第七章 协方差分析
- 格式:pdf
- 大小:283.77 KB
- 文档页数:13
第十一节协方差分析(analysis of covariance)在各种试验设计中,对应变量(dependent variable)Y 研究时,常希望其他可能影响Y的变量在各组间保持基本一致,以达到均衡可比。
例如:比较几种药物的降压作用,各试验组在原始血压、性别、年龄等指标应无差异。
第十一节协方差分析有时这些变量不能控制,须在统计分析时,通过一定方法来消除这些变量的影响后,再对应变量y作出统计推断。
称这些影响变量为协变量(Covariate)。
如果所控制的变量是分类变量时,可用多因素的方差分析;当要控制的变量是连续型变量时,可用协方差分析,以消除协变量的影响,或将协变量化成相等后,对y的修正均数进行方差分析。
第十一节协方差分析例如:比较几种不同饲料对动物体重增加的作用,可把动物的进食量作为协变量。
比较大学生和运动员的肺活量时,可把身高作为协变量。
比较治疗后二组舒张压的大小,可把治疗前的舒张压作为协变量。
第十一节协方差分析协方差分析的基本原理:协方差分析是把直线回归和方差分析结合起来的一种统计分析方法。
当不同处理结果的y值受协变量x的影响时,先找出y与x的直线关系,求出把x值化为相等后y的修正均数,然后进行比较,这样就能消除x对y的影响,更恰当地评价各种处理的作用。
协方差分析的步骤±观察指标服从正态分布、方差齐性、各观察相互独立H检验分组因素与协变量x是否有交互作用。
对上例,即是否雌雄羔羊进食量相同,它们的体重增加量却不相同。
如检验结果分组因素与协变量x间没有交互作用,即说明雌雄羔羊进食量相同的情况下,它们的体重增加量是相同的。
进行第二项检验:H检验协变量与应变量之间是否存在线性关系。
如果不存在线性关系,则不能简单地运用协方差分析,因为协方差分析是利用协变量x与应变量y之间的线性回归关系扣除协变量x对y的影响。
必要时可考虑进行变量转换。
如果检验结果协变量与应变量之间存在线性关系,则进行第三项检验:H进一步扣除x对y影响的前提下,检验各组的修正均数差别是否有统计学意义。
协方差分析名词解释协方差分析(CovarianceAnalysis)是一种常见的统计分析方法,是衡量两个变量之间线性关系强度的有效手段。
协方差分析与相关分析(correlation analysis)有很多相关点,都是用来识别变量之间的关系,但两者的方法不同。
协方差分析的核心是对变量之间关系的衡量,而这种衡量有多种形式。
一般情况下,协方差分析主要是通过计算变量之间的协方差来完成的。
协方差(covariance)是衡量两个变量的线性关系的函数,可以从变量的期望值(expected value)和方差(variance)来计算。
如果变量之间的协方差大于0,则表明两个变量之间存在正相关关系,也就是说,变量A上升时,变量B也有可能会上升;如果变量之间的协方差小于0,则表明两个变量之间存在负相关关系,也就是说,变量A上升时,变量B可能会下降。
此外,协方差分析还可以用于研究多个变量之间的关系,其中最常用的方法是多元协方差分析(multivariable covariance analysis)。
它可以用来研究多个变量之间的变化与偏差,以及它们之间关联程度的大小。
此外,协方差分析还可以用于研究两个或多个样本之间的关系,也就是说,它可以分析两个或多个样本集中的变量之间是否存在关联性。
例如,可以利用协方差分析,分析一组调查者的年龄、职业、教育水平和收入之间的关系,这有助于统计学家和社会研究者了解他们的研究结果。
最后,协方差分析是一种常用的数据分析方法,它可以帮助研究者和社会科学家分析不同变量之间的关系,同时它也可以帮助研究者分析不同样本集之间的关系,从而使他们更好地理解社会、经济和文化现象。
它的分析结果可以为社会科学研究提供更多的参考依据,从而改善当前的社会现状。
协方差分析协方差分析(ANCOVA)是一种在统计学中常用的方法,用于比较两个或更多组之间的平均值是否存在差异,并控制一个或多个可能存在的共同协变量的影响。
在本文中,将介绍协方差分析的基本概念、假设前提、模型、效应检验、应用注意事项等内容。
一、基本概念协方差分析是一种结合了方差分析(ANOVA)和回归分析的技术,旨在研究组间的差异是否受到一个或多个协变量的影响。
协变量指的是可能影响因变量的其他变量,例如年龄、性别、智力水平等。
通过控制协变量的影响,协方差分析可以更准确地评估组间的差异是否真正存在。
二、假设前提三、模型在协方差分析中,需要估计各组的平均值(μ)和回归系数(β1和β2),以及误差项的方差(σ²)。
通过比较组间方差与误差项方差的比值,可以判断在控制协变量的情况下,组间的差异是否显著。
四、效应检验另外,还可以通过比较回归系数的显著性来判断协变量对因变量的影响。
如果协变量的回归系数显著,表示协变量对因变量的影响在各组之间存在差异。
五、应用注意事项在进行协方差分析时,需要注意以下几点:1.选择合适的协变量:选择与因变量相关的协变量,以减少协变量的影响,提高结果的准确性。
2.检验协变量与因变量之间的线性关系:协变量与因变量之间的关系应该是线性的,否则可能导致结果不准确。
3.选择适当的控制组:选择适当的控制组进行比较,以保证对组间差异的探究更有说服力。
4.检验方差齐次性假设:协方差分析要求各组之间的方差应该是齐次的,如果方差齐次性假设不成立,可能导致结果失真。
5.做出合理的解释:协方差分析仅能提供组间的比较结果,不能得出因果关系的结论。
因此,在解释结果时应谨慎,并结合实际情况进行合理解释。
总结:协方差分析是一种在统计学中常用的方法,用于比较组间平均值是否存在差异,并控制可能存在的共同协变量的影响。
通过协方差分析,可以更准确地评估组间差异的显著性,并提供合理的解释。
在进行协方差分析时,需要注意选择合适的协变量、检验线性关系、选择适当的控制组、检验方差齐次性假设,并做出合理的解释。
第七章 方差分析、统计效力方差分析原理:综合的F检验应用:两个以上平均数之间的差异检虚无假设:H0:μ1 = μ2 = μ3方差可分解,实验数据的总变异分解为若干不同来源的分变异,一般分为组内变异和组间变异组内变异:实验误差、被试差异等组间变异:不同实验条件造成的变异考察F = 组间均方/ 组内均方的显著性方差分析的前提总体正态分布变异互相独立各实验条件的方差齐性方差分析的步骤a. 求总和方、组间和方、组内和方b. 求总自由度、组间自由度、组内自由度c. 求组间均方、组内均方d. 计算F观测值e. 列方差分析表f. 查F表求F临界值g. 作判断符号系统K = 处理条件或组的数目n i = 第i 组的被试数目,若每组被试相等,则为n N = Σn i = 总被试数T i = ΣX ij = 每个组分数值的和 G = ΣX ij = 所有分数的总和 P = 每个被试的观察数目 单因素完全随机方差分析例:检验三个不同的学习方法的效应。
将学生随机分配到3个处理组 方法 A :让学生只读课本, 不去上课. 方法 B :上课,记笔记,不读课本.方法 C :不读课本,不去上课, 只看别人的笔记解:虚无假设H 0:μ1 = μ2 = μ3 ,三种方法学习效果没有差异 备择假设:至少有一个组和其他不同G=30, N=15, 215G ==, 2106,3XK ==∑SS 总= ΣX 2 - G 2 / N =106 – 900 / 15 = 106 – 60 = 46 SS 组内= SS 1 + SS 2 + SS 3 = 6 + 6 + 4 = 16SS组间= Σ(T2/n i) - G2/N = 52/5 + 202/5 + 52/5 - 302/15 = 5 + 80 + 5 –60 = 30实际SS组间可以用SS总- SS组内快速求得,但不推荐df总= N – 1 = 15 -1 = 14df组内= N –K = 15 - 3 = 12df组间= K – 1 = 3 – 1 = 2MS组内= SS组内/ df组内= 16/12 = 1.333MS组间= SS组间/ df组间= 30/2 = 15F obs = MS组间/ MS组内= 15 / 1.333 = 11.25F0.05(2, 12) = 3.88F obs = 11.25 > F0.05(2, 12) = 3.88所以拒绝H0,至少有一组和其他不同事后检验N-K检验HSD检验Scheffe检验……注意:不能用两两之间t检验,P = 1 - (1 - α)n,例如本例P = 1 - (1 –0.05)3 = 0.143随机区组设计的方差分析又称重复测量方差分析,单因素组内设计,相关组设计,被试内设计解:G = 305.5,N = 32,ΣX2 = 2934.91,K = 4, n = 8SS总= ΣX2 - G2 / N = 2934.91 –305.52 / 32 = 18.33SS组内= SS1 + SS2 + SS3 + SS4 = 2.8 + 3.14 + 1.535 + 1.429 = 8.894SS组内= SS被试间+ SS误差SS被试间=Σ(P2/K) - G2/N = 1544.49/4 + 1482.25/4 + 1584.04/4 + 1310.44/4 + 1303.21/4 + 1444/4 + 1755.61/4 + 1274.49/4 - 305.52/32 = 8.062SS误差= SS组内- SS被试间= 8.894 - 8.062 = 0.832SS组间= Σ(T2/n i) - G2/N = 80.82/8 + 79.62/8 + 75.42/8 + 69.72/8 –305.52/32 = 816.08 + 792.02 + 710.645 + 607.261 –2916.57 = 9.436df总= N – 1 = 32 -1 = 31df组内= N –K = 32 - 4 = 28df组间= K – 1 = 4 – 1 = 3df被试= n – 1 = 8 – 1 = 7df误差= df组内–df被试= 28 –7 = 21MS误差= SS误差/ df误差= 0.832/21 = 0.040MS组间= SS组间/ df组间= 9.436/3 = 3.145F obs = MS组间/ MS误差= 3.145 / 0.040 = 78.63F0.01(3, 21) = 4.87F obs = 78.63 > F0.01(3, 21) = 4.87所以拒绝H0,至少有一组和其他不同事后检验:略协方差分析在某些实际问题中,有些因素在目前还不能控制或难以控制,如果直接进行方差分析,会因为混杂因素的影响而无法得出正确结论。
协方差分析名词解释协方差分析是把多个指标的数据经过适当处理后计算出一个数,这个数就可以反映被测量的总体分布情况。
一、名词解释(对3个以上不同时期的数据进行比较)。
1、协方差矩阵:用来表示协方差阵的特征值和特征向量。
2、相关系数:用来表示两变量之间相关程度的参数。
即两变量之间线性相关程度。
3、线性相关:两变量之间线性相关说明二者有相同的变化趋势。
4、线性无关:两变量之间不存在线性相关关系。
5、协方差阵:用来表示协方差阵的特征值和特征向量。
6、相关系数:用来表示两变量之间相关程度的参数。
即两变量之间线性相关程度。
7、标准误:为了使各组观察值与真实值接近而引入的标准化因子。
8、标准差:是用来描述统计量分布范围大小的量,其定义为所有数据平均值的平方根。
9、相关系数:用于分析两个随机变量是否相关,若相关则它们的函数图形一定是直线,而且直线的斜率是1。
若相关程度小于0,则其函数图形并不是直线,其斜率不一定等于1。
10、自由度:研究某一个随机变量的取值范围和数学期望的维数,即该随机变量的一次可能值的个数。
11、标准差:为了使各组观察值与真实值接近而引入的标准化因子。
12、极差:如果对于所有数据,它的标准差都很小,那么它的数值也很小。
13、平均值:如果将所有的数据加权求和,那么这个数据点落在这个数据区间内的概率是最大的,也就是这个数据点离均值最近。
14、方差:随机误差的平方和。
15、协方差:随机误差的平方和的平方根。
16、方差齐性:指相应的协方差矩阵的特征值相等,特征向量也相同。
17、方差齐性:指相应的协方差矩阵的特征值相等,特征向量也相同。
18、方差膨胀:指相应的协方差矩阵的特征值增大,特征向量减少。
19、方差缩小:指相应的协方差矩阵的特征值减小,特征向量增加。
20、方差不变性:当用单位正态分布估计实际的正态分布时,设定了协方差矩阵的秩,则对给定的实际分布,它的方差矩阵的秩等于方差矩阵的秩,即它的协方差矩阵的秩等于方差矩阵的秩。
协方差分析名词解释协方差分析是一种统计分析方法,用于检验两个或多个变量之间的关系。
这种关系可以是正相关,即当一个变量增加时,另一个变量也会增加;也可以是负相关,即当一个变量增加时,另一个变量减少;或者是零相关,即两个变量之间没有相关性。
协方差分析是统计推断的重要工具,可以用来检验假定或推断的假设,以及确定是否需要进一步的研究来深入探讨。
协方差分析的主要目的是确定两个或多个数据变量之间的关系,以及预测变量的变化可能会如何影响其他变量。
在协方差分析中,我们通过观察一组数据,并从中测量其中各个变量之间的变化,来确定这些变量之间是否存在相关性。
协方差分析的结果可以协助研究者确定变量之间是否存在某种相关性,以及相关性的强度。
协方差分析的主要指标是协方差(Covariance),其表示两个变量之间的变化,它的取值范围是-1到+1,其中零表示没有相关性,负值表示负相关,正值表示正相关。
协方差越大,变量之间的相关性就越大。
此外,协方差分析还可以用来测量变量之间的相关系数(Correlation Coefficient),以及两个变量之间的线性关系(Linear Relationship)。
通常使用协方差分析来解释变量之间的关系,并帮助实施正确的策略和政策。
协方差分析也可以用于预测市场趋势,经济变化,或者某一个变量的变化可能如何影响另一个变量。
协方差分析的一些重要概念是自变量(independent variable),因变量(dependent variable),相关系数(correlation coefficient)和线性关系(linear relationship)。
自变量可以被定义为驱动因变量变化的变量,而因变量是受自变量影响而变化的变量。
相关系数是协方差分析中最重要的指标,它能反映两个变量之间的相关性。
线性关系表明,在满足相应约束条件的情况下,变量之间存在着一定程度的线性关系。
协方差分析是一种常见的统计分析方法,它可以帮助检验假设,检验变量之间关系,预测变量的变化,以及推断市场趋势等等。