常见连续型随机变量的分布资料
- 格式:ppt
- 大小:624.50 KB
- 文档页数:17
1.均匀分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f2.指数分布 密度分布函数 ⎭⎬⎫⎩⎨⎧>=-其他,00,)(x e x f x λλ 3.伽玛分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>Γ=--0,00,)()(1x x e x x f x ααααλ4.正态分布 密度分布函数 222)(21)(σμπσ--=x e x f5.对数正态分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>=--e l s e x e x x f x ,00,21)(222)(l n σμπσ6.贝塔分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<-ΓΓ+Γ=--e l s e x x x r r r r x f r r ,010,)1()()()()(112121217.爱尔兰分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>-=--0,00,)!1()(1x x e x r x f x r r λλ8.拉普拉斯分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=--λμλx e x f 21)(%泊松分布概率密度作图:x=0:20;y1=poisspdf(x,2.5);y2=poisspdf(x,5);y3=poisspdf(x,10);hold onplot(x,y1,':r*')plot(x,y2,':b*')plot(x,y3,':g*')hold offtitle('Poisson 分布')正态分布标准差意义的图示mu=3; sigma=0.5;x=mu+sigma*[-3:-1,1:3];yf=normcdf(x,mu,sigma);P=[yf(4)-yf(3),yf(5)-yf(2),yf(6)-yf(1)];xd=1:0.1:5;yd=normpdf(xd,mu,sigma);%for k=1:3xx{k}=x(4-k):sigma/10:x(3+k);yy{k}=normpdf(xx{k},mu,sigma);endsubplot(1,3,1),plot(xd,yd,'b');hold onfill([x(3),xx{1},x(4)],[0,yy{1},0],'g')text(mu-0.5*sigma,0.3,num2str(P(1))),hold offsubplot(1,3,2),plot(xd,yd,'b');hold onfill([x(2),xx{2},x(5)],[0,yy{2},0],'g')text(mu-0.5*sigma,0.3,num2str(P(2))),hold offsubplot(1,3,3),plot(xd,yd,'b');hold onfill([x(1),xx{3},x(6)],[0,yy{3},0],'g')text(mu-0.5*sigma,0.3,num2str(P(3))),hold offv=4;xi=0.9;x_xi=chi2inv(xi,v);x=0:0.1:15;yd_c=chi2pdf(x,v);%。
连续型随机变量的分布及其数字特征一、基本概念设随机变量X 的分布函数为F (x ),若存在非负函数f (x ),使对任意实数x ,有X x F {P )(=≤⎰∞-=xx x f x d )(}则称X 为连续型随机变量,并称 f (x )为X 的概率密度,它满足以下性质:① f (x )≥0,-∞<x <+∞; ② ⎰+∞∞-=1d )(x x f ; ③ P{a <x ≤b }=F (b )-F (a )=⎰ba x x f d )(; ④ P{x =a }=0.二、常见的三种连续型随机变量的概率分布常用的三种连续型随机变量的概率分布是均匀分布、指数分布和正态分布. (1) 均匀分布若连续型随机变量X 的概率密度为 ⎪⎩⎪⎨⎧<<-=其它,0;,1)(b x a ab x f MATLAB 提供的有关均匀分布的函数如下:unifpdf(X ,A ,B ) 均匀分布的密度函数 unifcdf(X ,A ,B ) 均匀分布的累积分布函数unifinv(P ,A ,B ) 均匀分布的逆累积分布函数 unirnd(A ,B ,m ,n ) 均匀分布的随机数发生器 unifstat(A ,B ) 均匀分布的数学期望与方差其中X 为随机变量,P 为概率值,A ,B 为均匀分布参数,m 和n 为生成随机数矩阵的行数和列数.(2) 指数分布如果随机变量X 的概率密度为⎩⎨⎧<≥-=0,0;0),exp()(x x x x f λλ其中λ为常数,则称X 服从参数为λ的指数分布,记作X ~e (λ). MATLAB 提供的有关指数分布的函数如下:exppdf(X ,L ) 指数分布的密度函数 expcdf(X ,L ) 指数分布的累积分布函数 expinv(P ,L ) 指数分布的逆累积分布函数 exprnd(X ,L ,m ,n ) 产生服从指数分布的随机数 expstat(L ) 求指数分布的数学期望与方差其中X 为随机变量,L 为参数λ,P 为显著概率,m 和n 为随机数矩阵的行数和列数. 绘制指数分布密度函数和累积分布函数图形的程序如下x=-0.1:0.001:0.4;subplot(1,2,1);plot(x,y,'k'); axis([-0.1,0.4,-0.1,21]);subplot(1,2,2);plot(x,z,'k'); axis([-0.1,0.4,-0.1,1.1]);指数分布的密度函数及累积分布函数图(3) 标准正态分布如果随机变量X 的概率密度为:,,2)(exp 21)(22+∞<<∞-⎪⎪⎭⎫⎝⎛--=x x x f σμσπ 其中μ和σ均为常数,且σ>0,则称X 服从参数为μ和σ2的正态分布,记作X ~N(μ,σ2).当μ=0,σ=1时,称X 服从标准正态分布,记作X ~N(0,1). MATLAB 提供的有关正态分布的函数如下:normpdf(X ,M ,C ) 正态分布的密度函数 normcdf(X ,M ,C ) 正态分布的累积分布函数 norminv(P ,M ,C ) 正态分布的逆累积分布函数 normrnd(M ,C ,m ,n ) 产生服从正态分布的随机数 normstat(M ,C ) 求正态分布的数学期望和方差其中X 为随机变量,M 为正态分布参数μ,C 为参数σ,P 为显著概率,m 和n 为随机矩阵的行数和列数.绘制标准正态分布的密度函数及累积分布函数图和一般正态分布的密度函数及累积分布函数图的程序如下:x=-4:0.01:4;subplot(2,2,1);plot(x,y,'k');axis([-4,4,-0.1,0.5]);subplot(2,2,2);plot(x,z,'k');axis([-4,4,-0.1,1.1]);x=-4:0.01:16;y1=normpdf(x,6,1);z1=normcdf(x,6,1);y2=normpdf(x,6,4);z2=normcdf(x,6,4);y3=normpdf(x,6,0.6);z3=normcdf(x,6,0.6);subplot(2,2,3);plot(x,y1,'k',x,y2,'k',x,y3,'k');axis([-4,16,-0.1,0.8]);subplot(2,2,4);plot(x,z1,'k',x,z2,'k',x,z3,'k');axis([-4,16,-0.1,1.1]);三、求解方法(1)通用函数介绍.Pdf 计算已选函数的概率密度函数,调用格式为:Y=Pdf(name, X,A)Y=Pdf(name, X,A,B)Y=Pdf(name, X, A,B,C)Name为上表中取stat后的字符,如beta、 bino 、chiz、exp等。
连续型随机变量的分布与应用连续型随机变量是概率论与数理统计中重要的研究对象之一,它与离散型随机变量相辅相成,被广泛应用于各个领域。
本文将探讨连续型随机变量的分布特性以及在实际问题中的应用。
一、连续型随机变量的定义与性质连续型随机变量是在一定范围内取任意实数值的随机变量。
与离散型随机变量不同,连续型随机变量的取值可以是实数区间内的任意一个点,且其概率密度函数可用来描述其分布特性。
1. 概率密度函数对于连续型随机变量X,其概率密度函数f(x)满足以下两个性质:(1)非负性:对于任意x,有f(x) ≥ 0;(2)归一性:∫f(x)dx = 1。
2. 分布函数连续型随机变量的分布函数F(x)定义为X ≤ x的概率,即F(x) =P(X ≤ x)。
由于连续型随机变量无论取任何具体值的概率都是0,因此F(x)可用概率密度函数进行求解。
二、常见的连续型随机变量分布在概率论与数理统计中,涉及到很多形式不同的连续型随机变量分布。
下面介绍几种常见的分布类型及其特点。
1. 均匀分布均匀分布是最简单的连续型随机变量分布之一,它在给定区间上的密度函数是常数。
均匀分布常用于模拟实验、随机抽样等场景。
2. 正态分布正态分布,又称高斯分布,是自然界中许多现象的分布模型。
它以其钟形曲线而著名,均值、方差是正态分布的两个重要参数。
正态分布在统计推断、假设检验等方面有广泛的应用。
3. 指数分布指数分布广泛应用于描述一些事件的持续时间或间隔时间,如设备寿命、电话呼叫等。
它具有无记忆性质,也就是说未来的发生与过去无关,仅与当前时刻有关。
4. 泊松分布泊松分布适用于描述单位时间(或单位面积、单位长度等)内某事件发生的次数的概率分布。
泊松分布常用于描述到达某一地点的车辆数、电话呼叫数等。
5. 威布尔分布威布尔分布常用于描述产品寿命或可靠性的分布。
它是指数分布的一般形式,通过加入形状参数来调整分布的形态。
三、连续型随机变量在实际问题中的应用1. 风险分析连续型随机变量在风险分析中有着广泛的应用。
连续型随机变量的分布函数引言连续随机变量是概率论中的重要概念之一,其取值范围是一段连续的实数区间。
与离散型随机变量不同,连续型随机变量的分布函数是一个实函数,描述了随机变量取值小于等于某一实数的概率。
本文将介绍连续型随机变量的分布函数的定义、性质以及常见的连续分布函数。
一、连续型随机变量的分布函数定义在概率论中,对于一维连续型随机变量X,其分布函数F(x)定义为:F(x) = P(X ≤ x)其中P为概率函数,表示X取值小于等于x的概率。
分布函数F(x)具有以下性质:1.F(x)是自变量x的单调不减函数;2.F(x)的取值范围是[0,1],即0≤F(x)≤1;3.当x→负无穷时,F(x)→0;当x→正无穷时,F(x)→1。
二、连续型随机变量的概率密度函数对于连续型随机变量X,其概率密度函数f(x)是分布函数F(x)的导数,即:f(x) = dF(x)/dx概率密度函数描述了连续型随机变量在不同取值下的概率密度。
概率密度函数具有以下性质:1.f(x)是非负函数,即对于所有x,有f(x)≥0;2.连续型随机变量所有可能取值的概率密度函数在取值范围上的积分等于1,即∫f(x)dx = 1。
通过概率密度函数可以计算出在某个区间内连续型随机变量的取值概率,即概率密度函数在该区间上的积分。
三、常见的连续分布函数1. 均匀分布(Uniform Distribution)均匀分布是一种简单的连续型随机变量分布,其概率密度函数在一个区间内全等于常数,即:f(x) = 1/(b-a),a≤x≤b,否则 f(x) = 0其中a和b是区间的上下界。
均匀分布的分布函数是线性的,在区间[a,b]内为0,在区间左侧小于a时为0,在区间右侧大于b时为1。
均匀分布的期望值为(a+b)/2,方差为(b-a)²/12。
2. 正态分布(Normal Distribution)正态分布是最具代表性的连续型随机变量分布之一,也称为高斯分布。
第七讲 之阿布丰王创作 连续型随机变量(续)及随机变量的函数的分布3. 三种重要的连续型随机变量 (1)均匀分布设连续型随机变量X 具有概率密度)5.4(,,0,,1)(⎪⎩⎪⎨⎧<<-=其它b x a ab x f则称X 在区间(a,b)上服从均匀分布, 记为X~U(a,b).X 的分布函数为)6.4(.,1,,,,0)(⎪⎪⎩⎪⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F(2)指数分布设连续型随机变量X 的概率密度为)7.4(,,0,0,e1)(/⎪⎩⎪⎨⎧>=-其它x x f x θθ其中θ>0为常数, 则称X 服从参数为θ的指数分布.容易得到X 的分布函数为)8.4(.,0,0,1)(/⎩⎨⎧>-=-其它x e x F x θ如X 服从指数分布, 则任给s,t>0, 有 P{X>s+t | X > s}=P{X > t}(4.9)第二章 随机变量及其分布§4 连续型随机变量 及其概率密度13=1/3=1=2事实上}.{e ee )(1)(1}{}{}{)}(){(}|{//)(t X P s F t s F s X P t s X P s X P s X t s X P s X t s X P t s t s >===-+-=>+>=>>⋂+>=>+>--+-θθθ性质(4.9)称为无记忆性.指数分布在可靠性理论和排队论中有广泛的运用. (3)正态分布设连续型随机变量X 的概率密度为)10.4(,,e21)(222)(∞<<-∞=--x x f x σμσπ其中μ,σ(σ>0)为常数, 则称X 服从参数为μ,σ的正态分布或高斯(Gauss)分布, 记为X~N(μ,2σ).显然f(x)≥0, 下面来证明1d )(=⎰+∞∞-x x f令t x =-σμ/)(, 得到dx edx et x 22)(2222121-∞+∞---∞+∞-⎰⎰=πσπσμ.1d 21d 21)11.4(π2d d e,,d d ,de 22)(20222/)(22/2222222======⎰⎰⎰⎰⎰⎰⎰∞∞--∞∞---∞-+∞∞-+∞∞-+-∞∞--x ex e r r I u t e I t I t x r u ttπσπθσμπ于是得转换为极坐标则有记f(x)具有的性质:(1).曲线关于x=μ对称.这标明对于任意h>0有P{μ-h<X ≤μ}=P{μ<X ≤μ+h}. (2).当x=μ时取到最大值f (x )的图形:=5=51.510.5.π21)(σμ=fx 离μ越远, f(x)的值越小. 这标明对于同样长度的区间, 当区间离μ越远, X 落在这个区间上的概率越小。