当前位置:文档之家› 连续时间信号傅里叶变换及调制定理

连续时间信号傅里叶变换及调制定理

连续时间信号傅里叶变换及调制定理
连续时间信号傅里叶变换及调制定理

乐山师范学院学生实验报告

实验课程名称: matlab 与信号系统实验 实验日期:2014年 月 日 姓名 学号 同组人 班级 系(院) 专业 级 班 指导老师

一、实验项目名称

连续时间信号傅里叶变换及调制定理

二、实验目的

1.学会用MA TLAB 求符号运算法的傅立叶正反变换; 2. 理解调制对信号频谱的影响

三、实验主要仪器设备仪器、器材、软件等

PC 机与matlab 软件

四、实验原理 见指导书

五、实验内容、步骤

1.求信号)()(t e t f t

ε-=的频谱函数,并分别作出原函数与频谱函数的波形。 2.求信号2

)1(2)(ωω

ωj j F +=

的原函数,并分别作出原函数与频谱函数的波形。

3.设信号)100sin()(t t f π=,载波)(t y 为频率为400Hz 的余弦信号。试用MATLAB 实现调幅信号)(t y ,并观察)(t y 的频谱和)(t f 的频谱,以及两者在频域上的关系。

4.设),10cos(

)()(),1()1()(1t t f t f t u t u t f π=--+=,试用MATLAB 画出)(),(1t f t f 的时域波形及其频谱,并观察傅里叶变换的频移特性。

六、实验记录(数据、现象、报表、软件、图象等) 1、

syms t w;

f=exp(-1*t).*heaviside(t); y=fourier(f);

y=simplify(y); subplot(121); ezplot(f,[-3,3]); subplot(122); ezplot(w,y,[-2,2]);

-2

02

0.10.20.30.40.50.60.70.80.9t

exp(-t) heaviside(t)

-2

-1

01

2

-3-2

-101

2

34

x

y

x = w, y = 1/(1+i w)

2、

syms t w ;

ft=ifourier((2*w/(1+i*w)^2),t); y=ifourier(ft); y=simplify(y); subplot(121); ezplot(real(ft)); subplot(122); ezplot(imag(ft));

-5

05

-1

-0.8-0.6-0.4-0.200.20.40.60.81

t

i exp(-t) heaviside(t) (t-1)-i conj(exp(-t) heaviside(t) (t-1))0

2

4

6

-0.6

-0.5-0.4-0.3-0.2-0.100.10.20.3

t

-1/2 i (2 i exp(-t) heaviside(t) (t-1)+2 i conj(exp(-t) heaviside(t) (t-1)))

3、

syms t w;

f=sin(100*pi*t)/t; y=fourier(f); subplot(121);

ezplot(y,[-210*pi,210*pi]); f1=f*cos(800*pi*t); y1=fourier(f1); subplot(122);

ezplot(y1,[-910*pi,910*pi]);

-500

500

00.51

1.52

2.53

3.5

w

π (heaviside(w+100 π)-heaviside(w-100 π))-2000-1000

010*******

0.20.4

0.6

0.811.21.4

1.6

w

1/2 π (-heaviside(-w-900 π)+heaviside(w-700 π)+heaviside(-w-700 π)-heaviside(w-900 π))

4、

syms t w;

f=heaviside(t+1)-heaviside(t-1); y=fourier(f); y=simplify(y); subplot(121); ezplot(f,[-3,3]); subplot(122); ezplot(y,[-8,8]);

-2

02

0.2

0.4

0.6

0.81

t

heaviside(t+1)-heaviside(t-1)

-5

05

-0.5

0.5

1

1.5

2

w

2/w sin(w)

syms t w;

f=heaviside(t+1)-heaviside(t-1); y1=f.*cos(10*pi*t); y=fourier(y1); y=simplify(y); subplot(121); ezplot(f,[-3,3]); subplot(122); ezplot(y,[-8,8]);

-2

02

0.2

0.4

0.6

0.8

1

t

heaviside(t+1)-heaviside(t-1)

-5

05

-0.015

-0.01

-0.005

0.005

0.01

w

2 w sin(w)/(w 2-100 2)

傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用 姓名董柱班级电气工程及其自动化学号1109141013 摘要: 傅里叶变换是一种特殊的积分变换。通过傅里叶变换把信号的从时域变换到频域研究,采用频域法较之经典时域的方法有很多突出的优点,虽然傅里叶分析不是信息科学与技术领域中唯一的变换域方法,但是不得不承认,在此领域中,傅里叶变换分析始终有着广泛的应用,通过傅里叶变换实现信号的滤波,调制,抽样是傅里叶变换在信号处理中最主要的作用。通过对信号的调制可以将信号的低频成分调制到高频,实现频谱搬移,减少马间串扰,提高抗噪声新能,有利于信号的远距离传输,另外,对信号采样可以使连续信号离散化,有利于用计算机对信号进行处理,总之,傅里叶变换在信号处理中有着非常重要的作用。傅里叶变换是学习其他频域变换的基础。 关键词: 傅里叶变换,时域,频域,信号处理,信息科学与技术,滤波,调制,抽样。 一傅里叶变换 1.定义 f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 傅里叶逆变换 2.分类 连续傅立叶变换:一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅立叶变换”。“连续傅立叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = \mathcal^[F(ω)] = \frac{\sqrt{2π}} \int\limits_{-\infty}^\infty F(ω)e^{iωt}\,dω.

Chirp信号的傅里叶变换的特征比较.

Chirp信号的傅里叶变换的特征比较 Chirp信号即线性调频信号是瞬时频率在某个范围内随时间变化的正弦波,因其良好的频带利用率,具有较强的抗干扰、抗多途效应和抗多普勒衰减以及良好的频带利用率等优点,因此在通信、声呐、雷达等领域具有广泛的应用。本文就瞬时频率范围(信号的调频宽度)和信号的持续时间(信号的周期)对傅里叶变换后的chirp函数的频谱函数的影响做出讨论,运用MATLAB仿真分析比较。 一.信号的调频宽度上下限对频谱函数的影响 1)高频宽度300情况下的频谱函数。信号的采样频率为43000,扫描时间为0.05,初始频率设为19700,结束频率位置为20000。 2)低频宽度300情况下的频谱函数。信号的采样频率为2000,信号的持续时间为0.05,初始频率设为40,结束频率设置为340。 由上面两幅图可以看出,当它们满足,幅度谱的大小基本都在 0.01和0.015之间,这是因为它们的调频上下限之差相同都是300,且时间周 期都为0.05。由公式可知,幅度与信号的调频宽度(表示傅里叶变换后的频带宽度)和时间周期有关。 二.信号的调频宽度对频谱函数的影响 1)高频宽度10000情况下的频谱函数。信号的采样频率为48000,扫描时间为0.05,初始频率设为10000,结束频率位置为20000。

2)低频宽度80情况下的频谱函数。信号的采样频率为1000,信号的持续时间为0.05,初始频率设为40,结束频率设置为120。 上面两图在频带宽度内的幅度谱差异很明显,这是因为只有当时,近似程度才更高。 三.信号的持续时间对频谱函数的影响 1)低频宽度80情况下的频谱函数。信号的采样频率为1000,chirp 脉冲为0.05,信号的持续时间为2,初始频率设为40,结束频率设置为120。 上图的信号周期是2,发射脉冲长度为0.05与之前其它参数相同的图4比较可知,频带宽度基本相同,在频带宽度内的幅度谱没有太大变化,只是频点上的曲线多了些波动。

连续时间信号傅里叶变换及调制定理

乐山师范学院学生实验报告 实验课程名称: matlab 与信号系统实验 实验日期:2014年 月 日 姓名 学号 同组人 班级 系(院) 专业 级 班 指导老师 一、实验项目名称 连续时间信号傅里叶变换及调制定理 二、实验目的 1.学会用MA TLAB 求符号运算法的傅立叶正反变换; 2. 理解调制对信号频谱的影响 三、实验主要仪器设备仪器、器材、软件等 PC 机与matlab 软件 四、实验原理 见指导书 五、实验内容、步骤 1.求信号)()(t e t f t ε-=的频谱函数,并分别作出原函数与频谱函数的波形。 2.求信号2 )1(2)(ωω ωj j F += 的原函数,并分别作出原函数与频谱函数的波形。 3.设信号)100sin()(t t f π=,载波)(t y 为频率为400Hz 的余弦信号。试用MATLAB 实现调幅信号)(t y ,并观察)(t y 的频谱和)(t f 的频谱,以及两者在频域上的关系。 4.设),10cos( )()(),1()1()(1t t f t f t u t u t f π=--+=,试用MATLAB 画出)(),(1t f t f 的时域波形及其频谱,并观察傅里叶变换的频移特性。 六、实验记录(数据、现象、报表、软件、图象等) 1、 syms t w; f=exp(-1*t).*heaviside(t); y=fourier(f);

y=simplify(y); subplot(121); ezplot(f,[-3,3]); subplot(122); ezplot(w,y,[-2,2]); -2 02 0.10.20.30.40.50.60.70.80.9t exp(-t) heaviside(t) -2 -1 01 2 -3-2 -101 2 34 x y x = w, y = 1/(1+i w) 2、 syms t w ; ft=ifourier((2*w/(1+i*w)^2),t); y=ifourier(ft); y=simplify(y); subplot(121); ezplot(real(ft)); subplot(122); ezplot(imag(ft)); -5 05 -1 -0.8-0.6-0.4-0.200.20.40.60.81 t i exp(-t) heaviside(t) (t-1)-i conj(exp(-t) heaviside(t) (t-1))0 2 4 6 -0.6 -0.5-0.4-0.3-0.2-0.100.10.20.3 t -1/2 i (2 i exp(-t) heaviside(t) (t-1)+2 i conj(exp(-t) heaviside(t) (t-1)))

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

连续时间傅里叶变换

2 奇偶信号的FS: (i) 偶信号的FS: 2 a n f (t)cosn T] T 1 Fn 弘 1tdt ; bn 2 T1 f (t)sin n 1tdt c n d n a n (ii ) jbn an 2 2 偶的周期信号的 奇信号的FS: F n ( Fn 实, 偶对称);n FS 系数只有直流项和余弦项。 2 T f(t)sinn 1tdt ; 5 dn T| 11 1 Fn F n jbn ( Fn 纯虚,奇对称); a a n 0 ; b n b n 2jFn 第二章连续时间傅里叶变换 1周期信号的频谱分析 一一傅里叶级数FS (1) 狄义赫利条件:在同一个周期 T1内,间断点的个数有限;极大值和极小值的数目有限;信号绝 为T i ,角频率为 ,2 f ,—。 Ti (3)任何满足狄义赫利条件周期函数都可展成傅里叶级数。 ⑷三角形式的FS: (i) 展开式:f(t) a 0 (ancon it bn sin n ,t) n 1 (ii) 系数计算公式: (a) 直流分量: ao f (t)dt T 1 T 1 (b) n 次谐波余弦分量: a n - f (t) cosn 1tdt, n N T1 T 1 2 (c) n 次谐波的正弦分量: bn — f (t)sinn 1tdt, n N T1 T 1 (iii) 系数an 和bn 统称为三角形式的傅里叶级数系数,简称傅里叶系数。 (iv) 称f1 1/T1为信号的基波、基频; nf1为信号的n 次谐波。 (V) 合并同频率的正余弦项得: n 和n 分别对应合并后 门次谐波的余弦项和正弦项的初相位。 (vi) 傅里叶系数之间的关系: (5)复指数形式的FS: (i) 展开式:f (t) Fne jn 1t n (ii) 系数计算:Fn 丄 f(t)e jn 1t dt, n Z T] T 1 (iii) 系数之间的关系: (iv) Fn 关于 n 是共扼对称的,即它们关于原点互为共轭。 (v) 正负n (n 非零)处的Fn 的幅度和等于Cn 或dn 的幅度。 对可积 丁 f(t)dt 。 (2)傅里叶级数:正交函数线性组合。 正交函数集可以是三角函数集 {1,cosn *,sinn 1t :n N}或复指数函数集 {e jn 术:n Z},函数周期

傅里叶变换_百度文库.

傅里叶变换,拉普拉斯变换和Z 变换的意义来源:于理扬的日志 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中, 傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数或者它们的积分的线性组合。在不同的研究领域, 傅里叶变换具有多种不同的变体形式, 如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加, 从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割, 每一部分只是一个时间点对应一个信号值, 一个信号是一组这样的分量的叠加。傅里叶变换后, 其实还是个叠加问题, 只不过是从频率的角度去叠加, 只不过每个小信号是一个时间域上覆盖整个区间的信号, 但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值,我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小, 那么相位呢, 它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域与后一段的相位的变化是否与信号的频率成正比关系。

信号处理中傅里叶变换简介

傅里叶变换 一、傅里叶变换的表述 在数学上,对任意函数f(x),可按某一点进行展开,常见的有泰勒展开和傅里叶展开。泰勒展开为各阶次幂函数的线性组合形式,本质上自变量未改变,仍为x,而傅里叶展开则为三角函数的线性组合形式,同时将自变量由x变成ω,且由于三角函数处理比较简单,具有良好的性质,故被广泛地应用在信号分析与处理中,可将时域分析变换到频域进行分析。 信号分析与处理中常见的有CFS(连续时间傅里叶级数)、CFT (连续时间傅里叶变换)、DTFT(离散时间傅里叶变换)、DFS(离散傅里叶级数)、DFT(离散傅里叶变换)。通过对连续非周期信号x c(t)在时域和频域进行各种处理变换,可推导出以上几种变换,同时可得出这些变换之间的关系。以下将对上述变换进行简述,同时分析它们之间的关系。 1、CFS(连续时间傅里叶级数) 在数学中,周期函数f(x)可展开为 由此类比,已知连续周期信号x(t),周期为T0,则其傅里叶级数为 其中,

为了简写,有 其中, 为了与复数形式联系,先由欧拉公式e j z=cos z+jsin z得 故有

令 则 对于D n,有 n≤0时同理。 故 CFS图示如下:

Figure 1 理论上,CFS对于周期性信号x(t)在任意处展开都可以做到无误差,只要保证n从-∞取到+∞就可以。在实践中,只要n取值范围足够大,就可以保证在某一点附近对x(t)展开都有很高的精度。 2、CFT(连续时间傅里叶变换) 连续非周期信号x(t),可以将其看成一连续周期信号的周期T0→∞。当然,从时域上也可以反过来看成x(t)的周期延拓。将x(t)进行CFS展开,有 若令 则 有

傅里叶变换公式

连续时间周期信号傅里叶级数:?= T dt t x T a )(1 ??--= = T t T jk T t jk k dt e t x T dt e t x T a π ω2)(1 )(1 离散时间周期信号傅里叶级数:[][]()∑∑= - =-= = N n n N jk N n n jkw k e n x N e n x N a /21 1 0π 连续时间非周期信号的傅里叶变换:()? ∞∞ --=dt e t x jw X jwt )( 连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ? ∞ ∞ -=π 21 )( 连续时间周期信号傅里叶变换:∑+∞ -∞ =??? ? ? ? -=k k k w a jw X T 22)(πδπ 连续时间周期信号傅里叶反变换:()dw e w w t x jwt ? ∞ ∞ --=0221 )( πδπ 离散时间非周期信号傅里叶变换:∑∞ -∞ =-= n n j e n x e X ωω j ][)( 离散时间非周期信号傅里叶反变换:? = π 2d e )(e π 21][ωωωn j j X n x 离散时间周期信号傅里叶变换:∑+∞ -∞ =-= k k k a X )(π2)e (0 j ωωδω 离散时间周期信号傅里叶反变换:[]ωω ωδωd e n n j ?--=π 20 πl)2(π2π 21][x 拉普拉斯变换:()dt e t s X st -∞ ∞ -? =)(x 拉普拉斯反变换:()()s j 21 t x j j d e s X st ?∞ +∞ -= σσ π Z 变换:∑∞ -∞ =-=n n z n x X ][)z ( Z 反变换: ??-== z z z X r z X n x n n d )(πj 21d )e ()(π21][1j π2ωω

用Matlab对信号进行傅里叶变换实例

目录 用Matlab对信号进行傅里叶变换 (2) Matlab的傅里叶变换实例 (5) Matlab方波傅立叶变换画出频谱图 (7)

用Matlab对信号进行傅里叶变换 1.离散序列的傅里叶变换DTFT(Discrete Time Fourier Transform) 代码: 1 N=8; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 5 w=[-800:1:800]*4*pi/800; %频域共-800----+800 的长度(本应是无穷,高频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); %求dtft变换,采用原始定义的方法,对复指数分量求和而得 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号)'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT变换') 结果: 分析:可见,离散序列的dtft变换是周期的,这也符合Nyquist采样定理的描述,连续时间信号经周期采样之后,所得的离散信号的频谱是原连续信号频谱的周期延拓。 2.离散傅里叶变换DFT(Discrete Fourier Transform)

与1中DTFT不一样的是,DTFT的求和区间是整个频域,这对 结果图:

分析:DFT只是DTFT的现实版本,因为DTFT要求求和区间无穷,而DFT只在有限点内求和。 3.快速傅里叶变换FFT(Fast Fourier Transform) 虽然DFT相比DTFT缩减了很大的复杂度,但是任然有相当大的计算量,不利于信息的实时有效处理,1965年发现的DFT解决了这一问题。 实现代码: 1 N=64; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 Xk=fft(xn,N); 5 subplot(221); 6 stem(n,xn); 7 title('原信号'); 8 subplot(212); 9 stem(n,abs(Xk)); 10 title('FFT变换') 效果图: 分析:由图可见,fft变换的频率中心不在0点,这是fft算法造成的,把fft改为fftshift可以将频率中心移到0点。

常用傅里叶变换

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大,则 会收缩到原 点附近,而 会扩 散并变得扁平.当 | a | 趋向无穷 时,成为狄拉克δ 函数。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质

7 变换6的频域对应8 表示和 的卷积—这就是卷 积定理 9 变换8的频域对应。[编辑]平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 矩形脉冲和归一 化的sinc函数 11 变换10的频域对 应。矩形函数是理 想的低通滤波器, sinc函数是这类 滤波器对反因果 冲击的响应。

12 tri是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式

20 J0(t)是0阶第一 类贝塞尔函数。 21 上一个变换的推 广形式; T n(t)是第 一类切比雪夫多 项式。 22 U n (t)是第二类切 比雪夫多项式。[编辑]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表狄拉克δ函数 分布.这个变换展示了狄 拉克δ函数的重要性:该 函数是常函数的傅立叶 变换 24 变换23的频域对应

25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e?iat) / 2. 27 由变换1和25得到 28 这里, n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多項式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.

连续时间傅立叶变换与离散时间傅里叶变换之间的关系

连续时间傅立叶变换与离散时间傅里叶变换之间的关系 对于连续限带(B )的时间信号x (t),在满足奈奎斯特抽样定理的条件下进行抽样(抽样频率f s =1/T s = 2B'>2B ),其样点为x n =x (nT s )。可以由样点序列进行内插来恢复原始信号x (t): ()()()sin 2')s n x t x nT c B t n = -∑ (1) 证明: 抽样采用理想冲击脉冲串:()()s T s t t nT δδ= -∑ ()()()s s T x t x t t δ= ()()s s n x nT t nT δ= -∑ (2) 其中2B'=1/T s 。由傅里叶变换的频域卷积性质,理想抽样信号x s (t)的傅里叶变换为: 1()()s k s s k X f X f f T T δ?? =* - ??? ∑ (3) 其中*表示连续的卷积运算。于是得到 ()1s k s s k X f X f T T ??= - ?? ?∑ s k s k f X f T ?? =- ?? ?∑ (4) 即理想抽样信号在频域是原信号x (t)傅里叶变换(频谱密度)的周期性位移,周 期为1/T s 。其中更详细的原理请参看经典课本:奥本海姆(《信号与系统》)/樊昌信先生(《通信原理》)/周炯盘先生(《通信原理》)。本文目的是架起连续时间傅里叶变换和离散时间傅里叶变换的桥梁,这在很多课本中都是省略掉的;对抽样定理不再赘述。 在频域k=0处对抽样信号进行理想低通滤波,滤波器带宽为B'>B 。理想低通滤波器的频率响应为矩形窗函数H(f)=( )2' f B ∏,它对应的时域单位冲激响应函数

常用傅里叶变换

常用傅里叶变换 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大, 则会收缩 到原点附近,而 会扩 散并变得扁平.当 |?a?|?趋向无穷 时,成为。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质 7 变换6的频域对应

8 表示和 的卷积—这就是9 变换8的频域对 应。 []平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 和归一化的 11 变换10的频域对 应。矩形函数是 理想的低通滤波 器,是这类滤波 器对冲击的响 应。 12 tri?是 13 变换12的频域对 应

14 exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 领域应用较多 16 17 18 a>0 19 变换本身就是一个公式 20 J0(t)?是。 21 上一个变换的推广形式;?T n(t)?是。 22 ???? U n?(t)是。

[]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表分布.这个变换 展示了狄拉克δ函数的 重要性:该函数是常函 数的傅立叶变换 24 变换23的频域对应 25 由变换3和24得到. 26 由变换1和25得到,应 用了:?cos(at) = (e iat?+?e???iat) / 2. 27 由变换1和25得到 28 这里,?n是一个.δ(n)(ω)是 狄拉克δ函数分布的n 阶微分。这个变换是根 据变换7和24得到的。 将此变换与1结合使 用,我们可以变换所 有。

常用函数傅里叶变换

常用函数傅里叶变换 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在 i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若 则 其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。 解因 由式(3-55)得 二、对称性 若则 证明因为 有 将上式中变量换为x,积分结果不变,即

再将t用代之,上述关系依然成立,即 最后再将x用t代替,则得 所以 证毕 若是一个偶函数,即,相应有,则式(3-56) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。式中的表示频谱函数坐标轴必须正负对调。例如: 例3-7若信号的傅里叶变换为 试求。 解将中的换成t,并考虑为的实函数,有 该信号的傅里叶变换由式(3-54)可知为

根据对称性 故 再将中的换成t,则得 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 若 则 证明因a>0,由

令,则,代入前式,可得 函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示 沿频率轴扩展(或频率尺度压缩) a倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8已知,求频谱函数。 解前面已讨论了的频谱函数,且 根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数 两种信号的波形及频谱函数如图3-21所示。

常用傅里叶变换表

弧频率表示的时域信号注释傅里叶变换 线性1 时域平移2 频域平移3 , 变换2的频域对应 会收缩值较大,则如果 4 会扩而到原点附近,a趋向 | | . 散并变得扁平当无穷时,成为函数。 Delta 通过傅里叶变换的二元性性质。

5 交换时域变量和频域变量 . 得到 6 傅里叶变换的微分性质 变换7 6的频域对应 表示和的卷积—这 8就卷积定 9 矩形脉冲和归一化的sinc函数 变换10的频域对应。矩形函数是理

想的低通滤波器,sinc函数是这类10 滤波器对反因果冲击的响应。 tri是三角形函数 11 12 变换12的频域对应 2t) ?α的傅里叶变 exp( 高斯函数 换是他本身. 只有当 Re(α) 13 > 0时,这是可积的。 14 15

a>0 16 17 变换本身就是一个公式 δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克18 δ函数的重要性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 由变换1和25得到,应用了欧拉公 21 iat?iat eeat) / 2. 式: cos() = ( +

22 由变换1和25得到 n)(n(ω) . δ这里, 自然数是一个n阶微分。函数分布的是狄拉克δ 这个变换是根据变换23 7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 此处sgn(ω)为符号函数;注意此变 24 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. ut)是单位阶跃函数此处(; 此变换 27

根据变换1和31得到. uta > 0. ,且()是单位阶跃函数28 狄拉克梳状函数——有助于解释或34 理解从连续到离散时间的转变.

傅里叶变换

傅里叶变换 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复 杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先 由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数 形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。连续傅里 叶变换的逆变换 (inverse Fourier transform)为: 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里

叶变换对(transform pair)。除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对: 或者是因系数重分配而得到新的变换对: 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。 分数傅里叶变换的物理意义即做傅里叶变换 a 次,其中 a 不一定要为整数; 而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。 当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform)或正弦变换(sine transform). 另一个值得注意的性质是,当f(t)为纯实函数时,F(?ω) = F*(ω)成立. 傅 里叶级数 连续形式的傅里叶变换其实是傅里叶级数 (Fourier series)的推广,因为积 分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:

典型信号的傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

故有 4044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω?? = -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 2281,5,9,83,7,11km A k k B A k k ππ ?=??=??-=??L L 于是所欲求的傅里叶级数 ()2222 8111sin sin 3sin 5sin 7357A f t t t t t ωωωωπ?? = -+-+ ??? L 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图 解 此信号对原点对称,是奇函数,且又是半波横轴对称,所以其傅里叶级数仅是正弦奇次谐波分量组成。由于 ()022 T A t f t T A t T ?

{时间管理}第二章连续时间傅里叶变换

(时间管理)第二章连续时间傅里叶变换

第二章连续时间傅里叶变换 1周期信号的频谱分析——傅里叶级数FS (1)狄义赫利条件:于同壹个周期内,间断点的个数有限;极大值和极小值的 数目有限;信号绝对可积。 (2)傅里叶级数:正交函数线性组合。 正交函数集能够是三角函数集或复指数函数集,函数周期为T1,角频率为。 (3)任何满足狄义赫利条件周期函数均可展成傅里叶级数。 (4)三角形式的FS: (i)展开式: (ii)系数计算公式: (a)直流分量: (b)n次谐波余弦分量: (c)n次谐波的正弦分量: (iii)系数和统称为三角形式的傅里叶级数系数,简称傅里叶系数。 (iv)称为信号的基波、基频;为信号的n次谐波。 (v)合且同频率的正余弦项得: 和分别对应合且后n次谐波的余弦项和正弦项的初相位。 (vi)傅里叶系数之间的关系: (5)复指数形式的FS: (i)展开式: (ii)系数计算: (iii)系数之间的关系: (iv)关于n是共扼对称的,即它们关于原点互为共轭。 (v)正负n(n非零)处的的幅度和等于或的幅度。 (6)奇偶信号的FS: (i)偶信号的FS: ;; (实,偶对称);; (ii)偶的周期信号的FS系数只有直流项和余弦项。 (iii)奇信号的FS: ;;; (纯虚,奇对称);;

(iv)奇的周期信号的FS系数只有正弦项。 (7)周期信号的傅里叶频谱: (i)称为信号的傅里叶复数频谱,简称傅里叶级数谱或FS谱。 (ii)称为信号的傅里叶复数幅度频谱,简称FS幅度谱。 (iii)称为傅里叶复数相位频谱,简称FS相位谱。 (iv)周期信号的FS频谱仅于壹些离散点角频率(或频率)上有值。 (v)FS也被称为傅里叶离散谱,离散间隔为。 (vi)FS谱、FS幅度谱和相位谱图中表示相应频谱、频谱幅度和频谱相位的离散线段被称为谱线、幅度谱线和相位谱线,分别表示FS频谱的值、幅度和相位 (vii)连接谱线顶点的虚曲线称为包络线,反映了各谐波处FS频谱、幅度谱和相位谱随分量的变化情况。 (viii)称为单边谱,表示了信号于谐波处的实际分量大小。 (ix)称为双边谱,其负频率项于实际中是不存于的。正负频率的频谱幅度相加,才是实际幅度。 (8)周期矩形脉冲序列的FS谱的特点: (i)谱线包络线为Sa函数; (ii)谱线包络线过零点:(其中为谱线间隔): ,或, 即当时,。 (iii)于频域,能量集中于第壹个过零点之内。 (iv)带宽或只和矩形脉冲的脉宽有关,而和脉高和周期均无关。(定义为周期矩形脉冲信号的频带宽度,简称带宽) (9)周期信号的功率: (10)帕斯瓦尔方程: 2非周期信号的频谱分析—傅里叶变换(FT) (1)信号f(t)的傅里叶变换: 是信号的频谱密度函数或FT频谱,简称为频谱(函数)。 (2)频谱密度函数的逆傅里叶变换为: (3)称为FT的变换核函数,为IFT的变换核函数。 (4)FT和IFT具有唯壹性。如果俩个函数的FT或IFT相等,则这俩个函数必 然相等。

第四章傅立叶变换习题

第三章傅立叶变换 第一题选择题 1.连续周期信号f (t )的频谱F(w)的特点是 D 。 A 周期连续频谱 B 周期离散频谱 C 非周期连续频谱 D 非周期离散频谱 2.满足抽样定理条件下,抽样信号f s (t)的频谱)(ωj F s 的特点是 (1) (1)周期、连续频谱; (2)周期、离散频谱; (3)连续、非周期频谱; (4)离散、非周期频谱。 3.信号的频谱是周期的连续谱,则该信号在时域中为 D 。 A 连续的周期信号 B 离散的周期信号 C 连续的非周期信号 D 离散的非周期信号 4.信号的频谱是周期的离散谱,则原时间信号为 (2) 。 (1)连续的周期信号 (2)离散的周期信号 (3)连续的非周期信号 (4)离散的非周期信号 5.已知f (t )的频带宽度为Δω,则f (2t -4)的频带宽度为( 1 ) (1)2Δω (2)ω?2 1 (3)2(Δω-4) (4)2(Δω-2) 6.若=)(1ωj F F =)()],([21ωj F t f 则F =-)]24([1t f ( 4 ) (1)ωω41)(21j e j F - (2)ωω41)2 (21j e j F -- (3)ωωj e j F --)(1 (4)ωω21)2 (21j e j F -- 7.信号f (t )=Sa (100t ),其最低取样频率f s 为( 1 ) (1)π100 (2)π 200 (3)100π (4)200 π 8.某周期奇函数,其傅立叶级数中 B 。 A 不含正弦分量 B 不含余弦分量 C 仅有奇次谐波分量 D 仅有偶次谐波分量 9.某周期偶谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 无奇次谐波分量 D 无偶次谐波分量 10.某周期奇谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 仅有基波和奇次谐波分量 D 仅有基波和偶次谐波分量 11.某周期偶函数f(t),其傅立叶级数中 A 。

连续时间傅里叶变换

第二章 连续时间傅里叶变换 1 周期信号的频谱分析——傅里叶级数FS (1) 狄义赫利条件:在同一个周期1T 内,间断点的个数有限;极大值和极小值的数目有限;信号绝对可积∞

相关主题
文本预览
相关文档 最新文档