高中数学人教版A版必修一学案:第三单元 章末复习课
- 格式:doc
- 大小:237.00 KB
- 文档页数:6
第三章单元复习从容说课函数的零点与用二分法求方稈的近似解是新课标新增内容,在学习了函数的概念及其性质和研究了具体函数的基础上,引入函数的零点及解,一方面使函数与方程得到了完美的统一,另一方血使函数的应用问题的求解思路更广阔以及函数与方程思想更具活力.学习数学知识的冃的,就是运用数学知识处理、解决实际问题,运用数学知识解决实际问题是毎年高考必考内容之一,因此,函数模型及其应用是本章的重点,也是高考考杏的热点,它给出的思想方法,在其他数学章节屮都能应用.将所学的知识用于实际是个很复杂的过程,不但要求理解、掌握知识和思维方法,而且要求具备较强的分析、综合能力,还需要运用自己的生活经验和体会,这样才能理解实际问题屮的数量关系并确定它们间的数学联系(函数关系),将实际问题抽彖、概括为典型的数学问题•应用数学知识解决了数学问题示,还要分析理论的解适M实际问题的状况等等,这实际是对一个人的索质水平高低的考查,因此本单元知识是高屮数学的一大难点.三维目标一、知识与技能1.了解方程的根与函数零点的关系,理解函数零点的性质.2.掌握二分法,会用二分法求方程的近似解.3•了解直线上升、指数爆炸、对数增长,会进行指数函数、对数函数、幕函数增长速度的比较.4.能熟练讲行数学建模,解决有关函数实际应用问题.二、过程与方法1.培养学生分析、探究、思考的能力,进一步培养学生综合运用基木知识解决问题的能力.2.能恰当地使用信息技术工具,解决有关数学问题.三、情感态度与价值观激发学生学习数学的兴趣,培养他们合作、交流、创新意识以及分类讨论、抽象理解能力.教学重点应用函数模型解决冇关实际问题.教学难点二分法求方程的近似解,指数函数、对数函数、幕函数增长速度的比较.教具准备多媒体、课时讲义.课时安排1课时教学过程一、知识冋顾(一)第三章知识点L函数的零点,方程的根与函数的零点,零点的性质.2.二分法,用二分法求函数零点的步骤.3.几类不同增长的函数模型(直线上升、指数爆炸、对数增长),指数函数、对数函数、幕函数增长速度的比较.4.函数模型,解决实际问题的基木过程.(二)方法总结1.函数尸/'(X)的零点就是方程.f &) =0的根,因此,求函数的零点问题通常可转化为求相应的方程的根的问题.2.—元二次方稈根的讨论在高屮数学屮应用广泛,求解此类问题常有三种途径:(1)利用求根公式;(2)利川二次函数的图彖;(3)利用根与系数的关系.无论利用哪种方法,根的判别式祁不容忽视,只是由于二次函数图彖的不间断性,有些问题屮的判别式已隐含在问题的处理Z屮.3.用二分法求函数零点的一般步骤:已知函数y=f (x)定义在区间D上,求它在D上的一个变号零点x0的近似值x,使它与零点的误差不超过正数5即使得*一对£。
新版高一数学必修第一册第三章全部教学设计3.1.1 函数的概念本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第1课时。
函数的基本知识是高中数学的核心内容之一,函数的思想贯穿于整个初中和高中数学.对于高一学生来说,函数不是一个陌生的概念。
但是,由于局限初中阶段学生的认知水平;学生又善未学习集合的概念,只是用运动变化的观点来定义函数,通过对正比例函数、反比例函数、一次和二次函数的学习来理解函数的意义,对于函数的概念理解并不深刻.高一学生学习集合的概念之后,进一步运用集合与对应的观点来刻画函数,突出了函数是两个集合之间的对应关系,领会集合思想、对应思想和模型思想。
所以把第一课时的重点放在函数的概念理解,通过生活中的实际事例,引出函数的定义,懂得数学与人类生活的密切联系,通过对函数三要素剖析,进一步理解充实函数的内涵。
所以在教学过程中分别设计了不同问题来理解函数的定义域、对应法则、函数图象的特征、两个相同函数的条件等问题.学生在初中阶段,已经知道函数的定义域是使函数解析式有意义、实际问题要符合实际意义的自变量的范围,所以在教学中进一步强调定义域的集合表示.A.通过丰富的买例进一步体会函数是描述变量之间的依赖关系的重要数学模型;B.用集合与对应的思想理解函数的概念;C.理解函数的三要素及函数符号的深刻含义;1.教学重点:函数的概念,函数的三要素;2.教学难点:函数的概念及符号()y f x 的理解。
多媒体(单位:元)是他工作天数d 的函数吗?【答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w 。
2.思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【答案】不是。
自变量的取值范围不一样。
问题3 如图,是北京市2016年11月23日的空气质量指数变化图。
⼈教统编部编版⾼中数学必修⼀A版第三章《函数概念与性质》全章节教案教学设计(含章末综合复习)【新教材】⼈教统编版⾼中数学必修⼀A版第三章教案教学设计3.1《函数的概念及其表⽰》教材分析:课本从引进函数概念开始就⽐较注重函数的不同表⽰⽅法:解析法,图象法,列表法.函数的不同表⽰⽅法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两⽅⾯的结合得到更充分的表现,使学⽣通过函数的学习更好地体会数形结合这种重要的数学思想⽅法.因此,在研究函数时,要充分发挥图象的直观作⽤.在研究图象时,⼜要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的⼀种推⼴,这与传统的处理⽅式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学⽣将更多的精⼒集中理解函数的概念,同时,也体现了从特殊到⼀般的思维过程.教学⽬标与核⼼素养:课程⽬标1、明确函数的三种表⽰⽅法;2、在实际情境中,会根据不同的需要选择恰当的⽅法表⽰函数;3、通过具体实例,了解简单的分段函数,并能简单应⽤.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式;3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利⽤图像表⽰函数;5.数学建模:由实际问题构建合理的函数模型。
教学重难点:重点:函数的三种表⽰⽅法,分段函数的概念.难点:根据不同的需要选择恰当的⽅法表⽰函数,什么才算“恰当”?分段函数的表⽰及其图象.课前准备:多媒体教学⽅法:以学⽣为主体,采⽤诱思探究式教学,精讲多练。
教学⼯具:多媒体。
教学过程:⼀、情景导⼊初中已经学过函数的三种表⽰法:列表法、图像法、解析法,那么这三种表⽰法定义是?优缺点是?要求:让学⽣⾃由发⾔,教师不做判断。
⽽是引导学⽣进⼀步观察.研探. ⼆、预习课本,引⼊新课阅读课本67-68页,思考并完成以下问题1.表⽰两个变量之间函数关系的⽅法有⼏种?分别是什么?2.函数的各种表⽰法各有什么特点?3.什么是分段函数?分段函数是⼀个还是⼏个函数?4.怎样求分段函数的值?如何画分段函数的图象?要求:学⽣独⽴完成,以⼩组为单位,组内可商量,最终选出代表回答问题。
课题:§3.1.1方程的根与函数的零点教学目标:知识与技能理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.过程与方法零点存在性的判定.情感、态度、价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.教学重点:重点零点的概念及存在性的判定.难点零点的确定.教学程序与环节设计:结合二次函数引入课题.二次函数的零点及零点存在性的.教学过程与操作设计:函数零点的概念:课题:§3.1.2用二分法求方程的近似解教学目标:知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观体会数学逼近过程,感受精确与近似的相对统一.教学重点:重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.教学程序与环节设计:由二分查找及高次多项式方程的求问题引入.二分法的意义、算法思想及方法步骤.初步应用二分法解.二分法为什么可以逼近零点的再分析;.追寻阿贝尔和伽罗瓦.教学过程与操作设计:课题:§3.2.1几类不同增长的函数模型教学目标:知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.过程与方法能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.情感、态度、价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.难点怎样选择数学模型分析解决实际问题.教学程序与环节设计:实际问题引入,激发学生兴趣.选择变量、建立模型,利用数据表格、函数图象讨论模型,体会不同函数模型增长的含义及其差异.归纳一般的应用题的求教学过程与操作设计:。
第三章函数的概念与性质小结与复习教案第1课时一、内容和内容解析1.内容函数的概念、表示和函数单调性的复习课2. 内容解析这是在学生已经学习完本章内容的基础上进行的复习课,复习课一共两节课,这是第一节复习课.在这一章中,学生从用变量之间依赖关系描述函数上升到用集合语言和对应关系刻画函数,建立了完整的函数概念,并体会集合语言和对应关系在刻画函数概念中的作用.这是一个难点,因此在复习的过程中还要巩固.除此之外,还要了解构成函数的要素,能求简单函数的定义域,能根据实际的情况用不同的函数表示方法表示函数,了解简单的分段函数,并能简单应用.同样地,在研究函数单调性的过程中,能够使用符号化的语言来描述,这是学生学习这部分内容时的一个难点. 这样一种从形象直观到定性刻画再到定量刻画的研究过程,以及通过引入数学符号、借助代数语言精确刻画刻画定量变化规律的方法,体现了数学抽象的一般过程,对于培养学生的数学抽象能力具有重要意义.基于以上分析,确定教学重点:复习建立在集合与对应关系的函数概念以及函数单调性的符号语言刻画和单调性的应用.二、目标和目标解析1.目标(1)理解函数的概念和表示方法,并能应用函数的概念解决一些问题;(2)掌握函数单调性的概念,会用符号语言表达单调性、最值,理解它们的作用和实际意义;(3)能用定义证明简单函数的单调性;(4)能运用所学的知识解决一些数学问题和实际问题.2.目标解析达成上述目标的标志是:(1)能用集合间的对应关系的观点定义函数,能根据实际的问题表示函数;(2)知道用符号语言刻画函数单调性时,“任意”“都有”等关键词的含义;能够从函数图象,或通过代数推理,得出函数的单调递增、单调递减区间;知道函数的单调性反映了现实世界中事物在量的增加或减小上的变化趋势.(3)会用函数单调性的定义,按一定的步骤证明函数的单调性;(4)会用函数最大值、最小值的定义,按一定的步骤求函数的最大(小)值.三、教学问题诊断分析学生已经学习了相关的知识,在这节复习课上,要巩固前面学习的相关内容,让学生进一步体会用数学的语言和符号化的方式表达数学概念,表达函数的概念、函数的性质等.作为复习课,在教学的过程中也要充分利用信息技术展示函数的对应关系、函数的单调变化规律、函数的最值等,也可以用表格形式加强自变量从小到大时函数值的大小变化趋势等,数形结合地提出问题,给学生设置一条从定性到定量、从粗糙到精确的归纳过程,引导学生逐步抽象出函数单调性的定义,再通过辨析、练习帮助学生理解定义.另外,在教学的过程中,还要有一定的习题,让学生通过习题,自己体会函数的概念和函数的性质等,通过习题,体会这些概念和性质的应用,并体会一些内容的综合运用.根据以上分析,确定教学难点是:符号化的语言表述,对量词的使用和运用函数的单调性解决问题.四、教学支持条件分析为使学生更好地理解形式化定义,降低归纳定义过程中的难度,可利用计算工具,采用动态方式展现函数图象、展示变化规律等.五、教学过程设计(一)引入问题1:初中函数概念和高中函数概念的区别是什么?(1)请说出初中函数的定义;(2)请说出高中函数的定义;(3)辨析这两者有什么不同.师生活动:教师提出问题,前2个问题学生自主回答,第3个问题由学生之间讨论、分析并总结.设计意图:让学生复习函数的概念,并通过对比初中和高中的概念区别,进一步体会函数是建立在集合间的对应关系.(二)函数的概念和表示法的巩固师生活动:学生先独立思考,计算,黑板板书(或者利用信息技术将学生的书写过程展示).设计意图:让学生体会在一个熟知的二次函数中,利用单调性解决数学问题.(四)课堂小结问题11:回答下列问题(1)在解决有关函数概念的问题,以及利用函数的概念解决其他问题的时候,有什么需要特别注意的问题吗?(2)在处理函数单调性的问题时,有什么需要注意的吗?师生活动:学生先独立思考,然后讨论,发表观点,教师进行归纳.设计意图:让学生进一步体会和注意,处理有关函数问题的时候,需要注意的问题.六、目标检测设计设计意图:本题通过绘制函数图象,能够观察出(也可以严格的证明)它是一个增函数,因此将f(2-a2)>f(a)转化为1-a2>a,解二次不等式得到结果. 这道题目将分段函数,函数的图象,函数的单调性充分综合,是检测学生综合运用本章知识分析和解决问题的能力.。
章末复习一、圆锥曲线的定义及标准方程1.求圆锥曲线方程的常用方法(1)直接法:动点满足的几何条件本身就是几何量的等量关系,只需把这种关系“翻译”成含x,y的等式就得到曲线的轨迹方程.(2)定义法:动点满足已知曲线的定义,可先设定方程,再确定其中的基本量.(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,再根据条件确定待定的系数.2.求圆锥曲线方程体现了逻辑推理和数学运算、直观想象的数学素养.例1(1)已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是()A.椭圆B.双曲线C.抛物线D.以上都不对答案C解析把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=|3x+4y-12|5.∴动点M到原点的距离与它到直线3x+4y-12=0的距离相等.∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.(2)在圆x2+y2=4上任取一点P,设点P在x轴上的正投影为点D.当点P在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .求曲线C 的方程.解方法一由PD →=2MD →,知点M 为线段PD 的中点,设点M 的坐标为(x ,y ),则点P 的坐标为(x ,2y ).因为点P 在圆x 2+y 2=4上,所以x 2+(2y )2=4,所以曲线C 的方程为x 24+y 2=1. 方法二设点M 的坐标为(x ,y ),点P 的坐标是(x 0,y 0),由PD →=2MD →,得x 0=x ,y 0=2y ,因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 20+y 20=4,(*)把x 0=x ,y 0=2y 代入(*)式,得x 2+4y 2=4,所以曲线C 的方程为x 24+y 2=1. 反思感悟(1)应用定义解题时注意圆锥曲线定义中的限制条件.(2)涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.跟踪训练1(1)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.答案x 2-y 23=1 解析由题意得⎩⎪⎨⎪⎧ c =2,c a =2,解得⎩⎪⎨⎪⎧a =1,c =2,则b 2=c 2-a 2=3, 因此双曲线方程为x 2-y 23=1. (2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.解抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如图所示,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小,且最小值为|MD |=2-(-2)=4,所以|PM |+|PF |的最小值是4.此时点P 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝⎛⎭⎫98,3. 二、圆锥曲线的几何性质1.本类问题主要有两种考查类型:(1)已知圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考查重点.(2)已知圆锥曲线的性质求其方程,基本方法是待定系数法,其步骤可以概括为“先定位、后定量”.2.圆锥曲线的性质的讨论和应用充分体现了直观想象和逻辑推理的数学素养.例2(1)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是()A.2B.3C.32D.62答案D解析由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形,所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8,所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3,所以C 2的离心率e =c a =62. (2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 答案x ±2y =0解析设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a. 因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝⎛⎭⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±b a x =±22x , 即x ±2y =0.反思感悟求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =c a,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.跟踪训练2(1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距是c ,A ,B 分别是长轴、短轴的一个端点,O 为原点,若△ABO 的面积是3c 2,则此椭圆的离心率是()A.12B.32C.22D.33答案A解析12ab =3c 2,即a 2(a 2-c 2)=12c 4, 所以(a 2+3c 2)(a 2-4c 2)=0,所以a 2=4c 2,a =2c ,故e =c a =12. (2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为_________. 答案x ±y =0解析c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知,双曲线过点⎝⎛⎭⎫c ,-p 2, 即c 2a 2-p 24b 2=1.② 由|F A |=c ,得c 2=a 2+p 24,③ 由①③得p 2=4b 2.④将④代入②,得c 2a 2=2. ∴a 2+b 2a 2=2,即b a=1, 故双曲线的渐近线方程为y =±x ,即x ±y =0.三、直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式.2.借用直线与圆锥曲线问题培养数学运算的数学核心素养.例3已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.解(1)由题设知⎩⎪⎨⎪⎧ b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5, 由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧ y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3.∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4(m 2-3)] =1524-m 2.由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33. 反思感悟(1)直线与圆锥曲线的位置关系可以通过代数法判断.(2)一元二次方程的判别式Δ、弦长公式是代数法解决问题的常用工具.跟踪训练3已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),其焦点为F 1,F 2,离心率为22,直线l :x +2y -2=0与x 轴,y 轴分别交于点A ,B .(1)若点A 是椭圆E 的一个顶点,求椭圆的方程;(2)若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,求a 的取值范围.解(1)由椭圆的离心率为22,得a =2c , 由A (2,0),得a =2,∴c =2,b =2,∴椭圆方程为x 24+y 22=1. (2)由e =22,设椭圆方程为x 2a 2+2y 2a2=1, 联立⎩⎪⎨⎪⎧ x 2a 2+2y 2a 2=1,x +2y -2=0,得6y 2-8y +4-a 2=0, 若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,则线段AB 与椭圆E 有公共点,等价于方程6y 2-8y +4-a 2=0在y ∈[0,1]上有解. 设f (y )=6y 2-8y +4-a 2,∴⎩⎪⎨⎪⎧ Δ≥0,f (0)≥0,即⎩⎪⎨⎪⎧a 2≥43,4-a 2≥0, ∴43≤a 2≤4, 故a 的取值范围是⎣⎡⎦⎤233,2. 四、圆锥曲线的综合问题1.圆锥曲线的综合问题包括位置关系证明及定值、最值问题,解决的基本思路是利用代数法,通过直线与圆锥曲线的方程求解.2.圆锥曲线的综合问题的解决培养学生的逻辑推理和数学运算素养.例4已知抛物线C :y 2=2px (p >0)经过点P (2,2),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程;(2)若OA ⊥OB ,求△AOB 面积的最小值.解(1)由抛物线C :y 2=2px 经过点P (2,2)知4p =4,解得p =1.则抛物线C 的方程为y 2=2x .抛物线C 的焦点坐标为⎝⎛⎭⎫12,0,准线方程为x =-12. (2)由题意知,直线AB 不与y 轴垂直,设直线AB :x =ty +a ,由⎩⎪⎨⎪⎧x =ty +a ,y 2=2x ,消去x ,得y 2-2ty -2a =0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a .因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即y 21y 224+y 1y 2=0, 解得y 1y 2=0(舍去)或y 1y 2=-4.所以-2a =-4,解得a =2.所以直线AB :x =ty +2.所以直线AB 过定点(2,0).S △AOB =12×2×||y 1-y 2=y 21+y 22-2y 1y 2=y 21+y 22+8≥2||y 1y 2+8=4.当且仅当y 1=2,y 2=-2或y 1=-2,y 2=2时,等号成立.所以△AOB 面积的最小值为4.反思感悟(1)解决最值问题常见的题型,可用建立目标函数的方法求解.(2)圆锥曲线的综合问题可以从分析问题的数量关系入手,利用直线系或曲线系方程或函数方程思想,通过联想与类比,使问题获解.跟踪训练4已知动圆P 与圆O 1:x 2-x +y 2=0内切,且与直线x =-1相切,设动圆圆心P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过曲线C 上一点M (2,y 0)(y 0>0)作两条直线l 1,l 2与曲线C 分别交于不同的两点A ,B ,若直线l 1,l 2的斜率分别为k 1,k 2,且k 1k 2=1.证明:直线AB 过定点.(1)解由题意可知,动圆圆心P 到点⎝⎛⎭⎫12,0的距离与到直线x =-12的距离相等,所以点P 的轨迹是以⎝⎛⎭⎫12,0为焦点,直线x =-12为准线的抛物线,所以曲线C 的方程为y 2=2x . (2)证明易知M (2,2),设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +b ,联立⎩⎪⎨⎪⎧ x =my +b ,y 2=2x ,得y 2-2my -2b =0, 所以⎩⎪⎨⎪⎧ y 1+y 2=2m ,y 1y 2=-2b , 所以⎩⎪⎨⎪⎧x 1+x 2=2m 2+2b ,x 1x 2=b 2, 因为k 1k 2=y 1-2x 1-2·y 2-2x 2-2=1, 即y 1y 2-2(y 1+y 2)=x 1x 2-2(x 1+x 2), 所以b 2-2b -4m 2+4m =0,所以(b -1)2=(2m -1)2,所以b =2m 或b =-2m +2.当b =-2m +2时,直线AB 的方程为x =my -2m +2过定点(2,2)与M 重合,舍去;当b =2m 时,直线AB 的方程为x =my +2m 过定点(0,-2),所以直线AB 过定点(0,-2).1.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为()A .2sin40°B .2cos40°C.1sin50°D.1cos50°答案D解析由题意可得-b a=tan130°, 所以e =1+b 2a 2=1+tan 2130° =1+sin 2130°cos 2130° =1|cos130°|=1cos50°.2.(2019·全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p 等于() A .2B .3C .4D .8答案D解析由题意知,抛物线的焦点坐标为⎝⎛⎭⎫p 2,0,椭圆的焦点坐标为(±2p ,0),所以p 2=2p ,解得p =8,故选D. 3.(2019·全国Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1D.x 25+y 24=1 答案B解析由题意设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a 2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.令∠OAF 2=θ(O 为坐标原点),则sin θ=c a =1a.在等腰三角形ABF 1中,cos2θ=(2m )2+(3m )2-(3m )22×2m ·3m=13,因为cos2θ=1-2sin 2θ,所以13=1-2⎝⎛⎭⎫1a 2,得a 2=3.又c 2=1,所以b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1,故选B. 4.(2019·北京)已知椭圆C :x 2a 2+y 2b 2=1的右焦点为(1,0),且经过点A (0,1). (1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点.(1)解由题意,得b 2=1,c =1,所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1. (2)证明设P (x 1,y 1),Q (x 2,y 2),则直线AP 的方程为y =y 1-1x 1x +1.令y =0,得点M 的横坐标x M =-x 1y 1-1. 又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1. 同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1. 由⎩⎪⎨⎪⎧ y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0, 则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2. 所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1 =⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2 =2⎪⎪⎪⎪⎪⎪1+t 1-t . 又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2. 解得t =0,所以直线l 经过定点(0,0).。
章末复习课
网络构建
核心归纳
1.函数的零点与方程的根的关系
函数f(x)的零点就是方程f(x)=0的解,函数f(x)的零点的个数与方程f(x)=0的解的个数相等,也可以说方程f(x)=0的解就是函数f(x)的图象与x轴交点的横坐标,即函数f(x)的函数值等于0时自变量x的取值.
因此方程的解的问题可以转化为函数问题来解决.讨论方程的解所在的大致区间可以转化为讨论函数的零点所在的大致区间,讨论方程的解的个数可以转化为讨论函数的零点的个数.
2.函数零点的存在性定理
(1)该定理的条件是:①函数f(x)在区间[a,b]上的图象是连续不断的;②f(a)·f(b)<0,即f(a)和f(b)的符号相反.这两个条件缺一不可.
(2)该定理的结论是“至少存在一个零点”,仅仅能确定函数零点是存在的,但是不能确定函数零点的个数.
3.函数应用
(1)要解决函数应用问题,首先要增强应用函数的意识.一般来说,解决函数应用问题可分三步:第一步,理解题意,弄清关系;第二步,抓住关键,建立模型;第三步,数学解决、检验模型.其中第二步尤为关键.
(2)在解题中要充分运用数形结合、转化与化归、函数与方程等数学思想及策略,寻求解题途径.
(3)根据已知条件建立函数解析式是函数应用的一个重要方面.一般分为两类:一类是借助于生活经验、函数知识等建立函数模型,以二次函数模型为主,一般是求二次函数的最值.另一类是根据几何、物理概念建立函数模型.
要点一 函数的零点与方程的根
函数的零点与方程的根的关系及应用
1.函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.
2.确定函数零点的个数有两个基本方法:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数进行判断.
【例1】 (1)函数f (x )=⎩⎪⎨⎪⎧
x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________. (2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.
解析 (1)①当x ≤0时,由f (x )=0,即x 2-2=0,解得x =2或x =- 2.因为x ≤0,所以x =- 2.
②法一 (函数单调性法)当x >0时,f (x )=2x -6+ln x .
而f (1)=2×1-6+ln 1=-4<0,f (3)=2×3-6+ln 3=ln 3>0,所以f (1)·f (3)<0,又函数f (x )的图象是连续的,故由零点存在性定理,可得函数f (x )在(1,3)内至少有一个零点.而函数y =2x -6在(0,+∞)上单调递增,y =ln x 在(0,+∞)上单调递增,所以函数f (x )=2x -6+ln x 在(0,+∞)上单调递增.
故函数f (x )=2x -6+ln x 在(0,+∞)内有且只有1个零点.综上,函数f (x )共有2个零点. 法二 (数形结合法)当x >0时,由f (x )=0,得2x -6+ln x =0,
即ln x =6-2x .
如图,分别作出函数y =ln x 和y =6-2x 的图象.
显然,由图可知,两函数图象只有一个交点,且在y 轴的右侧,故当x >0时,f (x )=0只有一个解.
综上,函数f (x )共有2个零点.
(2)由f (x )=0得|2x -2|=b ,在同一坐标系中作出函数y =|2x -2|和y =b 的图象,如图所示,
由图可知0<b<2,即若f(x)有两个零点,则b的取值范围是(0,2).
答案(1)2(2)(0,2)
【训练1】已知关于x的方程a·4x+b·2x+c=0(a≠0),常数a,b同号,b,c异号,则下列结论中正确的是()
A.此方程无实根
B.此方程有两个互异的负实根
C.此方程有两个异号实根
D.此方程仅有一个实根
解析由常数a,b同号,b,c异号,可得a,c异号,令2x=t,则方程变为at2+bt+c =0,t>0,由于此方程的判别式Δ=b2-4ac>0,故此方程有2个不等实数根,且两根之积为c
a <0,故关于t的方程只有一个实数根,故关于x的方程只有一个实数根.
答案 D
要点二二分法求方程的近似解(或函数的零点)
1.二分法求方程的近似解的步骤
(1)构造函数,转化为求函数的零点.
(2)明确精确度和函数的零点所在的区间(最好区间左右端点相差1).
(3)利用二分法求函数的零点.
(4)归纳结论.
2.使用二分法的注意事项
(1)二分法的实质是通过“取中点”,不断缩小零点所在区间的范围,所以要选好计算的初始区间,保证所选区间既符合条件,又使区间长度尽量小.
(2)计算时注意依据给定的精确度,及时检验计算所得的区间是否满足精确度的要求.
(3)二分法在具体使用时有一定的局限性,首先二分法只能一次求得一个零点,其次f(x)在(a,b)内有不变号零点时,不能用二分法求得.
【例2】设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的.
先求值:f(0)=________,f(1)=________,f(2)=________,f(3)=________.
所以f(x)在区间________内存在一个零点x0,填下表,。