第四章连续时间傅里叶变换
- 格式:ppt
- 大小:2.82 MB
- 文档页数:57
连续时间傅里叶变换连续时间傅里叶变换(Continuous-Time Fourier Transform,CTFT)是傅里叶变换(Fourier Transform,FT)的一种,它适用于连续信号。
它能够将连续时间信号表示为一系列相同时间周期内信号幅度和相位不同的空间频率组份,即信号可以按其频率分解为更加精细的空间组份,这也是傅里叶级数的基础。
CTFT可以将任意连续时间信号表示成一组正弦信号的和,即可以将一种信号表示为正弦信号组成的线性组合,这样就可以将信号的复杂性减简,并用数学方法对它进行分析。
从理论上讲,CTFT可以将任意的空间信号表示为一组正弦信号的和,这也是CTFT的核心特性之一,也是CTFT的优势所在。
CTFT的公式可以用以下方式表示:X(ω)=∫-∞σ(t)e-^{jωt} dt其中ω为频率,s(t)为连续时间信号,X(ω)表示其傅里叶变换。
具体而言,CTFT既能够反映信号的时间变化,也能够反映其频域变化,可以将信号从时域变换到频域,允许我们从不同的角度看待信号,从而更好地理解信号。
如果将CTFT与频域分析进行比较,CTFT能够更精确地捕捉信号特征,可以更精确地确定频率、幅度和相位,因此它在信号处理、声学分析和时域分析等方面具有重要作用。
CTFT能够有效应用于维纳滤波器(Wiener Filters)、短时傅里叶变换(Short Time Fourier Transform,STFT)和抗谐波滤波(Notch Filters)等方面,通过CTFT的应用,可以利用频域的信号表示技术来提高信号分析的精度和效率。
总的来说,CTFT是一种非常实用的时域分析工具,它能够密切捕捉信号的复杂性,在信号处理,时域分析和声学分析等方面都有着广泛的应用,为更好地获取信号中的有价值信息提供了重要的视角。
第四章.连续时间信号与系统频域分析一.周期信号的频谱分析1. 简谐振荡信号是线性时不变系统的本征信号:()()()()()j tj t j tj y t eh t eh d ee h d ωωτωωτττττ∞∞---∞-∞=*==⋅⎰⎰简谐振荡信号傅里叶变换:()()j H j e h d ωτωττ∞--∞=⎰点 测 法: ()()j t y t e H j ωω=⋅ 2.傅里叶级数和傅里叶变换3.荻里赫勒(Dirichlet )条件(只要满足这个条件信号就可以用傅里叶级数展开)○1()f t 绝对可积,即00()t T t f t dt +<∞⎰○2()f t 的极大值和极小值的数目应有限 ○3()f t 如有间断点,间断点的数目应有限4.周期信号的傅里叶级数5.波形对称性与谐波特性的关系6.周期矩形脉冲信号7.线性时不变系统对周期信号的响应一般周期信号:()jn tnn F ef t ∞Ω=-∞=∑系统的输出 :()()jn tnn F H jn t e y t ∞Ω=-∞Ω=∑ 二.非周期信号的傅里叶变换(备注)二.非周期信号的傅里叶变换1.连续傅里叶变换性质2.常用傅里叶变换对四.无失真传输1.输入信号()f t 与输出信号()f y t 的关系 时域: ()()f d y t kf t t =-频域:()()dj t f Y ke F ωωω-=2.无失真传输系统函数()H ω ()()()d f j t Y H ke F ωωωω-==无失真传输满足的两个条件:○1幅频特性:()H k ω= (k 为非零常数) 在整个频率范围内为非零常数 ○2相频特性:ϕ()d t ωω=- ( 0d t > )在整个频率范围内是过坐标原点的一条斜率为负的直线3. 信号的滤波:通过系统后 ○1产生“预定”失真○2改变一个信号所含频率分量大小 ○3全部滤除某些频率分量 4.理想低通滤波器不存在理由:单位冲击响应信号()t δ是在0t =时刻加入滤波器 的,而输出在0t <时刻就有了,违反了因果律5.连续时间系统实现的准则时 域 特 性 : ()()()h t h t u t =(因果条件) 频 域 特 性 : 2()H d ωω∞-∞<∞⎰佩利-维纳准则(必要条件):22()1H d ωωω∞-∞<∞+⎰五.滤波。
第二章 连续时间傅里叶变换1 周期信号的频谱分析——傅里叶级数FS(1) 狄义赫利条件:在同一个周期1T 内,间断点的个数有限;极大值和极小值的数目有限;信号绝对可积∞<⎰dt t f T 1)(。
(2) 傅里叶级数:正交函数线性组合。
正交函数集可以是三角函数集}:sin ,cos ,1{11N n t n t n ∈ωω或复指数函数集}:{1Z n e t jn ∈ω,函数周期为T 1,角频率为11122T f π=π=ω。
(3) 任何满足狄义赫利条件周期函数都可展成傅里叶级数。
(4) 三角形式的FS :(i) 展开式:∑∞=ω+ω+=1110)sin ()(n n n t n b t con a a t f(ii) 系数计算公式:(a) 直流分量:⎰=1)(110Tdt t f T a (b) n 次谐波余弦分量:N n tdt n t f T a Tn ∈ω=⎰,cos )(2111(c) n 次谐波的正弦分量:N n tdt n t f T b Tn ∈ω=⎰1,sin )(211(iii) 系数n a 和n b 统称为三角形式的傅里叶级数系数,简称傅里叶系数。
(iv) 称11/1T f =为信号的基波、基频;1nf 为信号的n 次谐波。
(v) 合并同频率的正余弦项得:n ψ和n θ分别对应合并后n 次谐波的余弦项和正弦项的初相位。
(vi) 傅里叶系数之间的关系: (5) 复指数形式的FS :(i) 展开式:∑∞-∞=ω=n t jn n e F t f 1)((ii)系数计算:Z n dt e t f T F Tt jn n ∈=⎰ω-,)(1111(iii) 系数之间的关系:(iv) n F 关于n 是共扼对称的,即它们关于原点互为共轭。
(v) 正负n (n 非零)处的n F 的幅度和等于n c 或n d 的幅度。
(6) 奇偶信号的FS :(i) 偶信号的FS : ⎰ω=111cos )(2Tn tdt n t f T a ;0sin )(2111=ω=⎰Tn tdt n t f T b ; n n n a d c ==n n n n n F a jb a F -==-=22 (n F 实,偶对称);0=ψn ;2π=θn (ii) 偶的周期信号的FS 系数只有直流项和余弦项。
连续时间傅⾥叶变换連續時間傅裡葉變換(Continuous Time Fourier Transform)引⾔傅裡葉變換試圖將⾮週期信號也納⼊到傅裡葉的體系中。
對於⾮週期信號,可以看成是週期無限⾧的週期信號。
當週期無限⼤時,傅裡葉級數的頻率分量就變成了⼀個連續域。
⾮週期信號的表⽰:連續時間傅裡葉變換⾸先以週期⽅波為例,即在⼀個週期內x(t)=1,|t|<T10,T1<|t|<T/2若將其表⽰為傅裡葉級數,其傅裡葉級數的係數為a k=2sin(kω0T1)kω0T將其在頻域圖上畫出來,並逐漸增⼤週期T就可以得到下圖可想⽽知,隨著T的增⼤,頻率越來越⼩,包絡線裡⾯的頻率越來越密集,最終形成⼀條連續的曲線。
傅裡葉變換的⼯作就是要求出這條曲線,從⽽完成信號從時域到頻域的轉換。
這就是對⾮週期信號建⽴傅裡葉級數表⽰的基本思想。
將˜x(t)看作是x(t)的⼀個週期,由於傅裡葉的級數表⽰是在⼀個週期內推出來的,所以對於⾮週期信號的⼀個週期,也有˜x(t)=+∞∑k=−∞a k e jkω0t a k=1T∫T2−T2˜x(t)e−jkω0t dt由於⾮週期信號可以看成只有⼀個週期的信號,所以在週期之外,即|t|>T/2時,x(t)=0,⽽在週期之內,˜x(t)=x(t),則有a k=1T∫+∞k=−∞x(t)e−jkω0t dt則可以得到X(jω)=Ta k=∫+∞−∞x(t)e−jωt dt 稱X(jω)為Ta k的包絡。
再將a k=X(jω)T代⼊式1得˜x(t)=+∞∑k=−∞1T X(jkω0)ejkω0t=12π+∞∑k=−∞X(jkω0)e jkω0tω0當T→∞時,˜x(t)→x(t),ω0→0,因此ω0可以看作⼀個微分,⽽右端式⼦可以看作⼀個積分式。
則有x(t)=12π∫+∞−∞X(jω)e jωt dω{⽽X(jω)=∫+∞−∞x(t)e−jωt dt這兩式即稱為⼀對傅裡葉變換對。