函数单调递增,∴函数y =sin(2x -3π4)的单调递增区间为[kπ+π8,kπ+5π8],k ∈Z. 规律总结:应用三段论证明问题时,要充分挖掘题目的外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的、严密的,才能得出正确的结论.变式训练3 已知R 上的函数f(x)=13ax 3+12bx 2+cx(a<b<c)在x =1时取得极值,且y =f(x)的图象上有一点处的切线斜率为-a ,求证0≤b a<1. 四、随堂练习1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法( ).A .一般的原理原则;B .特定的命题;C .一般的命题;D .定理、公式.2.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180°B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人C .由平面三角形的性质,推测空间四面体的性质D .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n≥2),由此归纳出{a n }的通项公式 3.下列说法:①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③sin(2+)=18σ±π演绎推理的一般模式是“三段论”的形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.其中正确的有________.4.补充下列推理的三段论:(1)因为互为相反数的两个数的和为0,又因为a 与b 互为相反数且 所以b=8.(2)因为 又因为 71828.2=e 是无限不循环小数,所以e 是无理数.5. 设m ∈(-2,2),求证方程x 2-mx +1=0无实根.(用三段论形式证)五、课后作业1. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为:明文d c b a ,,,对应密文d d c c b b a 4,32,2,2+++,例如,明文1,2,3,4对应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为( ).A . 4,6,1,7B . 7,6,1,4C . 6,4,1,7D . 1,6,4,72. 用演绎推理证明“y=x 2(x >0)是增函数”时的大前提为________.3.在求函数y =2log x-2的定义域时,第一步推理中大前提是当a 有意义时,a≥0,小前提是2log x-2有意义,结论是________.4. 如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD.求证:BD ⊥平面PAC.第三课时演绎推理答案解析一、基础预探1. 从一般性的原理出发,推出某个特殊情况下的结论;一般;特殊2. 第一个命题;第二个命题;特殊;一般原理与特殊对象的3. ①铜导电②冥王星以椭圆型轨道绕太阳运行③2007不能被2整除4. 大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.三.典例导析变式训练1. 解:(1)推理形式错误.M 是“自然数”,P 是“整数”,S 是“-6”,故按规则“-6”应是自然数(M)(此时它是错误的小前提),推理形式不对,所得结论是错误的.(2)推理形式错误.大前提中的M 是“中国的大学”,它表示中国的各所大学,而在小前提中S 虽然也是“中国大学”,但它表示中国的一所大学,二者是两个不同的概念,故推理形式错误,得到错误的结论.2. 证明:(1)等腰三角形两底角相等(大前提),△DAC 是等腰三角形,DA 、DC 是两腰(小前提),∠1=∠2(结论).(2)两条平行线被第三条直线截出的内错角相等(大前提),∠1和∠3是平行线AD 、BC 被AC 截出的内错角(小前提),∠1=∠3(结论).(3)等于同一个量的两个量相等(大前提),∠2和∠3都等于∠1(小前提),∠2=∠3(结论),即AC 平分∠BCD.(4)同理,DB 平分∠CBA.3. 证明:由f(x)=13ax 3+12bx 2+cx ,得: f′(x)=ax 2+bx +c.又函数在x =1处有极值,故f′(1)=a +b +c =0.又∵a<b<c ,∴a<0,c>0.∵y =f(x)的图象上有一点处的切线斜率为-a ,∴方程ax 2+bx +c =-a 有实根.∴Δ=b 2-4a(a +c)≥0,即b 2-4a(a -a -b)≥0,整理,得⎝ ⎛⎭⎪⎫b a 2+4·b a ≥0,解得b a ≥0或b a ≤-4. 由b<c =-a -b ,得2b<-a ,∴b a >-12. 由a<b 且a<0,且b a <1.综上可得0≤b a<1. 四、随堂练习1.A 根据定义可判断。
或中鸿智业信息技术有限公司2.1 合情推理与演绎推理一览众山小三维目标1.了解合情推理与演绎推理的概念,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.2.体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.3.通过具体实例,了解合情推理与演绎推理之间的联系与差异.4.运用推理理解概念的产生过程,命题的形成过程,思路的获得过程,达到巩固知识,发展创造性思维能力,提高学习兴趣的目的.学法指导推理是人的一种思维形式,在数学中有着不可替代的作用.在学习过程中要以日常生活中的许多事实为依据,结合以前所学知识,认真体会概念的内涵,并初步运用推理知识解释一些问题.本节的学习要从实际出发,深刻理解归纳推理、类比推理、演绎推理的定义及其应用的一般步骤,要做到多练习、勤思考才能熟练掌握,并灵活应用本节知识.诱学导入材料:严谨和理性是数学美的一种充分体现,它使数学这座大厦显得威严和恢宏.例如:红黄蓝三只箱子,有一个苹果在其中一个箱子里,红箱子上写着:苹果在这个箱子里;黄箱子上写着:苹果不在这个箱子里;蓝箱子上写着:苹果不在红箱子里.问题1:这三句话只有一句是真的,你怎么能准确地找出苹果来呢?导入:因为这三句话中只有一句是真的,可通过假设和逐个排除的推理方法,如若红箱子上写的是对的,则黄箱子上写的也是真的,所以不对.依此下去我们可确定苹果在黄箱子里,也就可以有目的地找到苹果了.材料:战国时候公孙龙提出的“白马非马”的说法.问题2:如果用数学的观点来看,他是不是在诡辩呢?导入:把“白马”与“马”都理解为集合,“非”理解为“不等于”,则“白马非马”这一命题是正确的.但若把“白马”与“马”理解为集合,“非”理解为“不包含于”,则“白马非马”这一命题就是不正确的.同样地,把“非”理解为“不属于”,“白马非马”这一命题也是正确的,因为“属于”只表示元素与集合的关系,不表示集合与集合之间的关系.但如果把“白马”理解为某一匹具体的马,“非”理解为“不属于”,则“白马非马”又是错误的了.。
2.1合情推理与演绎推理(教学设计)(3)
§2.1.2演绎推理
教学目标:
知识与技能目标:
了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理。
过程与方法目标:
能正确地运用演绎推理,进行简单的推理。
培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳,挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力。
情感、态度与价值观目标:
了解合情推理与演绎推理之间的联系与差别。
体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质。
教学重点:正确地运用演绎推理,进行简单的推理
教学难点:了解合情推理与演绎推理之间的联系与差别。
教学过程:
一、复习回顾:
1、合情推理
归纳推理从特殊到一般
类比推理从特殊到特殊
从具体问题出发——观察、分析、比较、联想——归纳、类比——提出猜想
二、创设情境,新课引入:
观察与思考
①所有的金属都能导电,铜是金属,所以,铜能够导电;
②一切奇数都不能被2整除,(2100+1)是奇数,所以(2100+1)不能被2整除;
③三角函数都是周期函数,tanα是三角函数,所以tanα是周期函数。
提出问题:上面的推理有什么特点?
分析:如:所有的金属都能导电——一般原理
铀是金属——特殊情况
所以铀能够导电——对特殊情况的判断
三、师生互动,新课讲解:
1、演绎推理的定义:
从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.
2、演绎推理的特点:
是由一般到特殊的推理;
3、演绎推理的一般模式:“三段论”,包括
(1)大前提---已知的一般原理;
(2)小前提---所研究的特殊情况;
(3)结论-----据一般原理,对特殊情况做出的判断.
继续分析问题:
(1)所有的金属都能导电←————大前提
铜是金属, ←-----小前提
所以,铜能够导电←――结论
(2)一切奇数都不能被2整除←————大前提
(2100+1)是奇数,←――小前提
所以,(2100+1)不能被2整除.←―――结论
(3)三角函数都是周期函数, ←——大前提
tan α是三角函数,←――小前提
所以,tan α是周期函数。
←――结论
4、三段论的基本格式
M—P(M是P)(大前提)
S—M(S是M)(小前提)
S—P(S是P)(结论)
5、三段论推理的依据,用集合的观点来理解:
若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P. 例1、把“函数21
=++的图象是一条抛物线”写成三段论的形式。
y x x
解:二次函数的图象是一条抛物线(大前提)
函数21
=++是二次函数(小前提)
y x x
所以,21
=++的图象是一条抛物线(结论)
y x x
例2(课本P31例6)、如图所示,在锐角三角形ABC中,AD⊥BC,BE⊥AC,D,E是垂足求证:AB的中点M到D,E的距离相等。
证明:Array(1)因为有一个内角是直角的三角形是直角三角形,
——大前提
在△ABC中,AD⊥BC,即∠ADB=90°
——小前提
所以△ABD是直角三角形。
——结论
(2)因为直角三角形斜边上的中线等于斜边的一半,
——大前提
因为DM是直角三角形斜边上的中线,
——小前提
所以 DM=
21AB ——结论 同理 EM=21
AB
所以DM=EM 。
由此可见,应用三段论解决问题时,首先应该明确什么是大前提和小前提.但为了叙述简洁,如果大前提是显然的,则可以省略.再来看一个例子.
例3(课本P32例7)、证明函数2()2f x x x =-+在(,1)-∞内是增函数.
分析:证明本例所依据的大前提是:在某个区间(a, b )内,如果'()0f x >,
那么函数()y f x =在这个区间内单调递增。
小前提是2()2f x x x =-+的导数在区间(,1)-∞内满足'()0f x >,这是证明本例的关键.
证明:'()22f x x =-+.
当(,1)x ∈-∞时,有10x ->,
所以'()222(1)0f x x x =-+=->。
于是,根据 “三段论”得,2()2f x x x =-+在(,1)-∞内是增函数.
注:在演绎推理中,只要前提和推理形式是正确的,结论必定是正确的.
例4:思考:
因为指数函数x
y a =是增函数,——大前提 而1()2x y =是指数函数, ——小前提 所以1()2x
y =是增函数. ——结论 (1)上面的推理形式正确吗?
(2)推理的结论正确吗?为什么?
上述推理的形式正确,但大前提是错误的(因为当01a <<时,指数函数x y a =是减函数),所以所得的结论
是错误的.
6、思考:合情推理与演绎推理的主要区别是什么?
归纳和类比是常用的合情推理.从推理形式上看,归纳是由部分到整体、个别到一般的推理,类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.
课堂练习:(课本P33练习NO :1;2;3)
四、课堂小结,巩固反思:
1、演绎推理的定义
2、演绎推理的特点
3、演绎推理的一般模式
4、合情推理与演绎推理的区别
五、布置作业:
A组:
1、(课本P35习题2.1 A组NO:7)。