2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算
- 格式:ppt
- 大小:1.71 MB
- 文档页数:30
2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算 2.3.4平面向量共线的坐标表示一、教学目标1.知识与技能(1)理解平面向量的坐标表示的概念,会写出直角坐标系内给定向量的坐标,会作出已知坐标表示的向量;(2)掌握平面向量的坐标运算,掌握平面向量的和、差及实数与向量的积的坐标表示方法;(3)理解一个向量的坐标等于表示该向量的有向线段的终点坐标减去起点的坐标; (4)掌握平面向量共线的坐标表示. 2.过程与方法在平面向量的坐标表示的推导过程中,让学生掌握平面向量基本定理中基底的特殊化.3.态度情感与价值观让学生感受向量的坐标运算的简洁美与和谐美.二、教学重难点1.教学重点:平面向量的坐标运算. 2.教学难点:理解向量坐标化的意义.三、教学过程㈠ 课前1分钟(书P65 习题1.8 A 组 2)根据下列条件,求(0,2)π内的角A1213041()sin ()sin ()cos ()tan A A A A ==-==㈡ 复习回顾平面向量基本定理如果1e ,2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数1λ, 2λ,使得1122a e e λλ=+.不共线的平面向量1e ,2e 叫做这一平面内所有向量的一组基底. ㈢ 新课探究引例:光滑斜面上的木块所受重力G 可以分解为平行斜面使木块下滑的力1F 和木块产生的垂直于斜面的压力2F (如图).正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.★在正交分解下,许多有关向量问题将变得较为简单,引例就是一个正交分解的例子.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.则对于该平面内的任一个向量a ,有且只有一对实数x 、y ,使得a xi y j =+我们把),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =…………①其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,①式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x .探究一:以O 为起点,(,)P x y 为终点的向量能否用坐标表示?如何表示? 解:如图 (,)OP xi y j x y =+=以O 为起点的向量OP 的坐标也就是终点P 的坐标向量(,)OP P x y −−−−→一一对应探究二:在平面直角坐标系内,起点不在坐标原点O 的向量如何用坐标来表示?可通过向量的平移,将向量的起点移到坐标的原点O 处.+OA xi y j =, +a xi y j =点评:1.把a xi y j =+称为向量基底形式; 2.(,)a x y =,称其为向量的坐标形式; 3.(,)a xi y j x y =+=;4.单位向量(1,0)i =,(0,1)j =;5.两个向量相等的条件,利用坐标如何表示?1212x x a b y y =⎧=⇔⎨=⎩例1.如图,已知(1,3)A -,(1,3)B -,(4,1)C ,(3,4)D ,求向量OA ,OB ,OD ,OC 的坐标.例2.如图,用基底i ,j 分别表示向量a ,b ,并求出它们的坐标.解:由图可知:1223a AA AA i j =+=+,∴(2,3)a = 同理,23(2,3)b i j =-+=-探究:你能发现向量a 的坐标与它起点坐标和终点坐标间有什么联系吗?平面向量的坐标运算 向量的加法思考:已知11(,)a x y =,22(,)b x y =,能得出a b +的坐标吗? 两个向量和的坐标分别等于这两个向量相应坐标的和.结论:已知11(,)a x y =,22(,)b x y =,则1212(,)a b x x y y +=++ 向量的减法思考:已知11(,)a x y =,22(,)b x y =,能得出a b -的坐标吗? 两个向量差的坐标分别等于这两个向量相应坐标的差. 结论:已知11(,)a x y =,22(,)b x y =,则1212(,)a b x x y y -=--向量的数乘同理可得,已知11(,)a x y =,则11(,)a x y λλλ=即实数与向量的积的坐标等于用这个实数乘原来向量的坐标.例5.已知平面上三点的坐标分别为(2,1)A -,(1,3)B -,(3,4)C ,求点D 的坐标,使这四点构成平行四边形四个顶点.分析:引导学生发现可以,AB BC 为邻边构造平行四边形,则AD BC =即可求出点D 的坐标;还可以以,AB AC 为邻边,或以,BC AC 为邻边. 平面向量共线的坐标表示探究:向量b与向量(0)a a ≠共线当且仅当存在实数λ使b a λ=,若11(,)a x y =,22(,)b x y =,则上述结果如何用坐标表示?1211222212(,)(,)(,)x x x y x y x y y y λλλλλ=⎧==⇔⎨=⎩思考:(1)如何消去λ? 当20x ≠时,12x x λ=,∴1122xy y x =即12210x y x y -= (问:左式当20x =时成立吗?)(2)向量共线的两种等价形式:1221//(0)0a b a b a x y x y λ≠⇔=-=或. 探究:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是11(,)x y ,22(,)x y ,当12PP PP λ=时,点P 的坐标是多少?解:∵12PP PP λ=,∴1121PPPP λλ=+(如何确定?)11112121()11OP OP PP OP PP OP OP OP λλλλ=+=+=+-++121211(,)1111x x y y OP λλλλλλλ++=+=++++ ∴点P 的坐标是1212(,)11x x y y λλλλ++++——定比分点坐标公式注意:(1)中点坐标公式是定比分点坐标公式的特殊情况1λ=;(2)套用公式时要分清向量的起点、终点以及λ是多少. ㈣ 课堂练习 课后练习书P100-101(6与7要求用探究得到的定比分点坐标公式重新计算). 练习巩固1.已知O 是坐标原点,点A 在第一象限,43OA =60xOA ∠=︒,求向量OA 的坐标. 2.已知(11,12)A 、(4,5)B 、(10,11)C ,求证:A 、B 、C 三点共线. 3.已知(,12)A k 、(4,5)B 、(10,)C k ,且A 、B 、C 三点共线,求k 的值. 能力提升1.已知(1,0)a =,(2,1)b =,当实数k 为何值时,向量ka b -与3a b +平行?并确定此时它们是同向还是反向.2.已知(1,3)A -和(8,1)B -,如果点(21,2)C a a -+在直线AB 上,求a 的值. 3.已知ABC ∆中,(0,0)O ,(0,5)A ,(4,3)B ,14OC OA =,12OD OB =,AD 与BC 交于M ,求点M 的坐标.4.已知点,,,O A B C 的坐标分别为(0,0), (3,4),(1,2)- (1,1)是否存在常数t ,使OA tOB OC +=成立?解释你所得结论的几何意义.㈤ 课堂小结 1.向量坐标定义;2.向量的坐标运算法则:已知11(,)a x y =,22(,)b x y =1212(,)a b x x y y +=++,1212(,)a b x x y y -=--,11(,)a x y λλλ=3.若),(11y x A ,22(,)B x y ,则2121(,)AB x x y y =--; 4.平面向量共线的坐标表示若11(,)a x y =,22(,)b x y =,那么1221//(0)0a b a x y x y ≠⇔-=. ㈥ 课后作业1.书P101 习题2.3 A 组 1,3,7 B 组 2; 2.课时训练. ㈦ 教后反思。
§2.3.2平面向量的正交分解及坐标表示 教学建议(一)、复习引入:问题1、指出平面向量基本定理的内容及意义设计意图:复习旧知,为下一步将基底特殊化引出新课做准备。
指出注意:(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 (二)、讲解新课: 1、平面向量的正交分解问题2、平面向量基本定理在物理学中有哪些作用?试举例说明。
设计意图:建立数学知识与物理知识的联系,感受数学定理的实际模型,有助于理解向量的正交分解概念及意义。
指出在不共线的两个向量中,垂直是一种重要的情形。
把一个向量分解为两个互相垂直的向量,叫做向量的正交分解,正交分解是向量分解中常见的一种情形,这样会给我们研究问题带来很大的方便。
2、平面向量的坐标表示问题3、平面直角坐标系中,每一个点都可以用一对有序实数(即它的坐标)表示。
对直角坐标平面内的每一个向量,如何表示呢?设计意图:通过类比平面直角坐标系中点用有序实数对表示,提示学生思考在直角坐标系中表示一个平面向量的方法,培养学生的迁移能力和创新意识。
问题4、如图,取与x 轴,y 轴同向的单位向量、为基底,用、表示向量。
设计意图:让学生经历知识的形成过程,从具体问题中初步感受向量的坐标表示意义和向量坐标的求法,同时为学生抽象坐标表示的定义作铺垫。
问题5、更一般地,怎样定义平面内任意一个向量的坐标?设计意图:通过学生自身对定义的抽象建构过程,加深对所学知识的理解,同时渗透由具体到抽象、由特殊到一般的认知方法,问题6、写出、、的坐标;设计意图:巩固向量坐标表示的定义,明确相等向量坐标相等,体会向量与其坐标的一一对应关系,感悟向量的坐标与点的坐标一样有正负之分。
问题7、(1)如果A(x1, y1),O为坐标原点,那么的坐标是什么?(2)如果A(x1, y1),B(x2,y2),那么向量的坐标是什么?(1)(2)设计意图:使学生明确向量的坐标与表示该向量的有向线数起点和终点坐标之间的关系,感悟向量的坐标与表示向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关。
2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算 课时目标 1.掌握向量的正交分解,理解平面向量坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量.2.掌握平面向量的坐标运算,能准确运用向量的加法、减法、数乘的坐标运算法则进行有关的运算.1.平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个__________的向量,叫作把向量正交分解.(2)向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个____________i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使得a =____________,则________________叫作向量a 的坐标,________________叫作向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若A (x ,y ),则OA →=________,若A (x 1,y 1),B (x 2,y 2),则AB →=________________________.2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a +b =________________,即两个向量和的坐标等于这两个向量相应坐标的和.(2)若a =(x 1,y 1),b =(x 2,y 2),则a -b =________________________,即两个向量差的坐标等于这两个向量相应坐标的差.(3)若a =(x ,y ),λ∈R ,则λa =________,即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.一、选择题1.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1)C .(-1,0)D .(-1,2)2.已知a -12b =(1,2),a +b =(4,-10),则a 等于( ) A .(-2,-2) B .(2,2)C .(-2,2)D .(2,-2)3.已知向量a =(1,2),b =(2,3),c =(3,4),且c =λ1a +λ2b ,则λ1,λ2的值分别为( )A .-2,1B .1,-2C .2,-1D .-1,24.已知M (3,-2),N (-5,-1)且MP →=12MN →,则点P 的坐标为( ) A .(-8,1) B.⎝⎛⎭⎫1,32 C.⎝⎛⎭⎫-1,-32 D .(8,-1) 5.在平行四边形ABCD 中,AC 为一条对角线.若AB →=(2,4),AC →=(1,3),则BD →等于( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)6.已知四边形ABCD 为平行四边形,其中A (5,-1),B (-1,7),C (1,2),则顶点D 的坐标为( )A .(-7,0)B .(7,6)C .(6,7)D .(7,-6)题 号 1 2 3 4 5 6 答 案二、填空题7.已知平面上三点A (2,-4),B (0,6),C (-8,10),则12AC →-14BC →的坐标是________. 8.已知A (-1,-2),B (2,3),C (-2,0),D (x ,y ),且AC →=2BD →,则x +y =________.9.若向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.10.函数y =x 2+2x +2按向量a 平移所得图象的解析式为y =x 2,则向量a 的坐标是________.三、解答题11.已知a =(-2,3),b =(3,1),c =(10,-4),试用a ,b 表示c .12.已知平面上三个点坐标为A (3,7),B (4,6),C (1,-2),求点D 的坐标,使得这四个点为构成平行四边形的四个顶点.能力提升13.已知P ={a |a =(1,0)+m (0,1),m ∈R },Q ={b |b =(1,1)+n (-1,1),n ∈R }是两个向量集合,则P ∩Q 等于( )A .{(1,1)}B .{(-1,1)}C .{(1,0)}D .{(0,1)}14.函数y =cos ⎝⎛⎭⎫2x +π6-2的图象F 按向量a 平移到F ′,F ′的函数解析式为y =f (x ),当y =f (x )为奇函数时,向量a 可以等于( )A.⎝⎛⎭⎫-π6,-2B.⎝⎛⎭⎫-π6,2 C.⎝⎛⎭⎫π6,-2 D.⎝⎛⎭⎫π6,21.在平面直角坐标系中,平面内的点、以原点为起点的向量、有序实数对三者之间建立一一对应关系.关系图如图所示:2.向量的坐标和这个向量的终点的坐标不一定相同.当且仅当向量的起点在原点时,向量的坐标才和这个终点的坐标相同.2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算答案知识梳理1.(1)互相垂直 (2)单位向量 x i +y j 有序数对(x ,y ) a =(x ,y ) (3)(x ,y ) (x 2-x 1,y 2-y 1)2.(1)(x 1+x 2,y 1+y 2) (2)(x 1-x 2,y 1-y 2) (3)(λx ,λy )作业设计1.D 2.D3.D [由⎩⎪⎨⎪⎧ λ1+2λ2=3,2λ1+3λ2=4.解得⎩⎪⎨⎪⎧λ1=-1,λ2=2.] 4.C [设P (x ,y ),由(x -3,y +2)=12×(-8,1), ∴x =-1,y =-32.] 5.B [∵AC →=AB →+AD →,∴AD →=AC →-AB →=(-1,-1).∴BD →=AD →-AB →=(-3,-5).]6.D [设D (x ,y ),由AD →=BC →,∴(x -5,y +1)=(2,-5).∴x =7,y =-6.]7.(-3,6)8.112解析 ∵AC →=(-2,0)-(-1,-2)=(-1,2),BD →=(x ,y )-(2,3)=(x -2,y -3),又2BD →=AC →,即(2x -4,2y -6)=(-1,2),∴⎩⎪⎨⎪⎧ 2x -4=-1,2y -6=2, 解得⎩⎪⎨⎪⎧ x =32,y =4,∴x +y =112. 9.-1解析 ∵A (1,2),B (3,2),∴AB →=(2,0).又∵a =AB →,它们的坐标一定相等.∴(x +3,x 2-3x -4)=(2,0).∴⎩⎪⎨⎪⎧ x +3=2,x 2-3x -4=0, ∴x =-1.10.(1,-1)解析 函数y =x 2+2x +2=(x +1)2+1的顶点坐标为(-1,1),函数y =x 2的顶点坐标为(0,0),则a =(0,0)-(-1,1)=(1,-1).11.解 设c =x a +y b ,则(10,-4)=x (-2,3)+y (3,1)=(-2x +3y,3x +y ),∴⎩⎪⎨⎪⎧ 10=-2x +3y ,-4=3x +y , 解得x =-2,y =2,∴c =-2a +2b .12.解 (1)当平行四边形为ABCD 时,AB →=DC →,设点D 的坐标为(x ,y ).∴(4,6)-(3,7)=(1,-2)-(x ,y ),∴⎩⎪⎨⎪⎧ 1-x =1,-2-y =-1, ∴⎩⎪⎨⎪⎧ x =0,y =-1. ∴D (0,-1); (2)当平行四边形为ABDC 时,仿(1)可得D (2,-3);(3)当平行四边形为ADBC 时,仿(1)可得D (6,15).综上可知点D 可能为(0,-1),(2,-3)或(6,15).13.A [设a =(x ,y ),则P =⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧x =1y =m , ∴集合P 是直线x =1上的点的集合.同理集合Q 是直线x +y =2上的点的集合,即P ={(x ,y )|x =1},Q ={(x ,y )|x +y -2=0}.∴P ∩Q ={(1,1)}.故选A.]14.B [函数y =cos ⎝⎛⎭⎫2x +π6-2按向量a =(m ,n )平移后得到y ′=cos ⎝⎛⎭⎫2x -2m +π6+n -2.若平移后的函数为奇函数,则n =2,π6-2m =k π+π2(k ∈Z ),故m =-π6时适合.]附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。
必修四第二章 平面向量2.3.2 平面向量的坐标运算教学目的:知识目标:掌握平面向量的正交分解及坐标表示通过探究活动,使学生掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反向量. 能力目标:让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法.情感目标:通过本节课的学习,渗透数形结合的思想;树立运动变化观点,学会运用运动变化的观点认识事物;通过学生的亲身实践,引发学生学习兴趣;创设问题情境,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求.教学重点:平面向量的正交分解及坐标表示教学难点:平面向量的正交分解及坐标表示教学过程:导入新课一、复习提问:1.复习向量相等的概念 相等向量OA =BC ,方向相同,大小相等.2.平面向量的基本定理(基底)a =λ11e +λ22e ,其实质:同一平面内任一向量都可以表示为两个不共线向量的线性组合.二、新课:1.正交分解的物理背景及其概念图2.3-6(P105),光滑斜面上一个木块受到重力G 的作用,产生两个效果,一是木块受平行于斜面的F 1力的作用,沿斜面下滑;一是木块产生垂直于斜面的压力F 2,G =F 1+F 2,叫做把重力G 分解.由平面向量的基本定理,对平面上任意向量a ,均可以分解为不共线的两个向量a =λ11e +λ22e . 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.平面向量的坐标表示取x 轴、y 轴上两个单位向量i , j 作基底,则平面内作一向量a =x i +y j ,记作:a =(x, y) 称作向量a 的坐标,这就叫做向量的坐标表示.i =(1,0),j =(0,1),0=(0,0)例2 如图,分别用基底i , j 表示向量a 、b 、c 、d ,并求出它们的坐标.解:由图可知:12AA AA =+a =2i +3j,所以,a =(2,3),同理,有: b =-2i +3j =(-2,3), c =-2i -3j =(-2,-3), d =2i -3j =(2,-3).3.平面向量的坐标运算(1)已知a (x 1, y 1),b (x 2, y 2),求a + b ,a - b 的坐标;(2)已知a (x, y)和实数λ,求λa 的坐标.解:a + b =(x 1 i +y 1 j )+( x 2 i +y 2 j )=(x 1+ x 2) i + (y 1+y 2) j即:a + b =(x 1+ x 2, y 1+y 2),同理:a - b =(x 1- x 2, y 1-y 2).应用示例例1 如图4,ABCD,AB =a ,AD =b ,H 、M 是AD 、DC 之中点,F 使BF=31BC,以a ,b 为基底分解向量HF AM 和.活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励. 解:由H 、M 、F 所在位置,有+=+=AD DM AD AM a b AB AD DC 212121+=+=AB 21=b +21a .AD AD AB AD BC AH BF AB AH AF HF 21312131-+=-+-+=-= =a 61-b . 点评:以a 、b 为基底分解向量AM 与HF ,实为用a 与b 表示向量AM 与HF . 变式训练已知向量e 1、e 2,求作向量-2.5e 1+3e 2.作法:(1)如图,任取一点O,作OA =-2.5e 1,OB =3e 2. (2)作OACB.故OC OC 就是求作的向量.变式训练i ,j 是两个不共线的向量,已知AB =3i +2j ,CB =i +λj ,CD =-2i +j ,若A 、B 、D 三点共线,试求实数λ的值. 解:∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j ,又∵A 、B 、D 三点共线,∵向量AB 与BD 共线.因此存在实数υ,使得AB =υBD ,即3i +2j =υ[-3i +(1-λ)j ]=-3υi +υ(1-λ)j .∵i 与j 是两个不共线的向量,故⎩⎨⎧=-=-,2)1(,33λv v ∵⎩⎨⎧=-=.3,1λv ∵当A 、B 、D 三点共线时,λ=3. 例 2 下面三种说法:∵一个平面内只有一对不共线向量可作为表示该平面的基底;∵一个平面内有无数多对不共线向量可作为该平面所有向量的基底;∵零向量不可以作为基底中的向量,其中正确的说法是( )A.∵∵B.∵∵C.∵∵D.∵∵∵活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,∵∵正确. 答案:B点评:本题主要考查的是学生对平面向量定理的理解.例1 如图,M 是∵ABC 内一点,且满足条件=++CM BM AM 320,延长CM 交AB 于N,令CM =a ,试用a 表示CN .活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0. 推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a =a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎪⎩⎪⎨⎧==.,2211b a b a 解:∵,,NM BN BM NM AN AM +=+=∵由CM BM AM 32++=0,得=++++CM NM BN NM AN 3)(2)(0.∵CM BN NM AN 323+++=0.又∵A 、N 、B 三点共线,C 、M 、N 三点共线,由平行向量基本定理,设,,NM CM BN AN μλ==∵=+++NM BN NM BN μλ3230.∵(λ+2)BN +(3+3μ)NM =0.由于BN 和NM 不共线,∵⎩⎨⎧=+=+,033,02μλ∵⎩⎨⎧-=-=12μλ∵.MN NM CM =-=∵CM MN CM CN 2=+==2a .点评:这里选取NM BN ,作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形式来解决. 变式训练设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ、μ满足λa +μb =5e 1-e 2,求λ、μ的值. 解:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb =5e 1-e 2.由平面向量基本定理,知⎩⎨⎧-=+=-.154,523λλλλ解之,得λ=1,μ=-1. 例2 如图,∵ABC 中,AD 为∵ABC 边上的中线且AE=2EC,求GEBG GD AG 及的值.活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值.解:设μλ==GEBG GD AG , ∵BD =DC ,即AD -AB =AC -AD , ∵AD =21(AB +AC ). 又∵AG =λGD =λ(AD -AG ), ∵AG =λλ+1AD =)1(2λλ+AB +)1(2λλ+AC . ∵ 又∵BG =μGE ,即AG -AB =μ(AE -AG ), ∵(1+μ)AG =AB +μAG AE ,=AE AB μμμ+++111 又AE =32AC ,∵AG =AB μ+11+)1(32μμ+AC . ∵ 比较∵∵,∵AB 、AC 不共线,∵⎪⎪⎩⎪⎪⎨⎧+=++=+.)1(32)1(2,11)1(2μμλλμλλ解之,得⎪⎩⎪⎨⎧==23,4μλ∵.23,4==GE BG GD AG 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.变式训练过∵OAB 的重心G 的直线与边OA 、OB 分别交于P 、Q,设OP =h OA ,OB k OQ =,试证:311=+kh 解:设OA =a ,OB =b ,OG 交AB 于D,则OD =21(OB OA +)=21(a +b )(图略). ∵OG =32OD =31(a +b ),OQ OG QG -==31(a +b )-kb=31a +331k -b , OQ OP QP -==h a -k b .∵P 、G 、Q 三点共线,∵QP QG λ=. ∵31a +331k -b =λha -λkb .∵⎪⎪⎩⎪⎪⎨⎧-=-=.331,31k k h λλ 两式相除,得.3311hk h k k h k =+⇒-=-, ∵kh 11+=3. 知能训练1.已知G 为∵ABC 的重心,设AB =a ,AC =b ,试用a 、b 表示向量AG .2.已知向量a =(x +3,x 2-3x -4)与AB 相等,其中A(1,2),B(3,2),求x .解答:1.如图,AG =32AD ,而=+=+=BC AB BD AB AD 21a +21(b -a )=21a +21b , ∵3232==AD AG (21a +21b )=31a +31b .点评:利用向量加法、减法及数乘的几何意义. 2.∵A(1,2),B(3,2),∵AB =(2,0).∵a =AB ,∵(x +3,x 2-3x -4)=(2,0).∵⎩⎨⎧=--=+043,232x x x 解得⎩⎨⎧=-=-=.41,1x x x 或 ∵x =-1.点评:先将向量AB 用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决.五、小结:取x 轴、y 轴上两个单位向量i , j 作基底,则平面内作一向量a =x i +y j ,记作:a =(x , y ) 称作向量a 的坐标,这就叫做向量的坐标表示.课后作业板书设计:。
§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性.授课类型:新授课教学过程:一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e (1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a =,则点A 的位置由a 唯一确定. 设yj xi +=,则向量的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++= 即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --=(2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标. =-=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=三、讲解范例:例1 已知A(x 1,y 1),B(x 2,y 2),求AB 的坐标.例2 已知a =(2,1), b =(-3,4),求a +b ,a -b ,3a +4b 的坐标.例3 已知平面上三点的坐标分别为A(-2,1), B(-1,3), C(3,4),求点D 的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD 时,由=得D 1=(2,2)当平行四边形为ACDB 时,得D 2=(4, 6),当平行四边形为DACB 时,得D 3=(-6, 0)例4已知三个力1F (3, 4), 2F (2, -5), 3F (x , y)的合力1F +2F +3F =,求3F 的坐标. 解:由题设1F +2F +3F = 得:(3, 4)+ (2, -5)+(x , y)=(0, 0)即:⎩⎨⎧=+-=++054023y x ∴⎩⎨⎧=-=15y x ∴3F (-5,1) 四、课堂练习:1.若M(3, -2) N(-5, -1) 且 21=MP , 求P 点的坐标 2.若A(0, 1), B(1, 2), C(3, 4) , 则-2= .3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) , 求证:四边形ABCD 是梯形.五、小结(略)六、课后作业(略)七、板书设计(略)。