平面向量的坐标运算
- 格式:doc
- 大小:441.00 KB
- 文档页数:12
第二讲 平面向量的基本定理及坐标表示【知识网络】1.平面向量的基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任 一向量a ,有且仅有一对实数21,λλ,使2211e e λλ+=a ,不共线向量21,e e 叫做表示这一平面内 所有向量的一组基底。
2.平面向量的坐标表示:把一个向量分解为两个互相垂直的向量,叫做向量的正交分解,在平面 直角坐标系中分别取与x 轴、y 轴方向相同的两个单位向量j i ,作为基底,对于平面上一个向 量a ,有且只有一对实数y x 、,使得j i a y x +=,则有序实数对),(y x 叫做a 的坐标,记作a=),(y x .3.平面向量的坐标运算:),(),,(2221y x y x ==b a ;(1)),(2121y y x x ++=+b a ;),(2121y y x x --=-b a ; (2)2121y y x x ⋅+⋅=⋅b a ;(3)),(11y x =a λ,2221x x +=a知识点一:平面向量的共线【典例精析】例1、设两个非零向量21e e 和不共线.(1)如果21212128,23,e e e e e e --=+=-=,求证:D C A 、、三点共线; (2)如果D C A ke e e e e e 、、且,2,32,212121-=-=+=三点共线,求k 的值.【变式训练】1.设a 、b 是不共线的两个非零向量, (1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线; (2)若8a +k b 与k a +2b 共线,求实数k 的值;知识点二:向量的平面坐标【典例精析】例1、已知A (-2,4),B (3,-1),C (-3,-4).设=a ,=b ,CA =c ,且CM =3c ,=-2b ,(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n.(3)若CM =3,=2,求点M 、N 及的坐标.例2、平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).回答下列问题:(1)若(a +k c )∥(2b -a ),求实数k;(2)设d =(x,y)满足(d -c )∥(a +b )且|d -c |=1,求d .例3、已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且=31,=31.求证:∥.例4、设向量a =(1,-3),b =(-2,4),c =(-1,-2).若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,求向量d 的坐标。
平面向量加、减运算的坐标表示讲解
平面向量的加法和减法运算可以通过坐标表示进行讲解。
首先,让我们考虑两个平面向量a和b,它们分别可以表示为(a1, a2)和
(b1, b2),其中a1、a2、b1和b2分别表示向量a和b在x轴和y
轴上的分量。
对于向量的加法,我们可以将两个向量a和b相加得到一个新
的向量c,表示为c = a + b。
这个新向量c的坐标表示为(c1, c2),其中c1等于a1加上b1,c2等于a2加上b2。
换句话说,c1和c2
分别表示了向量a和b在x轴和y轴上的分量之和,从而得到了向
量c的坐标表示。
对于向量的减法,我们可以将两个向量a和b相减得到一个新
的向量d,表示为d = a b。
这个新向量d的坐标表示为(d1, d2),
其中d1等于a1减去b1,d2等于a2减去b2。
同样地,d1和d2分
别表示了向量a和b在x轴和y轴上的分量之差,从而得到了向量
d的坐标表示。
总结起来,平面向量的加法和减法运算的坐标表示可以通过对
应分量的加法和减法来实现,这样可以更直观地理解向量之间的关系。
希望这样的讲解能够帮助你更好地理解平面向量的加减运算。
平面向量的坐标运算[学习目标] 1。
了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.知识点一 平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. (2)向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标,a =(x ,y )叫做向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若A (x ,y ),则错误!=(x ,y ),若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1).思考 根据下图写出向量a ,b ,c ,d 的坐标,其中每个小正方形的边长是1。
答案 a =(2,3),b =(-2,3),c =(-3,-2),d =(3,-3).知识点二 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),即两个向量和的坐标等于这两个向量相应坐标的和.(2)若a=(x1,y1),b=(x2,y2),则a-b=(x1-x2,y1-y2),即两个向量差的坐标等于这两个向量相应坐标的差.(3)若a=(x,y),λ∈R,则λa=(λx,λy),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(4)已知向量错误!的起点A(x1,y1),终点B(x2,y2),则错误!=(x2-x1,y2-y1).思考已知a=错误!,b=错误!,c=错误!,如下图所示,写出a,b,c的坐标,并在直角坐标系内作出向量a+b,a-b以及a-3c,然后写出它们的坐标.答案易知:a=(4,1),b=(-5,3),c=(1,1),错误!=a+b=(-1,4),错误!=a-b=(9,-2),错误!=a-3c=(1,-2).题型一平面向量的坐标表示例1已知边长为2的正三角形ABC,顶点A在坐标原点,AB边在x轴上,C在第一象限,D 为AC的中点,分别求向量错误!,错误!,错误!,错误!的坐标.解 如图,正三角形ABC 的边长为2,则顶点A (0,0),B (2,0),C (2cos60°,2sin 60°),∴C (1,错误!),D (错误!,错误!),∴错误!=(2,0),错误!=(1,错误!),错误!=(1-2,错误!-0)=(-1,错误!),错误!=(错误!-2,错误!-0)=(-错误!,错误!).跟踪训练1 在例1的基础上,若E 为AB 的中点,G 为三角形的重心时,如何求向量错误!,错误!,错误!,错误!的坐标?解 由于B (2,0),E (1,0),C (1,错误!),D (错误!,错误!),G (1,错误!),所以CE →=(1-1,0-错误!)=(0,-错误!),错误!=(1,错误!),错误!=(1-2,错误!-0)=(-1,错误!),错误!=(错误!-1,错误!-错误!)=(-错误!,错误!).题型二 平面向量的坐标运算例2 已知平面上三点A (2,-4),B (0,6),C (-8,10),求(1)错误!-错误!;(2)错误!+2错误!;(3)错误!-错误!错误!。
平面向量的坐标运算一、知识精讲1.平面向量的正交分解把一个向量分解成两个互相垂直的向量,叫做把向量正交分解.2.平面向量的坐标表示(1)向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,对于平面内的一个向量a,由平面向量基本定理知,有且只有一对实数x,y 使得a=xi+yj,则把有序数对(x,y)叫做向量a的坐标.记作a=(x,y),此式叫做向量的坐标表示.(2)在直角坐标平面中,i=(1,0),j=(0,1),0=(0,0).3.平面向量的坐标运算AB4.两个向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0.[小问题·大思维]1.与坐标轴平行的向量的坐标有什么特点?提示:与x 轴平行的向量的纵坐标为0,即a =(x,0);与y 轴平行的向量的横坐标为0,即b =(0,y ).2.已知向量OM =(-1,-2),M 点的坐标与OM 的坐标有什么关系? 提示:坐标相同但写法不同;OM =(-1,-2),而M (-1,-2). 3.在基底确定的条件下,给定一个向量.它的坐标是唯一的一对实数,给定一对实数,它表示的向量是否唯一?提示:不唯一,以这对实数为坐标的向量有无穷多个,这些向量都是相等向量.4.向量可以平移,平移前后它的坐标发生变化吗?提示:不发生变化。
向量确定以后,它的坐标就被唯一确定,所以向量在平移前后,其坐标不变.5.已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,是否有x 1x 2=y 1y 2成立?提示:不一定.由于x 1x 2=y 1y 2的意义与x 1y 2-x 2y 1=0的意义不同,前者不允许x 2和y 2为零,而后者允许,当x 1=x 2=0,或y 1=y 2=0或x 2=y 2=0时,a ∥b 但x 1x 2=y 1y 2不成立.二、典例精析例1、如图所示,已知△ABC ,A (7,8),B (3,5),C (4,3),M ,N ,D 分别是AB ,AC ,BC 的中点,且MN 与AD交于点F,求DF的坐标.变式练习:若向量a=(1,1),b=(1,-1),c=(-1,2),则c等于()A.-12a+32b B.12a-32b C.32a-12b D.-32a+12b答案:B例2、已知点O(0,0),A(1,2),B(4,5),及OP=OA+t AB.(1)t为何值时,点P在x轴上?点P在y轴上?点P在第二象限?(2)四边形OABP能为平行四边形吗?若能,求出t值;若不能,说明理由.保持例题条件不变,问t为何值时,B为线段AP的中点?变式练习:已知向量u=(x,y)和向量v=(y,2y-x)的对应关系用v=f(u)表示.(1)若a=(1,1),b=(1,0),试求向量f(a)及f(b)的坐标.(2)求使f(c)=(4,5)的向量c的坐标.例3、已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行?平行时它们是同向还是反向?保持例题条件不变,是否存在实数k,使a+kb与3a-b平行?变式练习已知A(2,1),B(0,4),C(1,3),D(5,-3).判断AB与CD是否共线?如果共线,它们的方向相同还是相反?例4、(1)已知OA=(3,4),OB=(7,12),OC=(9,16),(1)求证:A,B,C三点共线;(2)设向量OA=(k,12),OB=(4,5),OC=(10,k),当k为何值时,A,B,C三点共线?变式练习设A(x,1),B(2x,2),C(1,2x),D(5,3x),当x为何值时,AB与CD共线且方向相同,此时,A,B,C,D能否在同一条直线上?例5、如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.变式练习:在△AOB中,已知点O(0,0),A(0,5),B(4,3),OC=1OA,OD=12OB,AD4与BC交于点M,求点M的坐标.三、课后检测一、选择题1.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论 ①存在唯一的一对实数x ,y ,使得a =(x ,y ); ②a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若a =(x ,y ),且a ≠0,则a 的始点是原点O ; ④若a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中,正确结论的个数是( ) A .0 B .1 C .2D .3解析:由平面向量基本定理可知,①正确;②不正确.例如,a =(1,0)≠(1,3),但1=1;因为向量可以平移,所以a =(x ,y )与a 的始点是不是原点无关,故③错误;a 的坐标与终点坐标是以a 的始点是原点为前提的,故④错误.答案:B2.已知a =(3,-1),b =(-1,2),若ma +nb =(10,0)(m ,n ∈R),则( ) A .m =2,n =4 B .m =3,n =-2 C .m =4,n =2D .m =-4,n =-2解析:∵ma +nb =m (3,-1)+n (-1,2) =(3m -n ,-m +2n )=(10,0),∴⎩⎪⎨⎪⎧3m -n =10,-m +2n =0,∴m =4,n =2. 答案:C3.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相接能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析:∵四条有向线段首尾相接构成四边形,则对应向量之和为零向量,即4a +(4b -2c )+2(a -c )+d =0,∴d =-6a -4b +4c =-6(1,-3)-4(-2,4)+4(-1,-2)=(-2,-6). 答案:D4.若向量a =(1,1),b =(-1,1),c =(4,2)满足(ka +b )∥c ,则k =( ) A .3 B .-3 C.13D .-13解析:ka +b =(k -1,k +1),由(ka +b )∥c ,得2(k -1)-4(k +1)=0,解得k =-3. 答案:B5.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC =2AD ,则顶点D 的坐标为( )A.⎝⎛⎭⎫2,72 B.⎝⎛⎭⎫2,-12 C .(3,2)D .(1,3)解析:令D (x ,y ),由已知得⎩⎪⎨⎪⎧2x -0=3--1,2y -2=1--2.解得⎩⎪⎨⎪⎧x =2,y =72.∴顶点D 的坐标为(2,72).答案:A6.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( ) A .13 B .-13 C .9D .-9解析:AB =(-8,8),AC =(3,y +6). ∵AB ∥AC ,∴-8(y +6)-24=0. ∴y =-9.答案:D7.已知a =(-2,1-cos θ),b =(1+cos θ,-14),且a ∥b ,则锐角θ等于( )A .45°B .30°C .60°D .30°或60°解析:由a ∥b 得-2×(-14)=1-cos 2θ=sin 2θ,∵θ为锐角,∴sin θ=22,∴θ=45°. 答案:A 二、填空题8.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2),且a ∥b ,则tan θ=________. 解析:∵a ∥b ,∴2sin θ=cos θ-2sin θ. 即4sin θ=cos θ,∴tan θ=14.答案:149.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 解析:a +b =(2-1,-1+m )=(1,m -1),由(a +b )∥c , 得1×2-(m -1)×(-1)=0,即m =-1. 答案:-110.已知点A (-1,-1)、B (1,3)、C (x,5),若对于平面上任意一点O ,都有OC =λOA +(1-λ) OB ,λ∈R ,则x =______.解析:取点O (0,0),由OC = λOA +(1-λ) OB ,得 (x,5)=λ(-1,-1)+(1-λ)(1,3),∴⎩⎪⎨⎪⎧x =-λ+1-λ,5=-λ+31-λ.解得⎩⎪⎨⎪⎧λ=-12,x =2.答案:211.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在坐标轴上,则点B的坐标为________________.解析:由b ∥a ,可设b =λa =(-2λ,3λ).设点B 坐标为(x ,y ),则AB ―→=(x -1,y -2)=b .由⎩⎪⎨⎪⎧ -2λ=x -1,3λ=y -2,⇒⎩⎪⎨⎪⎧x =1-2λ,y =3λ+2.① 又B 点在坐标轴上,则1-2λ=0或3λ+2=0,∴λ=12或λ=-23,代入①式得 B 点坐标为(0,72)或(73,0). 答案:(0,72)或(73,0) 三、解答题12.已知A 、B 、C 三点的坐标为(-1,0)、(3,-1)、(1,2),并且AE =13AC ,BF =13BC ,求证:EF ∥AB . 证明:设E 、F 的坐标分别为(x 1,y 1)、(x 2,y 2),依题意有AC =(2,2),BC =(-2,3),AB =(4,-1).∵AE =13AC , ∴(x 1+1,y 1)=13(2,2). ∴点E 的坐标为(-13,23). 同理点F 的坐标为(73,0),EF =(83,-23). 又83×(-1)-4×(-23)=0,∴EF ∥AB . 13.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),回答下列问题:(1)求3a +b -2c ;(2)求满足a =mb +nc 的实数m ,n ;(3)若(a +kc )∥(2b -a ),求实数k .解:(1)3a +b -2c =3(3,2)+(-1,2)-2(4,1) =(9,6)+(-1,2)-(8,2)=(9-1-8,6+2-2)=(0,6).(2)∵a =mb +nc ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n,2m +n ).∴-m +4n =3且2m +n =2,解得m =59,n =89. (3)∵(a +kc )∥(2b -a ),又a +kc =(3+4k,2+k ),2b -a =(-5,2), ∴2×(3+4k )-(-5)×(2+k )=0.∴k =-1613.。