2019届宝山高三一模数学Word版(附解析)
- 格式:doc
- 大小:503.02 KB
- 文档页数:5
宝山区2018-2019学年第一学期高三年级质量调研考试 数学试卷 2018.12考生注意:1.本场考试时间120分钟.试卷共4页,满分150分.2.作答前,在试卷与答题纸正面填写学校、班级、考生号、姓名等.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本题满分54分)本大题共有12题,1-6每题4分,7-12每题5分 1、函数()()sin 2f x x =-的最小正周期为 .2、集合U R =,集合{}|30A x x =->,{}|10B x x =+>,则U B C A = .3、若复数z 满足()12i z i +=(i 是虚数单位),则z = .4、方程()ln 9310x x +-=的根为 .5、从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每一个班级至少一名代表,则各班的代表数有 种不同的选法.(用数字作答)6、关于x 、y 的二元一次方程组的增广矩阵为123015-⎛⎫ ⎪⎝⎭,则x y += .7、如果无穷等比数列{}n a 所有奇数项的和等于所有和的3倍,则公比q = . 8、函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x = .9、已知()23,A ,()1,4B ,且()1sin ,cos 2AB x y =,,,22x y ππ⎛⎫∈- ⎪⎝⎭,则x y += .10、将函数y =的图像绕着y 轴旋转一周所得到的几何容器的容积是 . 11、张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b =45A ︒∠=,求边c 。
显然缺少条件,若他打算补充a 的大小,并使得c 只有一解,那么,a 的可能取值是 .(只需要填写一个合适的答案)12、如果等差数列{}n a 、{}n b 的公差都为()0d d ≠,若满足对于任意*n N ∈,都有n n b a kd -=,其中k 为常数,*k N ∈,则称它们为“同宗”数列。
2019年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分),×=1=去分母得,x+1=(x﹣1)(x+2)﹣1去分母得,x+5=2x﹣5去分母得,(x﹣2)2﹣x+2=x(x+2)去分母得,2(x﹣1)=x+32数学试卷5.(4分)(2019•宝山区一模)如图所示,在△ABC中,DE∥AB∥FG,且FG到DE、AB的距离之比为1:2.若△ABC的面积为32,△CDE的面积为2,则△CFG的面积S等于()2....﹣﹣二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2019•宝山区一模)使有意义的x的取值范围是x≥5.数学试卷8.(4分)(2019•宝山区一模)不等式组的解集是﹣1≤x<.解:<<.9.(4分)(2019•宝山区一模)分解因式a2﹣ab﹣3a+3b=(a﹣3)(a﹣b).10.(4分)(2019•宝山区一模)若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是﹣2.11.(4分)(2019•宝山区一模)在平面直角坐标系中.把抛物线y=2x2﹣1的图象向左平移2个单位,所得抛物线的解析式为y=2(x+2)2﹣1.12.(4分)(2019•苏州)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).13.(4分)(2019•长春)在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为18.数学试卷14.(4分)(2019•宝山区一模)如图,正方形ABCD中,M是边BC上一点,且BM=BC,若,,则=﹣(用和表示)先表示出、,然后即可得出的表达式.解:=,==BM=BC=,===﹣=﹣故答案为:﹣.本题考查了平面向量的知识,根据线段比表示出是解答本题的关键,另外要熟练掌握向量的加减15.(4分)(2019•宝山区一模)某坡面的坡度为1:,则坡角是60度.:16.(4分)(2004•临沂)如图,菱形ABCD中,点E、F在对角线BD上,BE=DF=BD,若四边形AECF为正方形,则tan∠ABE=.ABE=计算即可.EF=2AO=EF=aBDEF=BDBD=4BO=BD=2ABE==.17.(4分)(2019•宝山区一模)在实验中我们常常采用利用计算机在平面直角坐标系中画出抛物线y=x2和直线y=﹣x+3,利用两图象交点的横坐标来求一元二次方程x2+x﹣3=0的解,也可以在平面直角坐标系中画出抛物线y=x2﹣3和直线y=﹣x,用它们交点的横坐标来求该方程的解.所以求方程的近似解也可以利用熟悉的函数y=和y=x2﹣3的图象交点的横坐标来求得.的近似解也可以利用熟悉的函数的交点得出.∴求方程的近似解也可以利用熟悉的函数:和数学试卷y=18.(4分)(2019•宝山区一模)如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标为O(0,0),A(2,0),B(2,2),C(4,2),D(4,4),E(0,4),若如图过点M(1,2)的直线MP(与y轴交于点P)将多边形OABCDE分割成面积相等的两部分,则直线MP的函数表达式是y=x+.S(×联立得,,解得x+.y=x+三、(本大题共8题,第19-22题每题8分,第23、24题每题10分,第25题12分,第26题14分,满分78分)19.(8分)(2019•宝山区一模)计算:.﹣×﹣8+=1+3×8+=1+3﹣8+2=4﹣20.(8分)(2019•宝山区一模)二次函数y=﹣x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C(1)求m的值和点B的坐标(2)求△ABC的面积.数学试卷AB×21.(8分)(2003•上海)将两块三角板如图放置,其中∠C=∠EDB=90°,∠A=45°,∠E=30°,AB=DE=6,求重叠部分四边形DBCF的面积.×=2)AC=BC=3AC12=1222.(8分)(2019•宝山区一模)在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.=;===数学试卷23.(10分)(2019•宝山区一模)如图,△ABC中,∠ACB=90°,CD⊥AB于点D,E是AC的中点,DE 的延长线交BC的延长线于点F,EF=5,∠B的正切值为(1)求证:△BDF∽△DCF;(2)求BC的长.等及正切函数的定义得到==B=((B==,得到方程(===tan,DF=((=,(BC=24.(10分)(2019•宝山区一模)在对口扶贫活动中,企业甲将经营状况良好的某消费品专卖店,以188万元的优惠价转让给了尚有120万无息贷款还没有偿还的小型福利企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支5.6万元后,逐步偿还转让费(不计利息),维持乙企业的正常运转每月除职工最低生活费外,还需其他开支2.4万元,从企业甲提供的相关资料中可知这种热门(2)当商品的销售单价为多少元时,扣除各类费用后的月利润余额最大?(3)企业乙依靠该店,能否在3年内脱贫(偿还所有债务)?,解得:数学试卷25.(12分)(2019•宝山区一模)在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A(A在O右侧),顶点为B.艾思轲同学用一把宽3cm的矩形直尺对抛物线进行如下测量:(1)量得OA=3cm,(2)当把直尺的左边与抛物线的对称抽重合,使得直尺左下端点与抛物线的顶点重合时(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5cm.艾思轲同学将A的坐标记作(3,0),然后利用上述结论尝试完成下列各题:(1)写出抛物线的对称轴;(2)求出该抛物线的解析式;(3)探究抛物线的对称轴上是否存在使△ACD周长最小的点D;(4)然后又将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H,G,交抛物线于E,F,探究梯形EFGH的面积S与线段EF的长度是否存在函数关系.同学:如上述(3)(4)结论存在,请你帮艾思轲同学一起完成,如上述(3)(4)结论不存在,请你告诉艾思轲同学结论不存在的理由.,即x=,设抛物线的解析式为顶点式坐标为(,代入,求出点a=y=)﹣(﹣﹣y=x﹣x=a EF=3,则=S=,即;x=)+3=,点﹣﹣a=y=)(﹣,y=),即y=﹣的坐标(,)代入,m=,解得,y=x=时,×=,,﹣(((HG=a a+(a 又∵()﹣(a a EF==3=﹣数学试卷S=,即26.(14分)(2019•宝山区一模)已知∠AOB=90°,OM是∠AOB的平分线,将一个直角三角板的直角顶点P放在射线OM上,OP=m(m为常数且m≠0),移动直角三角板,两边分别交射线OA,OB与点C,D (1)如图,当点C、D都不与点O重合时,求证:PC=PD;(2)联结CD,交OM于E,设CD=x,PE=y,求y与x之间的函数关系式;(3)如图,若三角板的一条直角边与射线OB交于点D,另一直角边与直线OA,直线OB分别交于点C,F,且△PDF与△OCD相似,求OD的长.,=x y= OD=DF=OP=mOG=OP=mOD=OG+DG=+1数学试卷。
2019届宝山区高三年级一模数学试卷(教师版) 2018.12一、填空题(本题满分54分)本大题共有12题,1-6每题4分,7-12每题5分,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得分,否则一律得零分. 1、函数()()sin 2f x x =-的最小正周期为_____【答案】π 【解析】最小正周期222πππϖ===- 2、集合U R =,集合{}{}30,10A x x B x x =->=+>,则U B C A =____【答案】(]1,3-【解析】(](](1,),,31,3U U B C A BC A =-+∞=-∞⇒=-3、若复数z 满足()12i z i +=(i 是虚数单位),则z =____【答案】1i - 【解析】()()22(1)22111112i i i i z i z i i i i -+====+⇒=-++- 4、方程()ln 9310x x +-=的根为__________【答案】0x = 【解析】()ln 93109311310+-=⇒+-=⇒=⇒=x x x x x x5、从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每个班级至少有一名代表,则各班级的代表数有 种不同的选法。
(用数字作答) 【答案】20 【解析】分类讨论:3121443420C C C C ++=或直接隔板法:3620C =6、关于,x y 的二元一次方程的增广矩阵为123015-⎛⎫⎪⎝⎭,则x y +=____【答案】8-【解析】12323801505x y x y x y -+=-⎛⎫⎧⇒⇒+=-⎨⎪+=⎝⎭⎩7、如果无穷等比数列{}n a 所有奇数项的和等于所有项和的3倍,则公比q =____【答案】23-【解析】11223113a a q q q =⇒=---8、函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x =__________【答案】x e -- 【解析】设点(),x y 在()y f x =的图像上,则(),x y 关于直线y x =-对称的点(),--y x 在ln y x =的图像上,得到()x y f x e -==-9、已知()()2,3,1,4A B ,且()1sin ,cos 2AB x y =,,,22x y ππ-⎛⎫∈ ⎪⎝⎭,则x y +=____【答案】6π或2π- 【解析】()111sin ,cos ,,22263A B x y x y ππ-⎛⎫==-⇒== ⎪⎝⎭或3π-,则6x y π+=或2π- 10、将函数y =的图像绕着y 轴旋转一周所得的几何容器的容积是______【答案】23π【解析】将y =函数图像(此为下半圆)旋转一周得到半球体,体积23π11、张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在ABC∆中,,,a b c 分别是角,,A B C 的对边,已知045b A =∠=,求边c ,显然缺少条件,若他打算补充a的大小,并使得c只有一解,a 的可能取值是(只需填写一个适合的答案)【答案】【解析】正弦定理,{}{})22sin 10,222,sin sin a b B a A B a ⎛⎤⎡===∈⇒=+∞ ⎥⎣⎝⎦或数形结合也行12、如果等差数列n a {},n b {}的公差都为d d ≠(0),若满足对于任意n ∈*N ,都有n n b a kd -=,其中k 为常数,k ∈*N ,则称它们互为“同宗”数列.已知等差数列{}n a 中,首项a =11,公差d =2,数列n b {}为数列n a {}的“同宗”数列,若nn n a b a b a b →∞+++=11221111lim()3,则k = 【答案】2 【解析】由题知n a n =-21,又n b {}为n a {}的“同宗”数列,所以n n b a k -=2,则n b k n =+-221.所以n n a b n n k k n k n ==---+-+-11111()(21)(212)221221 所以n n a b a b a b k k k n k n +++=-+-++-+++++1122111111111[(1)()()]22132321221当k =1时,n n n n a b a b a b n n →∞→∞+++=-+-++-++1122111111111lim()lim[(1)()()]23352123n n →∞=-=+111lim(1)2232,故不满足; 当k =2时,n n n n a b a b a b n n →∞→∞+++=-+-++-++1122111111111lim()lim[(1)()()]45372125n n n →∞=+--=⨯=++1111141lim(1)432325433,故满足; 当k =3时,nn n n a b a b a b n n →∞→∞+++=-+-++-++1122111111111lim()lim[(1)()()]693112127n n n n →∞=++---=⨯++=+++11111111123lim(1)(1)63523252763545,故也不满足; ……则当k m =m ∈*()N 时,n n n a b a b a b m m →∞+++=+++++11221111111lim()(1)23521若nn n a b a b a b →∞+++=11221111lim()3,即mm ++++=+1112135213则设m m c m =++++-+1112135213,由m m c c m +-=-<+1120213所以m c {}是递减数列,所以仅有c =20,故仅k =2时,有nn n a b a b a b →∞+++=11221111lim()3. 【点评】本题得出答案2,还是相对容易的,若想要验证仅k =2满足,需要构造数列判断其单调性去验证,整体难度不高.二、选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分. 13、若等式x x x a a x a x a x +++=+-+-+-232301231(1)(1)(1)对一切x ∈R 都成立,其中a a a a 0123,,,为实常数,则a a a a +++=0123( )(A )2 (B )-1 (C )4 (D )1 【答案】D【解析】(赋值法) 令x =0时,a a a a =+++01231,故选D .14、“ππx ∈-[,]22”是“x x =sin(arcsin )”的( )条件(A )充分非必要 (B )必要非充分 (C )充要 (D )既非充分又非必要【答案】B【解析】由y x =arcsin 的定义域为x ∈-[1,1],所以x x =sin(arcsin )成立的条件为[]x ∈-1,1, 故选B .15、关于函数f x x =-23()2的下列判断,其中正确的是( )【答案】A (A )函数的图像是轴对称图形 (B )函数的图像是中心对称图形(C )函数有最大值 (D )当x >0时,y f x =()是减函数【解析】由f x f x x -==-23()()2,且定义域为≠∈x x x {|}R ,知f x ()故选择A . 16.设点M 、N 均在双曲线x y C -=22:143上运动,F F 12,是双曲线C 的左、右焦点,M F M F M N+-122的最小值为( )(A )(B )4 (C )(D )以上都不对【答案】B 【解析】由O 为F F 12,的中点,则M F M F M N M O M N N O +-=-=122222 由双曲线的性质知N O a =≥2,所以M F M F M N +-122的最小值为4.三、解答题(本题满分76分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.17、(满分14分)本题有2小题,第1小题6分,第2小题8分,如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,P4=4,设E 为侧棱PC 的中点.. (1) 求正四棱锥E -ABCD 的体积V ;(2) 求直线BE 与平面PCD 所成角θ的大小.【解析】(1) 由E 为侧棱PC 的中点.由E 为侧棱PC 的中点,则正四棱锥E -ABCD 的体积BP A BCD V V -=12A BCD S PA =⨯⋅⋅=⨯⨯⨯=2111182)423233正方形(. (2) 以点A 为坐标原点,如图建系.则B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,4),则E (1,1,2)所以BE =-(1,1,2),DC =(2,0,0),PD =-(0,2,4).设平面PCD 的法向量为n x y z =(,,). 则DC n PD n ⎧⋅=⎪⎨⋅=⎪⎩00,得x y z =⎧⎨=⎩02,不妨n =(0,2,1).所以sin BE n BE n θ⋅===+⋅1所以直线BE 与平面PCD 所成角θ的大小为 18.(满分14分)本题有2小题,第1小题7分,第2小题7分.已知函数()sin 21cos 2201xf x x-=,将()f x 的图像向左移()0αα>个单位的函数()y g x =的图像. (1)若4πα=,求()y g x =的单调递增区间;(2)若0,2πα⎛⎫∈ ⎪⎝⎭,()y g x =的一条对称轴12x π=,求()y g x =,0,2x π⎡⎤∈⎢⎥⎣⎦的值域.【解析】(1)()2sin 22cos 26f x x x x π⎛⎫=-=+ ⎪⎝⎭,()()2cos 226g x f x x παα⎛⎫=+=++ ⎪⎝⎭,若4πα=,则()22cos 23g x x π⎛⎫=+ ⎪⎝⎭,[]()222,23x k k k ππππ+∈-∈Z , 得()5,63x k k k ππππ⎡⎤∈--∈⎢⎥⎣⎦Z ,即()y g x =的单调递增区间为()5,63k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z ;(2)∵()y g x =的一条对称轴12x π=,∴212g π⎛⎫=± ⎪⎝⎭,从而()22126k k ππαπ⋅++=∈Z ,得()26k k ππα=-∈Z ,∵0,2πα⎛⎫∈ ⎪⎝⎭,∴3πα=,于是()52cos 26y g x x π⎛⎫==+⎪⎝⎭, ∵0,2x π⎡⎤∈⎢⎥⎣⎦,∴55112,666x πππ⎡⎤+∈⎢⎥⎣⎦,∴5cos 26x π⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦, ∴()g x ⎡∈-⎣.19.(满分14分)本题有2小题,第1小题6分,第2小题8分.某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工人作业时段.从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时间t (单位:小时,[]0,20t ∈)近似地满足函数132by t t =-++关系,其中,b 为大棚内一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);(2)若要保持大棚一天中保温时段的最低温度不小于17℃,求大棚一天中保温时段通风量的最小值.【解析】(1)100132y t t =-++, ①[]0,13t ∈时,100132y t t =-++,此时函数单调递减,当13t =时,min 203y =,②(]13,20t ∈时,()1001001321522y t t t t =-+=++-++, 令2u t =+,(]15,22u ∈,则10015y u u =+-,此时函数单调递增,1002015153y >+>, 综上,最低温度为206.73≈℃; (2)即13172bt t -+≥+对[]0,20t ∈恒成立, ①[]0,13t ∈时,13172b t t -+≥+,得()()()24231b t t t ≥++=+-, ()231t +-在[]0,13t ∈单调递增,∴()()22max 311331255b t ⎡⎤⎡⎤≥+-=+-=⎣⎦⎣⎦,②(]13,20t ∈时,13172b t t -+≥+,得()()()230214256b t t t ≥-+=--+, ∴()2max14256256b t ⎡⎤≥--+=⎣⎦,综上,256b ≥,∴大棚一天中保温时段通风量的最小值为256.20.(满分16分)本题有3小题,第1小题4分,第2小题6分,第3小题6分.已知椭圆22:14x y Γ+=的左、右焦点为1F 、2F .(1)求以1F 为焦点,原点为顶点的抛物线方程; (2)若椭圆Γ上点M 满足123F M F π∠=,求M 的纵坐标M y ;(3)设(0,1)N ,若椭圆Γ上存在两不同点,P Q 满足90PN Q ∠=︒,证明直线PQ 过定点,并求该定点的坐标.【20题解析】(1)()1F,抛物线方程为2y =-; (2)122121211tan223F M F M M F M F S b F F y y ∠==⋅⋅⇒=±△; (3)设():1PQ l y kx m m =+≠,()11,P x y ,()22,Q x y ,2214y kx mx y =+⎧⎪⎨+=⎪⎩,得()()222148410k x kmx m +++-=,()122212208144114km x x k m x x k ⎧⎪∆>⎪⎪+=-⎨+⎪⎪-⎪=⎩+ ∵90PN Q ∠=︒,∴0N P N Q ⋅=,即12121210x x y y y y +--+=,()()()()12121210x x kx m kx m kx m kx m ⇒+++-+-++=,()()()()2212121110k x x k m x x m ⇒++-++-=,()()5310m m ⇒+-=,∵1m ≠,∴35m =-.∴3:5PQ l y kx =-,∴必过定点30,5⎛⎫- ⎪⎝⎭【说明】如右图,根据对称性可知,若存在定点,则该定点必定落在y 轴上. 答案可考虑特殊情况,下图中PQ x ∥轴时,计算直线:1PQ l y x =+与2214x y +=的交点,得到P y ,从而可秒出定点坐标为30,5⎛⎫- ⎪⎝⎭.21.(满分18分)本题有3小题,第1小题4分,第2小题7分,第3小题7分.如果数列{}n a 对于任意n *∈N ,都有2n n a a d +-=,其中d 为常数,则称数列{}n a 是“间等差数列”,d 为“间公差”,若数列{}n a 满足1235n n a a n ++=-,n *∈N ,1()a a a =∈R . (1)求证:数列{}n a 是“间等差数列”,并求间公差d ;(2)设n S 为数列{}n a 的前n 项和,若n S 的最小值为153-,求实数a 的取值范围;(3)类似地:非常数列{}n b 对于任意n *∈N ,都有2n nb q b +=,其中q 为常数,则称数列{}n b 是“间等比数列”,q 为“间公比”.已如数列{}nc 中,满足()10,c k k k =≠∈Z ,11120182n n n c c -+⎛⎫=⋅ ⎪⎝⎭,n *∈N ,试问数列{}n c 是否为“间等比数列”,若是,求最大整数....k 使得对于任意n *∈N ,都有1n n c c +>;若不是,说明理由.【解析】(1)证明:1235n n a a n ++=-,n *∈N ,则+122(1)35n n a a n ++=+-,两式相减得:22n n a a +-=,n *∈N ,故数列{}n a 是“间等差数列”,其间公差2d =;(2)(I )2n k =(k *∈N )时:12341()()()3329(237)n n n S a a a a a a n -=++++⋅⋅⋅++=--+⋅⋅⋅+-(35)2n n -=,易得其最小值为18n =时,最小值为18153S =-;(II )21n k =+(k *∈N )时:1234511(1)(34)+()()()+(33)(29)(237)2n n n n n S a a a a a a a a n a ---=++++⋅⋅⋅++=-+-++-=+当17n =时最小,其最小值为17136S a =-;要使其最小值为153-,则136153a --≥,解之得:17a -≥;(3)11120182n n n c c -+⎛⎫=⋅ ⎪⎝⎭;+12120182nn n c c +⎛⎫=⋅ ⎪⎝⎭,两式相除得:212n n c c +=,故{}n c 为“间等比数列”,其“间公比”12q =, ()10,c k k k =≠∈Z ,22018c k=,易求出其通项公式为:121212201812n n nk n c n k --⎧⎛⎫⎪⋅ ⎪⎪⎝⎭=⎨⎪⎛⎫⋅⎪ ⎪⎝⎭⎩为奇数为偶数;1n n c c +>,则数列{}n c 单调递减,那么奇数项,偶数项分别单调递减,故0k >,要使得整个数列{}n c 单调递减,则只需满足Γ21221m mm c c c -+>>,即:222212221201811222m mm k k k --⎛⎫⎛⎫⎛⎫⋅>⋅>⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,k <<,那么k 的最大整数为63.。
上海市宝山区2019届高三一模考试数学试卷2018.12一、填空题1.函数f(x)=sin(-2x)的最小正周期为____________.2.集合U=R,集合A={x|x -3>0},B={x|x +1>0},则B ∩∁U A =___________.3.若复数z 满足(1+i)z=2i(i 是虚数单位),则z =___________.4.方程ln(9x +3x -1)=0的根为___________.5.从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每一个班级至少有一名代表,则各班的代表数有___________种不同的选法.(用数字作答)6关于x, y 的二元一次方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛-510321,则x +y =___________. 7.如果无穷等比数列{a n }所有奇数项的和等于所有项的和的3倍,则公比q =___________. 8函数y=f(x)与y=lnx 的图像关于直线y=-x 对称,则f(x)= _________9已知A(2,3),B(1,4),且21AB =( sin x, cosy),x 、y ∈)2,2(ππ-, 则x +y =___________. 10.将函数y=-21x -的图像绕y 轴旋转一周所得的几何容器的容积是___________.11.章老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在ΔABC 中,a,b,c 分别是角A,B,C 的对边,已知b=22,∠A=45°,求边c 。
显然缺少条件,若他打算补充a 的大小,并使得c 只有一解.那么,a 的可能取值是___________. (只需填写一个合适的答案)12.如果等差数列{a n },{b n }的公差都为d(d ≠0),若满足对于任意n ∈N,都有b n -a n =kd,其中k 为常数,k ∈N *则称它们互为“同宗”数列.已知等差数列{a n }中,首项a 1=1,公差d=2,数列{b n }为数列{a n }的“同宗”数列,若+∞→111(lim b a n 31)1122=++n n b a b a , 则k =___________. 二、选择题13.若等式1+x +x 2+x 3=a 0+a 1(1-x)+a 2 (1-x) 2+a 3(1-x) 3对一切x ∈R 都成立,其中a 0,a 1,a 2,a 3为实常数,则a 0+a 1+a 2+a 3=( )A.2B.-1C.4D.114.“x ∈]2,2[ππ-"是“sin( (arcsin x))=x ”的( )条件 A.充分非必要 B.必要非充分C.充要D.既非充分也非必要15关于函数f(x)=232-x 的下列判断,其中正确的是( )A.函数的图像是轴对称图形B.函数的图像是中心对称图形C.函数有最大值D. 当x>0时,y=f(x)是减函数16设点M,N 均在双曲线C :3422y x -=1上运动,F 1,F 2是双曲线C 的左、右焦点,则|1MF +2MF -|2的最小值为( ) A.32 B.4 C.72 D.以上都不对三、解答题17.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD,正方形ABCD 的边长为2,PA=4,设E 为侧棱PC 的中点(1)求正四棱锥E-ABCD 的体积V;(2)求直线BE 与平面PCD 所成角θ的大小.18.已知函数f(x)=10022cos 112sin 3x x-,将f(x)的图像向左平移α(α>0)个单位得函数y=g(x)的图像 (1)若α=4π,求y=g(x)的单调增区间; (2)若α∈(0, 2π),y=g(x)的一条对称轴为x=12π,求y=g(x)x ∈[0, 2π]的值域.19.某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工人作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y(单位:度)与时间t(单位:小时,t ∈[0,20])近似地满足函数2|13|++-=t b t y 关系,其中,b 为大棚内一天中保温时段的通风量 (1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);(2)若要保持大棚一天中保温时段的最低温度不小于17°C.求大棚一天中保温时段通风量的最小值.20.已知椭圆Г:224y x +=1的左右焦点为F 1,F 2 (1)以F 1为焦点,原点为顶点的抛物线方程;(2)若椭圆Г上的点M 满足∠F 1MF 2=,求M 的纵坐标y M ;(3)设N(0,1),若椭圆T 上存在不同两点P,Q 满足∠PNO=90°,证明直线PQ 过定点,并求该定点坐标.21.如果数列{a n }对于任意n ∈N*,都有a 2+n -a n =d 其中d 为常数,则称数列{a n }是“间等差数列”,d 为“间公差”若数列{a n }满足a 1+n +a n =2n -35,n ∈N *,a 1=a(a ∈R)(1)求证数列{a n }是“间等差数列”,并求间公差d;(2)设S n 为数列{a n }的前n 项和,若S n 的最小值为-153,求实数a 的取值范围;(3)类似地非零数列{b n }对于任意n ∈N,都有nn b b 2+=q,其中q 为常数,则称数列{b n }是“间等比数列”,q 为“间公比”,已知数列{c n }中满足c 1=k(k ≠0,k ∈Z), c n c 1+n =2018(21)1-n ,n ∈N *,试问数列{c n }是否为“间等比数列”,若是,求最大的整数k 使得对于任意n ∈N,都有C n >C 1+n ;若不是,说明理由.、。
上海市宝山区2019届高三一模数学试卷2018.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 函数()sin(2)f x x =-的最小正周期为2. 集合U =R ,集合{|30}A x x =->,{|10}B x x =+>,则U B A =I ð3. 若复数z 满足(1i)2i z +=(i 是虚数单位),则z =4. 方程ln(931)0x x +-=的根为5. 从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每一个班级至少有一 名代表,则各班的代表数有 种不同的选法(用数字作答)6. 关于x 、y 的二元一次方程组的增广矩阵为123015-⎛⎫ ⎪⎝⎭,则x y +=7. 如果无穷等比数列{}n a 所有奇数项的和等于所有项和的3倍,则公比q =8. 函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x =9. 已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =u u u r ,,(,)22x y ππ∈-,则x y += 10.将函数y =y 轴旋转一周所得的几何容器的容积是11. 张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在△ABC 中,a 、b 、c 分别是角A 、B 、C的对边,已知b =45A ∠=︒,求边c .显然缺少条件,若他打算 补充a 的大小,并使得c 只有一解,,那么a 的可能取值是(只需填写一个合适的答案)12. 如果等差数列{}n a 、{}n b 的公差都为d (0d ≠),若满足对于任意n ∈*N ,都有n n b a kd -= ,其中k 为常数,k ∈*N ,则称它们互为“同宗”数列,已知等差数列{}n a 中, 首项11a =,公差2d =,数列{}n b 为数列{}n a 的“同宗”数列,若11221111lim()3n n n a b a b a b →∞++⋅⋅⋅+=,则k =二. 选择题(本大题共4题,每题5分,共20分)13. 若等式232301231(1)(1)(1)x x x a a x a x a x +++=+-+-+-对一切x ∈R 都成立,其中0a 、1a 、2a 、3a 为实常数,则0123a a a a +++=( )A. 2B. 1-C. 4D. 114. “[,]22x ππ∈-”是“sin(arcsin )x x =”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分又非必要15. 关于函数23()2f x x =-的下列判断,其中正确的是( ) A. 函数的图像是轴对称图形 B. 函数的图像是中心对称图形C. 函数有最大值D. 当0x >时,()y f x =是减函数16. 设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则 12|2|MF MF MN +-u u u u r u u u u r u u u u r 的最小值为( )A. B. 4C. D. 以上都不对三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,4PA =, 设E 为侧棱PC 的中点.(1)求正四棱锥E ABCD -的体积V ;(2)求直线BE 与平面PCD 所成角θ的大小.18.已知函数sin 21()cos 2201x f x x -=,将()f x 的图像向左移α(0α>)个单位得函数()y g x =的图像.(1)若4πα=,求()y g x =的单调递增区间;(2)若(0,)2πα∈,()y g x =的一条对称轴为12x π=,则()y g x =,[0,]2x π∈的值域.19. 某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为 工人作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时 间t (单位:小时,[0,20]t ∈)近似地满足函数关系|13|2b y t t =-++,其中,b 为大棚内 一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度 (精确到0.1C ︒);(2)若要保持大棚一天中保温时段的最低温度不小于17C ︒,求大棚一天中保温时段通风 量的最小值.20. 已知椭圆22:14x y Γ+=的左、右焦点为1F 、2F . (1)求以1F 为焦点,原点为顶点的抛物线方程;(2)若椭圆Γ上点M 满足123F MF π∠=,求M 的纵坐标M y ;(3)设(0,1)N ,若椭圆Γ上存在两不同点P 、Q 满足90PNQ ∠=︒,证明直线PQ 过定点,并求该定点的坐标.21. 如果数列{}n a 对任意n ∈*N ,都有2n n a a d +-=,其中d 为常数,则称数列{}n a 是“间等差数列”,d 为“间公差”,若数列{}n a 满足1235n n a a n ++=-,n ∈*N ,1a a =(a ∈R ).(1)求证:数列{}n a 是“间等差数列”,并求间公差d ;(2)设n S 为数列{}n a 的前n 项和,若n S 的最小值为153-,求实数a 的取值范围;(3)类似地:非零数列{}n b 对任意n ∈*N ,都有2n nb q b +=,其中q 为常数,则称数列{}n b 是“间等比数列”,q 为“间公比”,已知数列{}nc 中,满足1c k =(0k ≠,k ∈Z ),1112018()2n n n c c -+=⋅,n ∈*N ,试问数列{}n c 是否为“间等比数列”,若是,求最大的整 数k 使得对于任意n ∈*N ,都有1n n c c +>,若不是,说明理由.参考答案一. 填空题1.π2.(]1,3-3.1i -4.0x =5.206.8-7.23-8.()x f x e -=- 9.6π或2π- 10.23π 11.2a =或a ≥ 12.32二. 选择题 13. D 14. B 15. A 16. B三. 解答题17.(1)83(2)arcsin18.(1)2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)⎡-⎣ 19.(1)203,约等于6.7C ︒ (2)25620.(1)2y =- (2)13M y =± (3)30,5⎛⎫- ⎪⎝⎭ 21.(1)2d = (2)17a ≥- (3)是;4563k ≤≤,k ∈Z ,最大正数63。
2019一模集合命题不等式专题一、解答题(宝山区一模2)集合U R =,集合{}{}30,10A x x B x x =->=+>,则U B C A =__________. 答案:(]1,3- (虹口区一模2)不等式的解集为________. 【答案】(虹口区一模3)设全集,若,则________. 【答案】(浦东新区一模1) 已知全集R U =,集合(][)12,,=-∞+∞A ,则U=A ______________. 答案:()12,(青浦区一模1)已知集合{1,0,1,2}A =-,(,0)B =-∞,则A B =答案: {1}-(青浦区一模2)写出命题“若22am bm <,则a b <”的逆命题 答案: 若a b <,则22am bm < (青浦区一模3)不等式2433(1)12()2x x x ---<的解集为 答案:(2,3)-(徐汇区一模2)已知全集U R =,集合{}2|,,0A y y x x R x ==∈≠,则U C A =_________. 答案:(],0-∞(徐汇区一模3)若实数,x y 满足1xy =,则222x y +的最小值为_________.答案:(杨浦区一模1)设全集{1,2,3,4,5}U =,若集合{3,4,5}A =,则UA =21xx >-1,12⎛⎫⎪⎝⎭U R ={2,1,0,1,2}A =--{}2|log (1)B x y x ==-()U A C B ={}1,2答案: {1,2}(杨浦区一模5)若实数x 、y 满足221x y +=,则xy 的取值范围是 答案: 11[,]22-(杨浦区一模11)当0x a <<时,不等式22112()x a x +≥-恒成立,则实数a 的最大值为 答案: 2(长宁区一模1)已知集合{1,2,3,4}A =,{2,4,6}B =,则A B =答案:}6,4,3,2,1{(长宁区一模12) 已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123||||||||||||x a x a x a x b x b x b -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素 答案:3(崇明区一模2)已知集合{}{}|12,1,0,1,2,3A x x B =-<<=-,则=A B ⋂ . (松江区一模1) 设集合{|1}A x x =>,{|0}3xB x x =<-,则A B = 答案: (1,3)(虹口区一模13)已知,则“”是“”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】A(宝山区一模14)“,22x ππ⎡⎤∈-⎢⎥⎣⎦”是“()sin arcsin x x =”的( )条件..A 充分非必要 .B 必要非充分 .C 充要 .D 既非充分也非必要(浦东新区一模13) “14<a ”是“一元二次方程20-+=x x a 有实数解”的( ) (A )充分非必要条件 (B )充分必要条件 (C )必要非充分条件 (D )非充分非必要条件x R ∈1233x -<1x <答案: A(长宁区一模13)已知x ∈R ,则“0x ≥”是“3x >”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件 答案:B(崇明区一模13)若b a <<0,则下列不等式恒成立的是( ).A ba 11> .B b a >- .C 22b a > .D 33b a < (崇明区一模14 )“2<p ”是“关于x 的实系数方程012=++px x 有虚数根”的( ).A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件(松江区一模14)若0a >,0b >,则x y a b x y a b +>+⎧⎨⋅>⋅⎩是x ay b>⎧⎨>⎩的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分又非必要三、解答题(长宁区一模17) 求下列不等式的解集: (1)|23|5x -<;(2)442120x x-⋅->答案:(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由5|32|<-x 得 5325<-<-x ,……………………4分 解得 41<<-x .所以原不等式的解集是 )4,1(-.…………………………………6分 (2)原不等式可化为()()22260x x +->, ……………………4分 因为220x+>,所以62>x, ……………………………………5分 解得 6log 2>x . ………………………………………7分所以原不等式的解集是()2log 6,+∞. ……………………………8分2019一模函数专题一、填空题(宝山区一模4)方程()ln 9310x x +-=的根为__________. 答案:0x =(宝山区一模8)函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x =__________. 答案:()x f x e -=-(宝山区一模10)将函数y =的图像绕y 轴旋转一周所得的几何容器的容积是__________. 答案:23π(虹口区一模4)设常数,若函数的反函数的图像经过点,则__________. 【答案】(虹口区一模6)函数的值域为__________.【答案】(虹口区一模12)若直线与曲线恰有两个公共点,则实数的取值范围为________. 【答案】(浦东新区一模5)若函数()=y f x 的图像恒过点01(,),则函数13()-=+y f x 的图像一定经过定点____. 答案:()13,(浦东新区一模10)已知函数()2||1=+-f x x x a 有三个不同的零点,则实数a 的取值范围为_____.答案:(,-∞a R ∈3()log ()f x x a =+()2,1a =88()([2,8])f x x x x=+∈y kx =2|log (2)|2|1|x y x +=--k (,0]{1}-∞(浦东新区一模12)已知函数()2,24161,22-⎧≥⎪+⎪=⎨⎛⎫⎪< ⎪⎪⎝⎭⎩x ax x x f x x ,若对任意的[)12,∈+∞x ,都存在唯一的()2,2∈-∞x ,满足()()12=f x f x ,则实数a 的取值范围为_________. 答案:[)2,6∈-a(普陀区一模1)函数()2f x x=的定义城为 . 答案: (,0)(0,1]-∞(普陀区一模3)设11{,,1,2,3}32α∈--,若()f x x α=为偶函数,则α= . 答案: 2-(普陀区一模12)设a 为常数,记函数()1log 2axf x a x=+- (0a >且1,0a x a ≠<< )的反函数为()1f x -,则1121f a -⎛⎫+⎪+⎝⎭111232++=212121a f f f a a a ---⎛⎫⎛⎫⎛⎫+⋅⋅⋅ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭.答案:2a(青浦区一模11)已知函数()2f x +=,当(0,1]x ∈时,2()f x x =,若在区间[1,1]-内()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是(徐汇区一模9)已知函数()f x 是以2为周期的偶函数,当01x ≤≤时,()lg(1)f x x =+,令函数[]()()()1,2g x f x x =∈,则()g x 的反函数为_________. 答案:()[]1310,0,lg2x gx x -=-∈(徐汇区一模11)已知R λ∈,函数24,()43,x x f x x x x λλ-≥⎧=⎨-+<⎩,若函数()f x 恰有2个零点,则λ的取值范围是_________. 答案:(]()1,34+∞,(杨浦区一模8)若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆,则实数a 的取值范围为答案: [1,0]-(长宁区一模6) 已知幂函数()a f x x =的图像过点2,则()f x 的定义域为 答案:),0(+∞(长宁区一模8) 已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是答案:)2,1[(崇明区一模9)若函数()1log 2+-=x ax x f 的反函数的图像过点()73,-,则=a .(崇明区一模11)设()x f 是定义在R 上的以2为周期的偶函数,在区间[]10,上单调递减,且满足()()22,1==ππf f ,则不等式组()⎩⎨⎧≤≤≤≤2121x f x 的解集为 .(松江区一模3)已知函数()y f x =的图像与函数xy a =(0,1)a a >≠的图像关于直线y x =对称,且点(4,2)P 在函数()y f x =的图像上,则实数a =答案:2(松江区一模9)若|lg(1)|0()sin 0x x f x x x ->⎧=⎨≤⎩,则()y f x =图像上关于原点O 对称的点共有 对 答案: 4(松江区一模12)已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和(1)(1)4f x f x +⋅-=对任意的x ∈R 都成立,若当[0,1]x ∈时,()f x 的值域为[1,2],则当[100,100]x ∈-时,函数()f x 的值域为 答案:二、选择题(虹口区一模15)已知函数,,若函数恰有两个零点,则实数的取值范围为( ) A.B.C.D.【答案】B(宝山区一模15)关于函数()232f x x =-的下列判断,其中正确的是( ) .A 函数的图像是轴对称图形 .B 函数的图像是中心对称图形 .C 函数有最大值 .D 当0x >时,()y f x =是减函数答案:A(普陀区一模16)设()f x 是定义在R 上的周期为4的函数,且()2sin 2,012log ,14x x f x x x π≤≤⎧=⎨<<⎩,记()()g x f x a =-,若102a <<,则函数()g x 在区间[]-45,上零点的个数是( ) .A 5 .B 6 .C 7 .D 8 答案:D(青浦区一模16)记号[]x 表示不超过实数x的最大整数,若2()[]30x f x =+,则(1)(2)(3)(29)(30)f f f f f +++⋅⋅⋅++的值为( )A. 899B. 900C. 901D. 902(徐汇区一模15)对于函数()y f x =,如果其图像上的任意一点都在平面区域{}(,)|()()0x y y x y x -+≤内,则称函数()f x 为“蝶型函数”,已知函数:①sin y x =;②y = )100100[2,2]-2()1f x ax x =-+1, 1(), 1 1 1, 1x g x x x x -≤-⎧⎪=-<<⎨⎪≥⎩()()y f x g x =-a (0,)+∞(,0)(0,1)-∞1(,)(1,)2-∞-+∞(,0)(0,2)-∞.A ①、②均不是“蝶型函数” .B ①、②均是“蝶型函数”.C ①是“蝶型函数”;②不是“蝶型函数 .D ①不是“蝶型函数”;②是“蝶型函数” 答案:B(杨浦区一模16)已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( )A. [0,4)B. [1,4)-C. [3,5]-D. [0,7) 答案:A(杨浦区一模15)已知x x f θsin log )(=,(0,)2πθ∈,设sin cos ()2a f θθ+=,b f =,sin 2()sin cos c f θθθ=+,则a 、b 、c 的大小关系是( )A. a c b ≤≤B. b c a ≤≤C. c b a ≤≤D. a b c ≤≤ 答案:D(杨浦区一模13)下列函数中既是奇函数,又在区间[1,1]-上单调递减的是( ) A. ()arcsin f x x = B. ()lg ||f x x = C. ()f x x =- D. ()cos f x x = 答案: C(长宁区一模16)某位喜欢思考的同学在学习函数的性质时提出了如下两个命题: 已知函数()y f x =的定义域为D ,12,x x D ∈,① 若当12()()0f x f x +=时,都有120x x +=,则函数()y f x =是D 上的奇函数; ② 若当12()()f x f x <时,都有12x x <,则函数()y f x =是D 上的增函数. 下列判断正确的是( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ①和②都是假命题D. ①是假命题,②是真命题 答案:C(崇明区一模16)函数()(),,22+-==x x x g x x f 若存在,,,,,⎥⎦⎤⎢⎣⎡∈⋯29021n x x x 使得 ()()()()()()()(),n n n n x f x g x g x g x g x f x f x f +⋯++=++⋯++--121121则n 的最大值为( ).A 11 .B 13 .C 14 .D 18三、解答题(宝山区一模19)某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工人作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时间t (单位:小时,[]20,0∈t )近似地满足函数213++-=t bt y 关系,其中,b 为大棚内一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1C ︒);(2)若要保持大棚一天中保温时段的最低温度不小于17C ︒.求大棚一天中保温时段通风最的最小值. 答案:(1)203(2)256(虹口区一模18)已知函数是定义在上的奇函数. (1)求实数的值及函数的值域;(2)若不等式在上恒成立,求实数的取值范围.【解析】(1)由解得,反之时, ,符合题意,故据此,,即值域为 ⑵在显然是单调增函数,,所以,故,令,则随的增大而增大, 最大值为,所求范围是16()1x f x a a+=-+(0,1)a a >≠R a ()f x ()33x t f x ⋅≥-[1,2]x ∈t (0)0f =3a =3a =16()133x f x +=-+23113131x x x -=-=++3131()()3131x x x x f x f x -----==-=-++3a =1()301()x f x f x +=>-()(1,1)f x ∈-(1,1)-32()131f x =-+[1,2]x ∈13[,]25x ∈31(33)31x xx t +≥-⋅-max31(33)31x x x t ⎡⎤+≥-⋅⎢⎥-⎣⎦31,[2,8]xm m -=∈31(33)(2)31x xx m +-⋅--24m m m m+⋅=-m 152∴15[,)2+∞(浦东新区一模19)(本小题满分14分,第1小题满分6分,第2小题满分8分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验....值.不变); ③超过5小时为不健康时间,累积经验值.....开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ;若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.解:答案:(1)22016,03()85,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩ (写对一段得1分,共3分)6t =时,(6)35E = (6分) (2)03t <≤时,16()=20aH t t t++ (8分) 16()244≥⇒+≥aH t t t①0319[,]4164a ⎧<≤⎪⇒∈⎨≥⎪⎩ (10分) ②39(,)1616343a a ⎧>⎪⇒∈+∞⎨+≥⎪⎩ (12分)综上,1[,)4a ∈+∞ (14分)(普陀区一模21)已知函数()2xf x =(x ∈R ),记()()()g x f x f x =--.(1)解不等式:(2)()6f x f x -≤;(2)设k 为实数,若存在实数0(1,2]x ∈,使得200(2)()1g x k g x =⋅-成立,求k 取值范围;(3)记()(22)()h x f x a f x b =++⋅+(其中a 、b 均为实数),若对于任意[0,1]x ∈,均 有1|()|2h x ≤,求a 、b 的值. 答案:(1)2(,log 3]-∞;(2)27119[,)2259;(3)12a =-,172b =.(青浦区一模19)对于在某个区间[,)a +∞上有意义的函数()f x ,如果存在一次函数()g x kx b =+使得对于任意的[,)x a ∈+∞,有|()()|1f x g x -≤恒成立,则称函数()g x 是函数()f x 在区间[,)a +∞上的弱渐近函数. (1)若函数()3g x x =是函数()3mf x x x=+在区间[4,)+∞上的弱渐近函数,求实数m 的取值范围;(2)证明:函数()2g x x =是函数()f x =[2,)+∞上的弱渐近函数. 答案:(1)[4,4]-;(2)略.(徐汇区一模18)已知函数()22ax f x x -=+,其中a R ∈. (1)解关于x 的不等式()1f x ≤-;(2)求a 的取值范围,使()f x 在区间()0+∞,上是单调减函数.答案:(1)1,2;1,20;1,02a x a x a x x =-≠->--<≤<-≥<-或 (2)1a <-(杨浦区一模19) 上海某工厂以x 千克/小时的速度匀速生产某种产品,每一小时可获得的利润是3(51)x x+-元,其中110x ≤≤.(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.答案:(1)[3,10];(2)6x =,最大值为4575.(长宁区一模20)已知函数2()1f x x mx =-++,()2sin()6g x x πω=+.(1)若函数()2y f x x =+为偶函数,求实数m 的值; (2)若0ω>,2()()3g x g π≤,且函数()g x 在[0,]2π上是单调函数,求实数ω的值; (3)若1ω=,若当1[1,2]x ∈时,总有2[0,]x π∈,使得21()()g x f x =,求实数m 的取值 范围.答案:(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)解:(1)设()()2h x f x x =+,则()()221h x x m x =-+++由于()h x 是偶函数,所以对任意R ∈x ,()()h x h x -=成立.……2分 即 1)2(1))(2()(22+++-=+-++--x m x x m x 恒成立.即 0)2(2=+x m 恒成立, …………………………………3分 所以 02=+m ,解得 2-=m .所以所求实数m 的值是 2-=m . …………………………………4分 (2)由()2()3g x g π≤, 得22,362k k Z πππωπ⋅+=+∈ ,即132k ω=+()k Z ∈ ………2分 当[0,]2x π∈时,[,]6626x ππωππω+∈+()0ω>,因为sin y x =在区间[,]62ππ的单调递增, 所以262ωπππ+≤,再由题设得203ω<<…………………………5分 所以12ω=. ……………………………………6分 (3)设函数()f x 在[]1,2上的值域为A ,()g x 在[]0,π上的值域为B , 由题意和子集的定义,得A B ⊆.………………………………………2分 当],0[π∈x 时,]67,6[6πππ∈+x ,]2,1[)(-∈x g . ………………3分 所以当[]1,2x ∈时,不等式2112x mx -≤-++≤恒成立, 由[]1,1,2m x x x≤+∈恒成立,得2m ≤, 由[]2,1,2m x x x≥-∈恒成立,得1m ≥, 综上,实数m 的取值范围为[]1,2 . ………………6分(崇明区一模19)(本题满分14分,本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分)某创业投资公司拟投资开发某种新能源产品,估计能活得25万元1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[]25,1600x ∈时,①()f x 是增函数;②()75f x ≤恒成立;(3)()5xf x ≤恒成立.) (1) 判断函数()1030xf x =+是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数()()51g x a =≥符合公司奖励方案函数模型要求,求实数a 的取值范围. (松江区一模18)已知函数2()21x f x a =-+(常数a ∈R ) (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,若对任意的[2,3]x ∈,都有()2x mf x ≥成立,求m 的最大值. 答案:解:(1)若)(x f 为奇函数,必有(0)10f a =-= 得1a =,……………………2分当1a =时,221()12121x x x f x -=-=++,2112()()2121x xx x f x f x -----===-++∴当且仅当1a =时,)(x f 为奇函数 ………………………4分又2(1)3f a =-,4(1)3f a -=-,∴对任意实数a ,都有(1)(1)f f -≠∴)(x f 不可能是偶函数 ………………………6分(2)由条件可得:222()2(1)(21)32121x x x x x m f x ≤⋅=-=++-++恒成立, ……8分记21x t =+,则由[2,3]x ∈ 得[5,9]t ∈, ………………………10分此时函数2()3g t t t=+-在[5,9]t ∈上单调递增, ………………………12分所以()g t 的最小值是12(5)5g =, ………………………13分所以125m ≤ ,即m 的最大值是125 ………………………14分2019一模三角专题一、填空题(宝山区一模1)函数()()sin 2f x x =-的最小正周期为___________. 答案:π(宝山区一模9)已知()()2,3,1,4A B ,且()1sin ,cos ,,,222AB x y x y ππ⎛⎫=∈- ⎪⎝⎭,则x y +=__________. 答案:62or ππ-(宝山区一模11)章老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知45b A =∠=︒,求边c 。
2019-2020学年上海市宝山区高三一模考试数学试卷2019.12一、填空题(本大题共12题,每题4分,127-每题5分,共54分)1. 若i i z 2)1(=+ (i 是虚数单位),则=||z . 【答案】2 【解析】i ii z +=+=112,得到2=||z 2.已知5124=--λλ,则=λ . 【答案】3【解析】由行列式的运算得:524=---)()(λλ,即3=λ3.函数)1(31<=-x y x 的反函数是 .【答案】1log 3+=xy ,]1,0(∈x【解析】y x ,互换,13-=y x ⇒1log 3+=x y ]1,0(∈x 4.2019年女排世界杯共有12支参赛球队,赛制采用12支队伍单循环,两两捉对厮杀一场定胜负,依次进行,则此次杯赛共有 场球赛.【答案】66【解析】单循环66212=C 5.以抛物线x y 62-=的焦点为圆心,且与抛物线的准线相切的圆的方程是 . 【答案】9)23(22=++y x 【解析】焦点)0,23(-,半径3==p r 6.在)1()1(35x x +-的展开式中,3x 的系数为 .【答案】9-【解析】335532359)(1x x C x C -=+-⋅7.不等式63|2|22-->--x x x x 的解集是 .【答案】),4(-∞-【解析】63222-->+-x x x x ⇒4->x8.已知方程)(022R k kx x ∈=+-的两个虚根为21,x x ,若2||21=-x x ,则=k .【答案】2± 【解析】228||221±=⇒=-=∆-=-k k x x9.已知直线l 过点)0,1(-且与直线02=-y x 垂直,则圆08422=+-+y x y x 与直线l 相交所得的弦长为 . 【答案】152【解析】直线方程为012=++y x ,圆心到直线的距离5=d ⇒222||d r AB -=10.有一个空心钢球,质量为g 142,测得外直径为cm 5,则它的内直径是 cm .【答案】5.4 【解析】由题意得,142]34)25(34[9.733=⋅-⋅x ππ⇒5.42≈x , 11. 已知{}n a 、{}n b 均是等差数列,n n n b a c ⋅=,若{}n c 前三项是7、9、9,则=10c . 【答案】47-【解析】z yn xn c n ++=2,⎪⎩⎪⎨⎧=++=++=++9399247z y x z y x z y x ⇒⎪⎩⎪⎨⎧==-=351z y x ⇒352++-=n n c n ,4710-=c 12.已知0>>b a ,那么,当代数式)(162b a b a -+ 取最小值时,点),(b a P 的坐标为 . 【答案】)2,22( 【解析】22()()24b a b a b a b +--≤=Q 1664)(16222≥+≥-+∴aa b a b a 当且仅当⎩⎨⎧=-=82a b a b 即⎩⎨⎧==222b a 时取等号,可求得点P 坐标 二、选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.13.若函数1()ln f x x a x=-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) 【A 】01a << 【B 】11a e<< 【C 】 【D 】 【答案】C 【解析】由零点存在性定理得:1(1)(1)0a a e -+-+<解得:111a e -<< 14.下列函数是偶函数,且在[0,)+∞上单调递增的是( )【A 】2()log (41)x f x x =+- 【B 】()2cos f x x x =-1e -1<a <11e +1<a <1【C 】221(0)0(0))(x x x f x x +≠=⎧⎪=⎨⎪⎩ 【D 】lg ()10x f x = 【答案】A 【解析】222411()log (41)log log (2)22x xx x x f x x +=+-==+,()()f x f x ∴-=∴是偶函数,由复合函数单调性知()f x 在[0,)+∞上单调递增,∴ 选A15.已知平面,,αβγ两两垂直,直线,,a b c 满足,,a b c αβγ⊆⊆⊆,则直线,,a b c 不可能满足的是( )【A 】两两垂直 【B 】两两平行 【C 】两两相交 【D 】两两异面【答案】B【解析】可以借助墙角模型16.提鞋公式也叫李善兰辅助角公式,其正弦型如下:sin cos ),a x b x x ϕπϕπ+=+-<≤下列判断错误的是( )【A 】当0,0a b >>时,辅助角arctanb aϕ= 【B 】当0,0a b ><时,辅助角arctan b aϕπ=+ 【C 】当0,0a b <>时,辅助角arctan b aϕπ=+ 【D 】当0,0a b <<时,辅助角arctan b aϕπ=- 【答案】B 【解析】sin cos )a x b x x x x ϕ⎫+==+⎪⎭其中cos b aϕϕϕ===; 当0,0a b ><时,cos 0,sin 0,ϕϕϕ><∴∈Q 第四象限,所以B 错。
上海市宝山区2018届高三一模数学试卷
2018.12
一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)
1. 函数()sin(2)f x x =-的最小正周期为
2. 集合U =R ,集合{|30}A x x =->,{|10}B x x =+>,则U B
A =ð 3. 若复数z 满足(1i)2i z +=(i 是虚数单位),则z =
4. 方程ln(931)0x x +-=的根为
5. 从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每一个班级至少有一 名代表,则各班的代表数有 种不同的选法(用数字作答)
6. 关于x 、y 的二元一次方程组的增广矩阵为123015-⎛⎫ ⎪⎝⎭
,则x y +=
7. 如果无穷等比数列{}n a 所有奇数项的和等于所有项和的3倍,则公比q =
8. 函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x =
9. 已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =,,(,)22
x y ππ∈-,则x y += 10.
将函数y =y 轴旋转一周所得的几何容器的容积是
11. 张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在△ABC 中,a 、b 、c 分别是角A 、B 、C
的对边,已知b =45A ∠=︒,求边c .显然缺少条件,若他打算 补充a 的大小,并使得c 只有一解,,那么a 的可能取值是
(只需填写一个合适的答案)
12. 如果等差数列{}n a 、{}n b 的公差都为d (0d ≠),若满足对于任意n ∈*N ,都有n n b a kd -= ,其中k 为常数,k ∈*N ,则称它们互为“同宗”数列,已知等差数列{}n a 中, 首项11a =,公差2d =,数列{}n b 为数列{}n a 的“同宗”数列,若
11221111lim()3
n n n a b a b a b →∞++⋅⋅⋅+=,则k =
二. 选择题(本大题共4题,每题5分,共20分)
13. 若等式232301231(1)(1)(1)x x x a a x a x a x +++=+-+-+-对一切x ∈R 都成立,其中
0a 、1a 、2a 、3a 为实常数,则0123a a a a +++=( )
A. 2
B. 1-
C. 4
D. 1
14. “[,]22
x ππ∈-”是“sin(arcsin )x x =”的( )条件 A. 充分非必要 B. 必要非充分 C. 充要 D. 既非充分又非必要
15. 关于函数23()2
f x x =-的下列判断,其中正确的是( ) A. 函数的图像是轴对称图形 B. 函数的图像是中心对称图形
C. 函数有最大值
D. 当0x >时,()y f x =是减函数
16. 设点M 、N 均在双曲线22
:143
x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则 12|2|MF MF MN +-的最小值为( )
A. B. 4
C. D. 以上都不对
三. 解答题(本大题共5题,共14+14+14+16+18=76分)
17. 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,4PA =, 设E 为侧棱PC 的中点.
(1)求正四棱锥E ABCD -的体积V ;
(2)求直线BE 与平面PCD 所成角θ的大小.
18.
已知函数sin 21
()cos 2201
x f x x -=,将()f x 的图像向左移α(0α>)个单位得函数
()y g x =的图像.
(1)若4π
α=,求()y g x =的单调递增区间;
(2)若(0,)2πα∈,()y g x =的一条对称轴为12x π
=,则()y g x =,[0,]2
x π
∈的值域.
19. 某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为 工人作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时 间t (单位:小时,[0,20]t ∈)近似地满足函数关系|13|2
b y t t =-+
+,其中,b 为大棚内 一天中保温时段的通风量.
(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度 (精确到0.1C ︒);
(2)若要保持大棚一天中保温时段的最低温度不小于17C ︒,求大棚一天中保温时段通风 量的最小值.
20. 已知椭圆2
2:14
x y Γ+=的左、右焦点为1F 、2F . (1)求以1F 为焦点,原点为顶点的抛物线方程;
(2)若椭圆Γ上点M 满足123F MF π∠=
,求M 的纵坐标M y ; (3)设(0,1)N ,若椭圆Γ上存在两不同点P 、Q 满足90PNQ ∠=︒,证明直线PQ 过定点,并求该定点的坐标.
21. 如果数列{}n a 对任意n ∈*N ,都有2n n a a d +-=,其中d 为常数,则称数列{}n a 是“间等差数列”,d 为“间公差”,若数列{}n a 满足1235n n a a n ++=-,n ∈*N ,1a a =(a ∈R ).
(1)求证:数列{}n a 是“间等差数列”,并求间公差d ;
(2)设n S 为数列{}n a 的前n 项和,若n S 的最小值为153-,求实数a 的取值范围;
(3)类似地:非零数列{}n b 对任意n ∈*N ,都有2n n
b q b +=,其中q 为常数,则称数列{}n b 是“间等比数列”,q 为“间公比”,已知数列{}n
c 中,满足1c k =(0k ≠,k ∈Z ),
1112018()2
n n n c c -+=⋅,n ∈*N ,试问数列{}n c 是否为“间等比数列”,若是,求最大的整 数k 使得对于任意n ∈*N ,都有1n n c c +>,若不是,说明理由.
参考答案
一. 填空题
1.π
2.(]1,3-
3.1i -
4.0x =
5.20
6.8-
7.23
-
8.()x f x e -=- 9.
6π或2π- 10.23π 11.2a =或a ≥ 12.32
二. 选择题 13. D 14. B 15. A 16. B
三. 解答题
17.(1)83
(2)arcsin
18.(1)2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣
⎦ (2)⎡-⎣ 19.(1)203
,约等于6.7C ︒ (2)256
20.(1)2y =- (2)13M y =± (3)30,5⎛⎫- ⎪⎝
⎭ 21.(1)2d = (2)17a ≥- (3)是;4563k ≤≤,k ∈Z ,最大正数63。