二维连续型随机变量及其概率分布
- 格式:pdf
- 大小:299.03 KB
- 文档页数:28
第五章 二维随机变量第一节 二维随机变量及其分布一、二维随机变量1、定义:设),,(P S F 为一概率空间,X 、Y 均为S 上的一维随机变量,称二维向量X ),(Y X =为S 上的二维随机变量.2、X 的分布:}{B P ∈X , 2B ∈B . 其中可证:=∈}{B X F ∈∈∈},))(),((|{S e B e Y e X e .若取},|),{(2121y y y x x x y x B ≤<≤<=,那么},{}{2121y Y y x X x P B P ≤<≤<=∈X},{22y Y x X P ≤≤=},{21y Y x X P ≤≤- },{},{1112y Y x X P y Y x X P ≤≤+≤≤-.3、分布函数(1)定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,R ∈∀y x ,,规定:},{),(y Y x X P y x F ≤≤=. 称),(y x F 为),(Y X 的分布函数.显然: },{2121y Y y x X x P ≤<≤<),(),(),(),(11122122y x F y x F y x F y x F +--=.(2)性质① R ∈∀y x ,,1),(0≤≤y x F .② ),(y x F 关于y x ,均为单调不减函数.③ 0),(=-∞y F ,0),(=-∞x F ,0),(=-∞-∞F ,1),(=+∞+∞F . ④ ),(y x F 关于y x ,均为为右连续函数.⑤ R ∈<<∀2121,y y x x ,0),(),(),(),(11122122≥+--y x F y x F y x F y x F .注:①~⑤为分布函数的特征性质.反之亦然.例1掷硬币三次,X 表示出现正面的次数,|)3(|X X Y --=,求),(Y X 的分布函数),(y x F .解:(1) X 的所有可能取值为3,2,1,0,依次记为4321,,,x x x x ,Y 的所有可能取值为3,1,依次记为21,y y .列表如下X样 本 点Y0 (反反反)3 1 (正反反) (反正反) (反反正) 1 2(正正反) (正反正) (反正正)13 (正正正)3(2) 概率情况列表 81},{21===y Y x X P ,83},{12===y Y x X P , 83},{13===y Y x X P ,81},{24===y Y x X P ,其他0},{===j i y Y x X P .(3)求分布. 记}2,1 ,3,2,1|),{(===j i y x A j i ,YX1 3 0 0 8/1 1 8/3 02 8/3 0 38/1A B BA B +=, 显然φ=∈}),{(A B Y X ,那么}),{(}),{(}),{(A B Y X P BA Y X P B Y X P ∈+∈=∈∑∈===∈=By x j i j i y Y x XP BA Y X P )(,},{}),{((4)求分布函数. ∑≤≤===≤≤=yy x x j i j i y Y x XP y Y x X P y x F ,},{},{),(.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≥<≤<≤≥≥<≤<≤<≤≥<≤<<<<=.3 ,3 1, ,3 ,32 ,8/7 ;31 ,3 ,8/6 ;3 ,21 ,8/4 ;31 ,21 ,8/3 ;3 ,10 ,8/1;3 ,1 1 0 0,),(y x y x y x y x y x y x y x y x y x F 或或二、边缘分布1、),(Y X 关于X 的边缘分布: ),(lim }{)(y x F x X P x F y X +∞→=≤=.证明:取}{},{},{x X Y x X n Y x X A n ≤=+∞<≤→≤≤=不减,由①②知),(lim y x F y +∞→存在,故)(}{)lim ()(lim ),(lim ),(lim x F x X P A P A P n x F y x F X n n n n n y =≤====∞→∞→∞→+∞→.2、),(Y X 关于Y 的边缘分布: ),(lim }{)(y x F y Y P y F x Y +∞→=≤=. (略)三、随机变量相互独立、定义:设),(y x F 为),(Y X 的分布函数,X 、Y 的分布函数分别为 )(x F X 、)(y F Y ,若R ∈∀y x ,,恒有=),(y x F )(x F X )(y F Y , 则称X 与Y 相互独立.2、X 与Y 相互独立⇔R ∈<<∀2121,y y x x ,恒有}{}{},{21212121y Y y P x X x P y Y y x X x P ≤<≤<=≤<≤<.证明:“⇐” R ∈∀y x ,,由于},{},{y Y x X y Y n x X n ≤≤→≤<-≤<-, }{}{x X x X n ≤→≤<-, }{}{y Y y Y n ≤→≤<-均不减,则},{),(y Y x X P y x F ≤≤=},{lim y Y n x X n P n ≤<-≤<-=∞→}]{}{[lim y Y n P x X n P n ≤<-≤<-=∞→}]{lim }{lim y Y n P x X n P n n ≤<-≤<-=∞→∞→)()(}{}{y F x F y Y P x X P Y X =≤≤=.“⇒”R ∈<<∀2121,y y x x ,有 },{2121y y x x P ≤<≤<ηξ ),(),(),(),(11122122y x F y x F y x F y x F +--=)()()()()()()()(11122122y F x F y F x F y F x F y F x F Y X Y X Y X Y X +--= )]()()][()([1212y F y F x F x F Y Y X X --= }{}{2121y y P x x P ≤<≤<=ξξ.3、X 与Y 相互独立⇔R ⊂∀21,B B ,恒有}{}{},{2121B Y P B X P B Y B X P ∈∈=∈∈.第二节 二维离散型随机变量一、二维离散型随机变量 1、定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,若),(Y X 的取值为有限个或可数个(至多可数),称),(Y X 为S 上的二维离散型随机变量. 显然:),(Y X 为S 上的二维离散型随机变量⇔X 与Y 均为S 上的一维离散型随机变量.2、概率分布:设),(Y X 所有可能取的值为),(j i y x ,令 },{j i ij y Y x X P p ===,称其为二维随机变量),(Y X 的概率分布(分布率)。
二维连续型随机变量分布函数及概率的计算1. 引言1.1 背景介绍随着现代科学技术的不断发展,随机变量理论作为概率论和数理统计中的重要分支,已经成为了各个领域研究的重要工具之一。
而在随机变量理论中,二维连续型随机变量的分布函数及概率的计算更是一个重要且复杂的问题。
二维连续型随机变量是指在二维空间中取值的连续的随机变量,其分布函数的计算涉及了多元积分和概率密度函数等高阶数学知识。
对于二维连续型随机变量分布函数及概率的计算,研究者们一直在探索各种不同的方法和技术。
通过推导分布函数和利用概率密度函数,可以计算出不同事件的概率,从而更好地理解与分析随机变量的性质和特点。
常见的二维分布,如正态分布、均匀分布等,在实际问题中的应用也十分广泛。
研究二维连续型随机变量分布函数及概率的计算对于深入理解概率论和数理统计的基本原理,解决实际问题具有重要意义。
本文将深入探讨二维连续型随机变量的定义、分布函数的推导、概率的计算方法、常见二维分布的概率计算、以及其特性分析,旨在为读者提供对这一重要领域的全面认识和理解。
1.2 研究意义二维连续型随机变量分布函数及概率的计算在概率论和统计学中具有重要的研究意义。
通过对二维连续型随机变量的分布函数和概率的计算,可以帮助我们更好地理解随机现象的规律性和不确定性。
这对于深入研究各种实际问题,如金融市场波动、自然灾害发生等具有重要意义。
二维连续型随机变量的分布函数和概率计算是概率统计学中的基础知识,对于建立概率模型、进行风险评估和决策分析等方面都至关重要。
通过研究二维连续型随机变量的特性和常见分布的概率计算方法,还可以为实际问题的解决提供重要的参考。
深入探讨二维连续型随机变量的分布函数及概率的计算,不仅对学科发展具有重要意义,也对社会问题的解决有着积极的推动作用。
通过本文对该方面的研究,我们能够更全面地理解和应用二维连续型随机变量的相关知识,同时也为未来在这一领域的深入探索提供了基础和指导。
概率论公式大全二维随机变量多项分布与独立同分布概率论是数学中的一个重要分支,它研究随机事件以及其概率性质。
其中,随机变量是概率论中的一个基本概念,它可以用来描述随机现象和随机试验的结果。
本文将介绍概率论中与二维随机变量、多项分布以及独立同分布相关的公式。
一、二维随机变量在概率论中,随机变量可以分为一维和多维两种情况。
一维随机变量描述的是具有一个取值的随机事件,而二维随机变量则描述的是具有两个取值的随机事件。
常见的二维随机变量包括离散型和连续型两种。
1. 离散型二维随机变量离散型二维随机变量的概率分布可以通过联合概率质量函数(Joint Probability Mass Function,简称JPMS)来描述。
对于二维离散型随机变量(X, Y),其概率分布可以用如下公式表示:P(X = x, Y = y) = P(X, Y)其中,P(X = x, Y = y)表示随机变量X取值为x,随机变量Y取值为y的概率,P(X, Y)表示联合概率质量函数。
2. 连续型二维随机变量对于连续型二维随机变量,其概率分布则可以通过联合概率密度函数(Joint Probability Density Function,简称JPDS)来描述。
对于二维连续型随机变量(X, Y),其概率分布可以用如下公式表示:P(a ≤ X ≤ b, c ≤ Y ≤ d) = ∬f(x, y)dxdy其中,f(x, y)表示联合概率密度函数,∬表示对整个平面积分,a、b、c、d为常数。
二、多项分布多项分布是二项分布的推广,它适用于具有多个离散可能结果的试验。
假设有n个独立的试验,每个试验有k种可能的结果,且每种结果出现的概率是固定的。
那么多项分布描述了试验结果中每种可能出现的次数的概率分布。
多项分布的概率质量函数可以表示为:P(X₁ = x₁, X₂ = x₂, ..., Xk = xk) = (n! / (x₁! * x₂! * ... * xk!)) *(p₁^x₁ * p₂^x₂ * ... * pk^xk)其中,n为试验次数,xi表示结果i出现的次数,pi表示结果i出现的概率。