2.4_几种常见的连续型随机变量的分布
- 格式:ppt
- 大小:464.50 KB
- 文档页数:66
概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
1.均匀分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f2.指数分布 密度分布函数 ⎭⎬⎫⎩⎨⎧>=-其他,00,)(x e x f x λλ 3.伽玛分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>Γ=--0,00,)()(1x x e x x f x ααααλ4.正态分布 密度分布函数 222)(21)(σμπσ--=x e x f5.对数正态分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>=--e l s e x e x x f x ,00,21)(222)(l n σμπσ6.贝塔分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<-ΓΓ+Γ=--e l s e x x x r r r r x f r r ,010,)1()()()()(112121217.爱尔兰分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>-=--0,00,)!1()(1x x e x r x f x r r λλ8.拉普拉斯分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=--λμλx e x f 21)(%泊松分布概率密度作图:x=0:20;y1=poisspdf(x,2.5);y2=poisspdf(x,5);y3=poisspdf(x,10);hold onplot(x,y1,':r*')plot(x,y2,':b*')plot(x,y3,':g*')hold offtitle('Poisson 分布')正态分布标准差意义的图示mu=3; sigma=0.5;x=mu+sigma*[-3:-1,1:3];yf=normcdf(x,mu,sigma);P=[yf(4)-yf(3),yf(5)-yf(2),yf(6)-yf(1)];xd=1:0.1:5;yd=normpdf(xd,mu,sigma);%for k=1:3xx{k}=x(4-k):sigma/10:x(3+k);yy{k}=normpdf(xx{k},mu,sigma);endsubplot(1,3,1),plot(xd,yd,'b');hold onfill([x(3),xx{1},x(4)],[0,yy{1},0],'g')text(mu-0.5*sigma,0.3,num2str(P(1))),hold offsubplot(1,3,2),plot(xd,yd,'b');hold onfill([x(2),xx{2},x(5)],[0,yy{2},0],'g')text(mu-0.5*sigma,0.3,num2str(P(2))),hold offsubplot(1,3,3),plot(xd,yd,'b');hold onfill([x(1),xx{3},x(6)],[0,yy{3},0],'g')text(mu-0.5*sigma,0.3,num2str(P(3))),hold offv=4;xi=0.9;x_xi=chi2inv(xi,v);x=0:0.1:15;yd_c=chi2pdf(x,v);%。
随机变量的定义及分类随机变量是概率论中的重要概念,它是指一种随机试验中可能发生的某种事件或结果。
下面将会从定义、分类两个方面来详细介绍随机变量。
一、定义随机变量可以用数学式子来表示,在一些可能发生的结果中,随机变量X可以代表某种结果的取值,比如抛硬币出现正面朝上的概率,X可以表示正面朝上时的取值为1;反面朝上时的取值为0。
换言之,随机变量X就是一个函数,用于描述随机事件中某种结果的取值。
二、分类2.1 离散型随机变量:如果随机变量X只能取有限个或可数个数值时,那么X就是离散型随机变量。
比如,抛一枚硬币正面朝上的概率为1/2,反面朝上的概率也为1/2,用0表示反面朝上,1表示正面朝上,那么X就是一个离散型随机变量。
2.2 连续型随机变量:如果随机变量X的取值可以是从一个范围内的任意数,那么X就是连续型随机变量。
比如,取人的身高作为X值,虽然人的身高并不是无限小数,但是因为可以无限分割人的身高,所以X是连续型随机变量。
2.3 二项分布随机变量:二项分布随机变量是指在重复的n次独立试验中,每次试验只有两种结局的事件(成功或失败),且每次试验成功的概率相等。
比如,在10次抛掷硬币的过程中,每次正面朝上的概率是相等的,试验结果可以用二项分布随机变量X表示。
2.4 正态分布随机变量:正态分布随机变量也叫高斯分布随机变量,通常被用于描述一些连续型随机变量。
其概率密度函数呈钟形,且均值、方差完全决定了正态分布曲线的性质。
此类随机变量在自然界的统计学中有广泛应用。
综上所述,随机变量是概率论中的一个基本概念,主要包含离散型随机变量、连续型随机变量、二项分布随机变量、正态分布随机变量等类型。
对不同类型的随机变量,需要采用不同的计算方法和应用方式。