研究生统计学讲义方差分析
- 格式:pptx
- 大小:652.98 KB
- 文档页数:54
《数理统计》实验报告学院:班级:学号:姓名:日期:实验成绩:评阅人:实验一:单因素方差分析一.实验内容在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。
问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?二.实验步骤1.打开excel(2010版),输入数据2.点击“数据”→数据分析→单因素分析3.输出结果三.实验结果从上述软件结果可知,p-value为0.0001<0.01,所以在1%的显著性水平下,拒绝原假设,即三组居民在“对亚运会的总态度得分”上有显著的差异。
实验二:双因素方差分析(无交互作用)一.实验内容从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产量,观测到的产量如表6-31所示。
试进行产量是否依赖于机器类型和操作者的方差分析。
二.实验步骤1.打开excel(2010版),输入数据2.点击“数据”→数据分析→无重复双因素分析3.输出结果三.实验结果因操作者因素的P-value值为0.0122,在5%显著性水平下,差异显著;机器因素的P-value值为0.0004,在1%显著性水平下,差异显著,说明产量依赖于机器类型和操作者。
可以通过培训操作者提高其工作效率,或者选择高效率的机器来提高总产量。
实验三:双因素方差分析(有交互作用)一.实验内容为了从3种不同原料和3种不同温度中选择使酒精产量最高的水平组合,设计了两因素实验,每一水平组合重复4次,结果如下表,试进行方差分析。
二.实验步骤1.打开excel(2010版),输入数据2.点击“数据”→数据分析→有重复双因素分析3.输出结果三.实验结果因原料因素的P-value值为0.0000,所以在1%显著性水平下,原料对产量影响显著;温度因素的P-value值为0.0001,所以在1%显著性水平下,温度对产量影响显著;原料*温度因素的P-value值为0.0861,所以在10%显著性水平下,原料和温度的交互作用对产量影响显著。
第五章方差分析•如果要检验两个总体的均值是否相等,我们可以用t检验。
当要检验多个总体的均值是否相等,则需要采用方差分析。
•方差分析是R.A.Fister发明的,它是通过对误差的分析研究来检验两个或多个正态总体均值间差异是否具有统计意义的一种方法。
•由于各种因素的影响,研究所得的数据呈现波动,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果造成影响的可控因素,方差分析认为不同处理组的均值间的差异基本来源有两个:•组内差异:由随机误差造成的差异,用变量在各组的均值与该组内变量值之差平方和的总和表示,记作SSE。
•组间差异:由因素中的不同水平造成的差异,用变量在各组的均值与总均值之差平方和的总和表示,记作SSA。
•方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
•方差分析的三个条件:•被检验的各总体均服从正态分布;•各总体的方差皆相等;•从每一个总体中所抽出的样本是随机且独立的;方差分析的基本步骤:建立原假设H0:两个或多个总体均值相等。
将各不同水平间的总离差分成两个部分:组间差异SSA组内差异SSE构造检验统计量: F= MSA / MSE判断:在零假设为真时,F~F[(k-l),(n-k)]的F分布。
若各样本平均数的差异很大,则分子组间差异会随之变大,而F值也随之变大,故F检验是右尾检验。
当检验统计量F大于临界值时则拒绝原假设;或者根据 p值来判断,若p<α,则拒绝原假设§5.1 单因素方差分析(One-Way ANOVA过程)One-Way ANOVA过程用于进行两组及多组样本均数的比较,即成组设计的方差分析,如果做了相应选择,还可进行随后的两两比较,甚至于在各组间精确设定哪几组和哪几组进行比较。
5.1.1 界面说明【Dependent List框】选入需要分析的变量,可选入多个结果变量(应变量)。
统计学——方差分析概念和方法方差分析是一种用于比较两个或多个样本均值之间差异的统计分析方法。
它主要用于分析一个因变量和一个或多个自变量之间的关系,并判断这些自变量对因变量的影响是否存在显著差异。
方差分析主要包括以下几个概念和方法:1.因变量和自变量:方差分析中,我们首先需要明确研究的因变量和自变量。
因变量是我们感兴趣的变量,我们想要比较的两个或多个样本均值;而自变量是我们认为对因变量有影响的变量,可以是类别变量(如性别、教育程度等)或连续变量(如年龄、收入等)。
2.假设检验:在进行方差分析之前,我们需要假设样本均值之间没有显著差异,即为零假设(H0)。
然后,我们通过方差分析来检验零假设是否成立。
3.方差分析的类型:根据自变量的个数和类型的不同,方差分析可以分为单因素方差分析、多因素方差分析和混合方差分析。
单因素方差分析适用于只有一个自变量的情况,多因素方差分析适用于含有多个自变量的情况,而混合方差分析适用于自变量同时包含类别变量和连续变量的情况。
4.方差分析表:方差分析表是用来总结方差分析结果的常用工具。
在方差分析表中,我们可以看到组间方差(组间均方)、组内方差(组内均方)、总体方差(总体均方)以及统计量F值。
通过比较F值与给定的显著性水平,我们可以判断不同样本均值之间是否存在显著差异。
5.假设检验的步骤:进行方差分析时,需要按照以下几个步骤进行假设检验:a.建立假设:H0(样本均值没有显著差异)和H1(至少有一组样本的均值存在显著差异);b.计算各个组的均值;c.计算组间方差和组内方差;d.计算统计量F值;e.判断结果:通过比较F值和临界值来判断是否拒绝零假设。
6. 方差分析的扩展:在方差分析中,我们可以进行一些扩展的分析,如多重比较和建模。
多重比较是用来判断哪些组之间存在显著差异,常用的方法有Tukey法、Duncan法和Scheffe法等。
建模则是通过增加其他变量(如交互效应)来更好地解释因变量的变化。