数理统计(研究生课程):第四章方差分析
- 格式:ppt
- 大小:1.48 MB
- 文档页数:67
第四章⽅差分析第四章⽅差分析⼀、填空题1、⽅差分析就是通过对实验数据进⾏分析,检验⽅差时,各正态总体的是否相等,以判断各因素对试验指标的影响是否相等。
2、单因素⽅差分析的数学模型为。
3、在单因素⽅差分析中,总偏差平⽅和分解公式为。
4、对于具有s 个⽔平的单因素A 实验⽅差分析(⽔平i A 对应的总体为),(2σµi N (i =1,2,…,s ),现取样,设各⽔平下的样本容量之和为n ,以T e A S S S ,,分别表⽰因素A 的效应平⽅和、误差平⽅和、总偏差平⽅和,则(1)T e A S S S ,,之间的关系是___________;(2)在s µµ==...1成⽴的条下,~)/()1/(s n S s S E A --___________;(3)在显著性⽔平α下,假设“s H µµ==...:10,s H µµ,...,:11不全相等”的拒绝域形式是_________4、⽅差分析的⽬的是_______ .解:推断各因素对试验结果影响是否显著.5、在⼀个单因⼦试验中,因⼦A 有4个⽔平,每个⽔平下重复次数分别为:5,7,6,8 那么误差平⽅和的⾃由度,因⼦A 的平⽅和的⾃由度为。
6、单因素试验⽅差分析的数学模型含有的三个基本假定是_______ . 解:正态性、⽅差齐性、独⽴性.⼆、简述题1、简述⽅差分析解决什么问题。
2、单因素⽅差分析的数学模型是什么?3、单因素⽅差分析中的总偏差平⽅和分解公式是什么?4、单因素⽅差分析中,总偏差平⽅和、组间偏差平⽅和(因⼦平⽅和)、组内偏差平⽅和(误差平⽅和)分别是由什么引起的?5、⽅差分析的检验⼀般⽤什么检验法?6、⽅差分析的⽬的及思想(结合单因素)。
三、单选题1、⽅差分析是⼀个()问题。
A 、假设检验B 、参数估计C 、随机试验D 、参数检验2、在⽅差分析中,()反映的是样本数据与其组平均值的差异 A 总离差 B 组间误差 C 组内误差 D A,B,C 全错3、∑∑==-si n j i ij iX X 112)(是()B 组间平⽅和C 总离差平⽅和 D4、单因素⽅差分析中,数据i ij n j r i X ,,2,1;,,2,1, ==可以看作是取⾃()。
研究生课程数理统计习题及答案数理统计习题答案 第一章1.解: ()()()()()()()12252112222219294103105106100511100519210094100103100105100106100534n i i n i i i i X x n S x x x n ===++++====-=-⎡⎤=-+-+-+-+-⎣⎦=∑∑∑2. 解:子样平均数 *11l i i i X m x n ==∑()118340610262604=⨯+⨯+⨯+⨯=子样方差 ()22*11l i i i S m x x n ==-∑()()()()222218144034106422646018.67⎡⎤=⨯-+⨯-+⨯-+⨯-⎣⎦=子样标准差4.32S ==3. 解:因为i i x ay c-=所以 i i x a cy =+11ni i x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑ 所以 x a c y =+ 成立()2211n x i i s x x n ==-∑()()()22122111ni i ini i nii a cy a c y n cy c yn c y y n====+--=-=-∑∑∑因为 ()2211nyi i s y yn ==-∑ 所以222x ys c s = 成立()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====4. 解:变换 2000i i y x =-11n i i y y n ==∑()61303103042420909185203109240.444=--++++-++= ()2211n y i i s y y n ==-∑()()()()()()()()()222222222161240.444303240.4441030240.4449424240.44420240.444909240.444185240.44420240.444310240.444197032.247=--+--+-+⎡⎣-+-+-+⎤--+-+-⎦=利用3题的结果可知2220002240.444197032.247x y x y s s =+===5. 解:变换 ()10080i i y x =-13111113n i i i i y y y n ====∑∑[]12424334353202132.00=-++++++-+++++=()2211nyi i s y y n ==-∑()()()()()()22222212 2.0032 2.005 2.0034 2.001333 2.003 2.005.3077=--+⨯-+-+⨯-⎡⎣⎤+⨯-+--⎦=利用3题的结果可知2248080.021005.30771010000yx yx s s -=+===⨯ 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+=26.85 ()2211lyi i i s m y y n ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==170 170174178*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11l i i i s m x x n ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦= 8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====9解: 121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n xn n +=+()12221121n n ii s x x n n +==-+∑试写出子样的频数分布,再写出经验分布函数并作出其图形。
教学单元案例: 参数估计与假设检验北京化工大学 李志强教学内容:统计量、抽样分布及其基本性质、点估计、区间估计、假设检验、方差分析 教学目的:统计概念及统计推断方法的引入和应用(1)理解总体、样本和统计量等基本概念;了解常用的抽样分布;(2)熟练掌握矩估计和极大似然估计等方法; (3)掌握求区间估计的基本方法; (4)掌握进行假设检验的基本方法; (5) 掌握进行方差分析的基本方法;(6)了解求区间估计、假设检验和方差分析的MA TLAB 命令。
教学难点:区间估计、假设检验、方差分析的性质和求法 教学时间:150分钟教学对象:大一各专业皆可用一、统计问题 引例例1 已知小麦亩产服从正态分布,传统小麦品种平均亩产800斤,现有新品种产量未知,试种10块,每块一亩,产量为:775,816,834,836,858,863,873,877,885,901问:新产品亩产是否超过了800斤?例2 设有一组来自正态总体),(2σμN 的样本0.497, 0.506, 0.518, 0.524, 0.488, 0.510, 0.510, 0.512. (i) 已知2σ=0.012,求μ的95%置信区间; (ii) 未知2σ,求μ的95%置信区间; (iii)求2σ的95%置信区间。
例3现有某型号的电池三批, 分别为甲乙丙3个厂生产的, 为评比其质量, 各随机抽取5只电池进行寿命测试, 数据如下表示, 这里假设第i 种电池的寿命),(.~2σμi i N X .(1) 试在检验水平下,检验电池的平均寿命有无显著差异? (2) 利用区间估计或假设检验比较哪个寿命最短.二 统计的基本概念: 总体、个体和样本(1)总体与样本总体 在数理统计中,我们将研究对象的某项数量指标的值的全体称为总体,总体中的每个元素称为个体比如,对电子元件我们主要关心的是其使用寿命.而该厂生产的所有电子元件的使用寿命取值的全体,就构成了研究对象的全体,即总体,显然它是一个随机变量,常用X 表示 为方便起见,今后我们把总体与随机变量X 等同起来看,即总体就是某随机变量X 可能取值的全体.它客观上存在一个分布,但我们对其分布一无所知,或部分未知,正因为如此,才有必要对总体进行研究.简单随机样本对总体进行研究,首先需要获取总体的有关信息. 一般采用两种方法:一是全面调查.如人口普查,该方法常要消耗大量的人力、物力、财力.有时甚至是不可能的,如测试某厂生产的所有电子元件的使用寿命. 二是抽样调查. 抽样调查是按照一定的方法,从总体X 中抽取n 个个体.这是我们对总体掌握的信息.数理统计就是要利用这一信息,对总体进行分析、估计、推断.因此,要求抽取的这n 个个体应具有很好的代表性.按机会均等的原则随机地从客观存在的总体中抽取一些个体进行观察或测试的过程称为随机抽样.从总体中抽出的部分个体,叫做总体的一个样本.从总体中抽取样本时,不仅要求每一个个体被抽到的机会均等,同时还要求每次的抽取是独立的,即每次抽样的结果不影响其他各次的抽样结果,同时也不受其他各次抽样结果的影响.这种抽样方法称为简单随机抽样.由简单随机抽样得到的样本叫做简单随机样本.往后如不作特别说明,提到“样本”总是指简单随机样本.从总体X 中抽取一个个体,就是对随机变量X 进行一次试验.抽取n 个个体就是对随机变量X 进行n 次试验,分别记为X1,X2,…,Xn.则样本就是n 维随机变量(X1,X2,…,Xn).在一次抽样以后, (X1,X2,…,Xn)就有了一组确定的值(x1,x2,…,xn),称为样本观测值.样本观测值(x1,x2,…,xn)可以看着一个随机试验的一个结果,它的一切可能结果的全体构成一个样本空间,称为子样空间.(2)样本函数与统计量设n x x x ,,,21 为总体的一个样本,称ϕϕ= (n x x x ,,,21 )为样本函数,其中ϕ为一个连续函数。
研究生教材《应用数理统计》——课后习题答案详解学号:3113312042姓名:齐以年班级:硕3079班目录第一章数理统计的基本概念 (1)第二章参数估计 (18)第三章假设检验 (36)第四章方差分析与正交试验设计 (46)第五章回归分析 (51)第六章统计决策与贝叶斯推断 (56)对应书目:《应用数理统计》施雨编著西安交通大学出版第一章 数理统计的基本概念1.1 解:∵ 2~(,)X N μσ∴ 2~(,)n X N σμ∴~(0,1)N 分布∴(1)0.95P X P μ-<=<=又∵ 查表可得0.025 1.96u = ∴ 221.96n σ=1.2 解:(1) ∵ ~(0.0015)X Exp∴ 每个元件至800个小时没有失效的概率为:8000.001501.2(800)1(800)10.0015x P X P X e dxe -->==-<=-=⎰∴ 6个元件都没失效的概率为: 1.267.2()P e e --==(2) ∵ ~(0.0015)X Exp∴ 每个元件至3000个小时失效的概率为:30000.001504.5(3000)0.00151x P X e dxe--<===-⎰∴ 6个元件没失效的概率为: 4.56(1)P e -=-1.3解:(1) X ={(x 1,x 2,x 3)|x k =0,1,2,…,k =1,2,3},p (x 1,x 2,x 3)=λx 1+x 2+x 3x 1!x 2!x 3!e −3λ,x k =0,1,2,…;k =1,2,3(2) X ={(x 1,x 2,x 3)|x k ≥0;k =1,2,3},f (x 1,x 2,x 3)=λ3e −λ(x 1+x 2+x 3), x k ≥0;k =1,2,3(3) X ={(x 1,x 2,x 3)|a ≤x k ≤b;k =1,2,3},f (x 1,x 2,x 3)=1(b−a)3, a ≤x k ≤b;k =1,2,3(4) X ={(x 1,x 2,x 3)|−∞<x k <+∞;k =1,2,3}=R 3,f (x 1,x 2,x 3)=1(2π)3/2e −12∑(x k −μ)23k=1,−∞<x k <+∞;k =1,2,31.4 解:ini n x n x ex x x P ni i 122)(ln 2121)2(),.....,(122=--∏∑==πσμσ1.5证:21122)(na a x n x a x n i ni i i +-=-∑∑==∑∑∑===-+-=+-+-=ni i ni i n i i a x n x x na a x n x x x x 1222211)()(2221.6证明 (1) ∵22112211221()()()2()()()()()nnii i i nni i i i ni i XX X X X X X X X n X X X n X μμμμμ=====-=-+-=-+--+-=-+-∑∑∑∑∑(2) ∵2221112221221()22ii i nn ni i i i i ni ni XX X X X nX X nX nX X nX =====-=-+=-+=-∑∑∑∑∑1.7证明:a) 证:)(11111+=+++=∑n n i i n x x n x)(11)(1111n n n n n x x n x x x n n -++=++=++b )证:221111()1nn n i i S x x n ++==-+∑ 221112211121111[()]11121[()()()()]11(1)n n n i n i nn n n n n i i n n i i x x x x n n n x x x x x x x x n n n +=++++===---+++=----+-+++∑∑∑221112112[()()((1))111() ]1n n n n n n n n n nS x x x x nx x n x n n x x n ++++=+---+-+++-+22n122n 11[nS ()] 111[S ()]11n n n n n x x n n n x x n n ++=+-++=+-++ 1.8证明:显然: Zm+n ̅̅̅̅̅̅̅=nX ̅+mY ̅m+nS Z2=1m +n[∑(X i −Z m+n ̅̅̅̅̅̅̅)2n i=1+∑(Y i −Z m+n ̅̅̅̅̅̅̅)2mi=1] =1m +n[∑X i 2ni=1−2Zm+n ̅̅̅̅̅̅̅∗nX ̅+∑Y i 2−2Z m+n ̅̅̅̅̅̅̅∗mY ̅+(m +n)mi=1Zm+n ̅̅̅̅̅̅̅2] 因为: nS X 2=∑X i 2n i=1−nX ̅2 nS Y 2=∑Y i 2n i=1−nY ̅2所以:S Z2=nS X2+nS Y2m+n+1m+n[nX̅2+nY̅2−(nX̅+mY̅)2m+n] =nS X2+nS Y2m+n+m∗n(n+m)2(X̅−Y̅)21.10解:(1).∑∑====niiniixEnxnEXE11)(1)1()(=1n∙n∙mp=mpnpmpxDnxnDXDniinii)1()(1)1()(121-===∑∑==))(1()(122∑=-=niixxnESE)1(1)])1(1())1(([1)])()(())()(([1])()([1])([12222212212212p mp nn p m p mp n n p m p mp n n x E x D n x E x D n x nE x E n x x E n n i i i n i i n i i --=+--+-=+-+=-=-=∑∑∑=== 同理,(2).λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(λnx D n x n D X D ni ini i 1)(1)1()(121===∑∑==λnn x E x D n x E x D n x nE x E n S E n i i i n i i 1)])()(())()(([1])()([1)(2122122-=+-+=-=∑∑==(3).2)(1)1()(11ba x E n x n E X E n i i n i i +===∑∑==na b x D nx n D X D ni in i i 12)()(1)1()(2121-===∑∑==12)(1)])()(())()(([1])()([1)(22122122a b n n x E x D n x E x D n x nE x E n S E ni i i n i i -⋅-=+-+=-=∑∑==(4).λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx n D X D ni in i i 2121)(1)1()(λ===∑∑==221221221)])()(())()(([1])()([1)(λnn x E x D n x E x D n x nE x E n S E n i i i n i i -=+-+=-=∑∑==(5).μ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx n D X D ni in i i 2121)(1)1()(σ===∑∑==221221221)])()(())()(([1])()([1)(σ⋅-=+-+=-=∑∑==nn x E x D n x E x D n x nE x E n S E n i i i n i i1.11 解:由统计量的定义知,1,3,4,5,6,7为统计量,5为顺序统计量 1.12 解:顺序统计量:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21中位数Me=0 极差R=(3.21+4)=7.21 再抽一个样本2.7,则顺序统计量变为:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,2.7,3.2,3.21 此时,样本中位数Me=(0+1.2)/2=0.61.13解: F 20x={ 0 , x <0620, 0≪x <11320, 1≪x <21620, 2≪x <31820, 3≪x <41 , x ≫41.14解:利用伽马分布的可加性 X~Γ(α,λ) 则Y =∑X i ~Γ(nα,λ)n i=1X ̅=Y nf Y (y )=λnαy nα−1Γ(nα)e −λy,y >0根据随机变量函数的概率密度公式得:f X ̅(x )=λnα(nx)nα−1Γ(nα)e −λnx∗n =λnαn nαx nα−1Γ(nα)e −λnx ,x >01.15解:运用顺序统计量的概率密度公式 (1) f (m)(x )=n!(m−1)!(n−m )![F (x )]m−1[1−F (x )]n−m f(x) 1≪m ≪n (2) f (k)(j)(x )=n!(k−1)!(j−k−1)!(n−j )![F (x )]k−1[F (y )−F (x )]j−k−1[1−F (y )]n−j f(x)f(y) 1≪k<j ≪n (3) 样本极差R =X (n)−X (1), 其中X (n)和X (1)的概率密度可由(1)得到,再根据函数关系可推出R 的概率密度函数 1.16解:X i −μσ~N(0,1)(X i −μσ)2~χ2(1)故:∑(X i −μσ)2~ni=1χ2(n )1.17 证:),(~ λαΓXx ex x f λαααλ--Γ=∴1)()( 令kXY =ke ky kke ky yf ky ky⋅Γ=⋅Γ=∴----λαααλαααλαλ11)()( )()()(即 ),(~ky Y αΓ1.18 证:),(~ b a X β),()1()( 11b a B x xx f b a ---=∴),(),( ),()1()( 11b a B b k a B b a B x x x X E b a k k +=-=∴⎰∞+∞---),(),1()( b a B b a B X E +=∴ba a ab a b a b a a a a b a b a a a b b a b a b a +=Γ+Γ++ΓΓ=Γ++Γ+Γ+Γ=ΓΓ+Γ⋅++ΓΓ+Γ=)()()()()()()1()()1()()()()1()()1(),(),2()(2b a B b a B X E +=))(1()1()()()()2()()2(b a b a a a a b b a b a b a ++++=ΓΓ+Γ⋅++ΓΓ+Γ= 22)]([)()( X E X E X D -=∴2))(1())(1()1(b a b a ab ba ab a b a a a +++=+-++++=1.19 解:∵ ~(,)X F n m 分布2212(1)022()((1))()(1)()()()(1)()()n n m n mn m yn m y n mn nP Y y P X X y m myP X y n n n x x dx m m m++--+≤=+≤=<-Γ=+ΓΓ⎰2222122221122()()()1()(1)()()11(1)(1)(,)n n m n m n mn m n mf y P Y y y y y y y yy B ++----'=≤Γ=+ΓΓ----=∴ 22(1)(,)n mn n Y X X m mβ=+分布1.20 解:∵ ~()X t n 分布122212()()(()2)n n P Y y P X y P X xdxn ++-≤=≤=≤≤Γ=+112211221212122()()()(1)()1()(1)()()()n n n n n f y P Y y y y n y y n n n+++--+--'=≤Γ=+Γ=+ΓΓ∴ 2~(1,)2nY X F =分布1.21 解: (1) ∵ ~(8,4)X N 分布∴ 4~(8,)25X N 分布,即5(8)~(0,1)2X N - ∴ 样本均值落在7.8~8.2分钟之间的概率为:5(7.88)5(8)5(8.28)(7.88.2)()2220.383X P X P ---≤≤=≤≤=(2) 样本均值落在7.5~8分钟之间的概率为:5(7.58)5(8)5(88)(7.58)()2225(8)(0 1.25)20.3944X P X P X P ---≤≤=≤≤-=≤≤=若取100个样品,样本均值落在7.5~8分钟之间的概率为:10(7.88)10(8)10(8.28)(7.88.2)()2222*(0.84130.5)0.6826X P X P ---≤≤=≤≤=-= 单个样品大于11分钟的概率为:P 1=1−0.9333=0.0667 25个样品的均值大于9分钟的概率为: P 2=1−0.9938=0.0062 100个样品的均值大于8.6分钟的概率为P 3=1−0.9987=0.0013 所以第一种情况更有可能发生1.22 解:μ=2.5 2σ=36 n=5 (1)44302<<s ⇔)955,625(22∈σns 而)1(~222-n ns χσ即 )4(36522χ∈s通过查表可得 P =0.1929(2)样本方差落在30~40的概率为0.1929 样品均值-x 落在1.3~3.5的概率即:P{1.3<-x <3.5} ⇔P{-0.4472<σμ)(--x n <0.3727}又σμ)(--x n ~N(0,1)查标准正态分布表可得:P{1.3<-x <3.5}=0.3179 由于样本均值与样本方差相互独立,故:这样两者同时成立的概率为P =0.1929⨯0.3179=0.06131.23 解:(1) ∵2~(0,)X N σ分布 ∴ 2~(0,)X N nσ分布∴ 22()~(1)nXχσ∵ 22221()()ni i a X an X an σσ===∑∴ 21a n σ=同理 21b m σ= (2) ∵ 2~(0,)X N σ分布 ∴222~(1)X χσ分布由2χ分布是可加性得:2221~()ni i X n χσ=∑()nic X t m ==∑ ∴c =(3) 由(2)可知2221~()ni i X n χσ=∑ 2221122211~(,)nni ii i n mn mi ii n i n X d Xnn dF n m XmXmσσ==++=+=+=∑∑∑∑∴ m d n =1.24证明:X n+1~N(μ,σ2) X̅~N(μ,σ2/n) X n+1−X ̅~N(0,n +1n σ2)X n+1−X̅√n +1nσ2~N(0,1)(n −1)S n∗2σ2~χ2(n −1) 所以:Y =X n+1−X ̅S n ∗√n n +1~t(n −1) 1.25 证明:∵ 211~(,)X N μσ分布∴2211()~(1)i X μχσ-∴ 1221111()~()n i i X n μχσ=-∑同理 2222212()~()n i i Y n μχσ=-∑ 1122222112211111222221122112()()~(,)()()n n i i i i n n i i i i X n n X F n n Y n Y n μσμσμσμσ====--=--∑∑∑∑第二章 参数估计2.1 (1) ∵ ~()X Exp λ分布∴ ()1E X λ=令 ˆ1X λ= 解得λ的矩估计为:ˆ1X λ= (2) ∵ (,)X U a b 分布∴ ()2a bE X +=2()()12b a D X -=令 1ˆˆ2ab A X +==22221ˆˆˆˆ()()1124n i i b a a b A X n =-++==∑ (22211n i i X X S n =-=∑)解得a 和b 的矩估计为:ˆˆaX bX =-=(3) 110()1E X x x dx θθθθ-=*=+⎰令 1ˆˆ1A X θθ==+ ∴ˆ1XXθ=- (4) 110()(1)!kk x kE X x x e dx k βββ--=*=-⎰令 ˆkX β=∴ ˆkXβ=(5) 根据密度函数有2221()22()E X a aE X a λλλ=+=++根据矩估计有1222221ˆˆˆ22ˆˆˆa A X aa A S X λλλ+==++==+解得λ和a 的矩估计为:ˆˆaX λ==(6) ∵ (,)X B m p∴ ()E X mp =令 1ˆmpA X == 解得p 的矩估计为:ˆX pm= 2.2解:(1)X 服从指数分布,λ的似然函数为:L (λ)=λn e −λ∑x i n i=1, x i>0,i =1,2,⋯,nlnL (λ)=nlnλ−λ∑x i ni=1∂lnL (λ)∂λ=nλ−∑x i ni=1解得:λ̂=1x̅(2)f (x )=1b−a,a <x <b似然函数为:L (a,b )=1(b −a)n,a <x i <b显然:a ̂=X (1) b ̂=X (n) (3)f (x )={θ x θ−1 ,0<x <10, 其他似然函数为:L (θ)=θn ∗∏x i θ−1ni=1,0<x i <1lnL (θ)=nlnθ+(θ−1)∑lnx i ni=1∂lnL (θ)∂θ=nθ+∑lnx i ni=1=0 解得:θ̂=−n ∑lnx in i=1(4) f (x )={βk(k−1)!x k−1e −βx ,x >00, x ≤0似然函数为:L (β)=(βk(k −1)!)n ∗∏x i k−1ni=1∗e −β∑x i n i=1 ,x i >0 i =1,2,⋯,n lnL (β)=nk ∗lnβ−n ∗ln (k −1)!+(k −1)∑lnx i ni=1−β∑x i ni=1∂lnL (β)∂β=nkβ−∑x i ni=1=0解得:θ̂=−kx̅(5) f (x )={λ x −λ(x−a),x >a 0, x ≤a似然函数为:L (a,λ)=λn x −λ∑(x i ni=1−a) ,x i >a,i =1,2,⋯,nlnL (a,λ)=n ∗lnλ−λ∑x i ni=1+nλa ∂lnL (a,λ)∂λ=nλ−∑(x i ni=1−a)=0 解得:a ̂=X (1) , λ̂=−1X ̅−X (1)(6) X~B(m , P)P {X =k }=(m k)P k(1−P)m−k ,k =0,1,⋯,m似然函数为:L (p )=(m k)n P ∑xi n i=1(1−P)∑(m−x i )n i=1,x i =0,1,2,⋯,nlnL (p )=n ∗ln (mk)+∑x i n i=1∗lnp +∑(m −x i )ni=1∗ln (1−p)∂lnL (p )∂p=∑x in i=1p−∑(m −x i )n i=11−p=0解得:p ̂=−X̅m2.3解:∵ X 服从几何分布,其概率分布为:1()(1)k P X k p p -==-故p 的似然函数为: 1()(1)ni i x nnL p p p =-∑=-对数似然函数为:1ln ()ln ()ln(1)ni i L p n p x n p ==+--∑令 1ln ()1()01nii L p n x n p p p=∂=--=∂-∑ ∴ 1ˆpX= 2.4 解:由题知X 应服从离散均匀分布,⎪⎩⎪⎨⎧≤≤==其它01 1)(Nk N k x pE (X )=N+12矩估计: 令N ̂+12=710 ∴N̂=1419 极大似然估计:⎪⎩⎪⎨⎧≤≤=其它07101 1)(NN N L要使)(N L 最大,则710=N710=∴∧N2.5 解:由题中等式知:2196.196.196.1)025.01(025.0)(1S X +=+=∴+=+-Φ=∴=-Φ-∧∧∧-σμθσμμσθσμθ2.6 解:(1) 05.009.214.2=-=R0215.005.04299.05=⨯==∴∧d Rσ(2)将所有数据分为三组如下所示:0197.005.03946.005.0)05.005.005.0(316=⨯==∴=++=∴∧d R R σ 2.7 解:(1)⎩⎨⎧+<<=其它 01x 1)(θθx f θθθθθθ≠+==+=++=∴∧21)()(2121)(X E E X E ∴ X =∧θ不是θ的无偏估计,偏差为21=-∧θθ(2) θ=-)21(X E 21-=∴∧X θ是θ的无偏估计(3) 22))(()())(()(θθθθ-+=-+=∧∧X E X D E D M S E41121+=n 2.8 证:由例2.24,令2211x a x a +=∧μ,则∧μ 为μ无偏估计应 满足121=+a a因此1μ,2μ,3μ都是μ的无偏估计)()()()(21)()(2513)()(95)9491)(()())(()()(1233212221212∧∧∧∧∧∧=∧<<===+=∴+==∑μμμμμμμD D D X D D X D D X D X D D a a X D X D a D i i i2132121X X +=∴∧μ最有效2.9 证: )(~λp X λλ==∴)( )(X D X EX 是λ=)(X E 的无偏估计,2*S 是λ=)( X D 的无偏估计 )()1()())1((2*2*S E X E S X E αααα-+=-+∴λλααλ=-+=)1(∴ 2*)1(SX αα-+是λ的无偏估计2.10 解:因为2222((1))()(1)()(1)()1(1)()11(1)1E X S E X E S na E S n n a E S n n n a n nααααλαλαλαλλ**+-=+-=+--=+---=+-=- 所以 2(1)X S αα*+-是λ的无偏估计量2.11证明:X~P (λ)假设T(X 1)为θ=e −2λ的无偏估计,即: E[T(X 1)]= θ, E [T (X1)]=∑T (X )∞x=0∗λx x!e−λ=e −2λ=∑T (X )∞x=0∗λx x!=e−λ=∑(−λ)xx!∞x=0=∑(−1)x λx x!∞x=0(泰勒展开)所以T (X 1)=(−1)X 1是θ=e −2λ的唯一无偏估计。