常见连续型随机变量的分布
- 格式:ppt
- 大小:599.00 KB
- 文档页数:34
1.均匀分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f2.指数分布 密度分布函数 ⎭⎬⎫⎩⎨⎧>=-其他,00,)(x e x f x λλ 3.伽玛分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>Γ=--0,00,)()(1x x e x x f x ααααλ4.正态分布 密度分布函数 222)(21)(σμπσ--=x e x f5.对数正态分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>=--e l s e x e x x f x ,00,21)(222)(l n σμπσ6.贝塔分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<-ΓΓ+Γ=--e l s e x x x r r r r x f r r ,010,)1()()()()(112121217.爱尔兰分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>-=--0,00,)!1()(1x x e x r x f x r r λλ8.拉普拉斯分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=--λμλx e x f 21)(%泊松分布概率密度作图:x=0:20;y1=poisspdf(x,2.5);y2=poisspdf(x,5);y3=poisspdf(x,10);hold onplot(x,y1,':r*')plot(x,y2,':b*')plot(x,y3,':g*')hold offtitle('Poisson 分布')正态分布标准差意义的图示mu=3; sigma=0.5;x=mu+sigma*[-3:-1,1:3];yf=normcdf(x,mu,sigma);P=[yf(4)-yf(3),yf(5)-yf(2),yf(6)-yf(1)];xd=1:0.1:5;yd=normpdf(xd,mu,sigma);%for k=1:3xx{k}=x(4-k):sigma/10:x(3+k);yy{k}=normpdf(xx{k},mu,sigma);endsubplot(1,3,1),plot(xd,yd,'b');hold onfill([x(3),xx{1},x(4)],[0,yy{1},0],'g')text(mu-0.5*sigma,0.3,num2str(P(1))),hold offsubplot(1,3,2),plot(xd,yd,'b');hold onfill([x(2),xx{2},x(5)],[0,yy{2},0],'g')text(mu-0.5*sigma,0.3,num2str(P(2))),hold offsubplot(1,3,3),plot(xd,yd,'b');hold onfill([x(1),xx{3},x(6)],[0,yy{3},0],'g')text(mu-0.5*sigma,0.3,num2str(P(3))),hold offv=4;xi=0.9;x_xi=chi2inv(xi,v);x=0:0.1:15;yd_c=chi2pdf(x,v);%。
连续型随机变量分布密度随机变量是概率论和统计学中的重要概念,它描述了随机事件的不确定性。
连续型随机变量是一个可以取任意实数值的随机变量。
在概率论和统计学中,我们经常对连续型随机变量的分布进行研究。
分布密度函数是描述连续型随机变量分布的一种方式。
一、连续型随机变量分布密度的定义连续型随机变量的分布可以用分布密度函数来描述。
连续型随机变量X的分布密度函数是一个非负的函数f(x),它满足以下两个条件:1. f(x)≥0,对于任意的x∈R; 2. 在实轴的某一区间[a, b]上,f(x)的积分值等于该区间上随机变量的概率:P(a≤X≤b)=∫f(x)dx。
二、连续型随机变量分布密度的性质连续型随机变量分布密度函数具有以下性质: 1. f(x)在定义域上非负; 2. f(x)的积分值等于全体实轴上随机变量的概率,即∫f(x)dx=1; 3. f(x)的大小表示了在相应x附近的概率密度。
概率密度越大,表示随机变量在该处取值的概率越大; 4. 对于区间[a, b]上的一个任意子区间[c, d],有P(c≤X≤d)=∫[c,d]f(x)dx。
三、常见的连续型随机变量分布密度 1. 均匀分布均匀分布是最简单的连续型随机变量分布。
在[a, b]区间内,均匀分布的密度函数为: f(x)={1/(b-a),a≤x≤b;0,其他}。
2.正态分布正态分布是一种在自然界中广泛存在的分布。
它以均值μ和标准差σ为参数,其密度函数为:f(x)={1/(σ√(2π))e(-((x-μ)2)/(2σ^2))}。
3.指数分布指数分布常用于描述时间段发生某事件的概率密度。
其密度函数为:f(x)={λ*e^(-λx),x≥0;0,x<0}。
4.γ分布γ分布是指数分布的推广形式,也广泛应用于概率论和统计学中。
其密度函数为:f(x)={((1/(βα))x^(α-1)e(-x/β))/(Γ(α))}。
四、连续型随机变量分布密度的应用连续型随机变量分布密度广泛应用于许多实际问题的建模和分析中。
连续型随机变量的分布函数引言连续随机变量是概率论中的重要概念之一,其取值范围是一段连续的实数区间。
与离散型随机变量不同,连续型随机变量的分布函数是一个实函数,描述了随机变量取值小于等于某一实数的概率。
本文将介绍连续型随机变量的分布函数的定义、性质以及常见的连续分布函数。
一、连续型随机变量的分布函数定义在概率论中,对于一维连续型随机变量X,其分布函数F(x)定义为:F(x) = P(X ≤ x)其中P为概率函数,表示X取值小于等于x的概率。
分布函数F(x)具有以下性质:1.F(x)是自变量x的单调不减函数;2.F(x)的取值范围是[0,1],即0≤F(x)≤1;3.当x→负无穷时,F(x)→0;当x→正无穷时,F(x)→1。
二、连续型随机变量的概率密度函数对于连续型随机变量X,其概率密度函数f(x)是分布函数F(x)的导数,即:f(x) = dF(x)/dx概率密度函数描述了连续型随机变量在不同取值下的概率密度。
概率密度函数具有以下性质:1.f(x)是非负函数,即对于所有x,有f(x)≥0;2.连续型随机变量所有可能取值的概率密度函数在取值范围上的积分等于1,即∫f(x)dx = 1。
通过概率密度函数可以计算出在某个区间内连续型随机变量的取值概率,即概率密度函数在该区间上的积分。
三、常见的连续分布函数1. 均匀分布(Uniform Distribution)均匀分布是一种简单的连续型随机变量分布,其概率密度函数在一个区间内全等于常数,即:f(x) = 1/(b-a),a≤x≤b,否则 f(x) = 0其中a和b是区间的上下界。
均匀分布的分布函数是线性的,在区间[a,b]内为0,在区间左侧小于a时为0,在区间右侧大于b时为1。
均匀分布的期望值为(a+b)/2,方差为(b-a)²/12。
2. 正态分布(Normal Distribution)正态分布是最具代表性的连续型随机变量分布之一,也称为高斯分布。