华东师版数学八年级上册第11章数的开方达标测试卷
- 格式:doc
- 大小:104.50 KB
- 文档页数:9
《第11章数的开方》一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±44.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+15.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣320076.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤17.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.58.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在二、填空题11.若x2=8,则x= .12.的平方根是.13.如果有意义,那么x的值是.14.a是4的一个平方根,且a<0,则a的值是.15.当x= 时,式子+有意义.16.若一正数的平方根是2a﹣1与﹣a+2,则a= .17.计算: += .18.如果=4,那么a= .19.﹣8的立方根与的算术平方根的和为.20.当a2=64时, = .21.若|a|=, =2,且ab<0,则a+b= .22.若a、b都是无理数,且a+b=2,则a,b的值可以是(填上一组满足条件的值即可).23.绝对值不大于的非负整数是.24.请你写出一个比大,但比小的无理数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= .三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.27.计算:(1)+;(2)++.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.《第11章数的开方》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±【考点】平方根.【分析】这个正数可用m表示出来,比这个正数大1的数也能表示出来,开方可得出答案.【解答】解:由题意得:这个正数为:m2,比这个正数大1的数为m2+1,故比这个正数大1的数的平方根为:±,故选D.【点评】本题考查算术平方根及平方根的知识,难度不大,关键是根据题意表示出这个正数及比这个正数大1的数.2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.【考点】算术平方根.【分析】根据算术平方根的定义解答即可.【解答】解:3的算术平方根是,所以,这个数是3.故选B.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±4【考点】立方根;平方根.【分析】根据乘方运算,可得a的值,根据开方运算,可得立方根.【解答】解;已知a的平方根是±8,a=64,=4,故选:B.【点评】本题考查了立方根,先算乘方,再算开方.4.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+1【考点】立方根.【分析】根据正数的立方根是正数,0的立方根是0,负数的立方根是负数,结合四个选项即可得出结论.【解答】解:∵﹣a2﹣1≤﹣1,∴﹣a2﹣1的立方根一定是负数.故选C.【点评】本题考查了立方根,牢记“正数的立方根是正数,0的立方根是0,负数的立方根是负数”是解题的关键.5.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣32007【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】本题首先根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”得到关于a、b的方程组,然后解出a、b的值,再代入所求代数式中计算即可.【解答】解:依题意得:a+2=0,b﹣1=0∴a=﹣2且b=1,∴(a+b)2007=(﹣2+1)2007=(﹣1)2007=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,结果为非负数,即1﹣x≥0.【解答】解:由于二次根式的结果为非负数可知,1﹣x≥0,解得x≤1,故选D.【点评】本题利用了二次根式的结果为非负数求x的取值范围.7.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对【考点】二次根式的性质与化简.【分析】根据=|a|,再根据绝对值的性质去绝对值合并同类项即可.【解答】解:原式=||a|﹣a|=|﹣a﹣a|=|﹣2a|=﹣2a,故选:B.【点评】此题主要考查了二次根式的性质和化简,关键是掌握=|a|.9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质,可得答案.【解答】解:A、数轴上的点表示的数右边的总比左边的大,b>a,故A正确;B绝对值是数轴上的点到原点的距离,|a|>|b|,故B正确;C、|﹣a|>|b,|得﹣a>b,故C错误;D、由相反数的定义,得﹣b>a,故D正确;故选:C.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质是解题关键.10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在【考点】命题与定理.【分析】根据各个选项中的说法正确的说明理由,错误的说明理由或举出反例即可解答本题.【解答】解:∵,故选项A错误;无理数是开放开不尽的数,故选项B正确;无限不循环小数是无理数,故选项C错误;绝对值最小的数是0,故选项D错误;故选B.【点评】本题考查命题与定理,解题的关键是明确题意,正确的命题说明理由,错误的命题说明理由或举出反例.二、填空题11.若x2=8,则x= ±2.【考点】平方根.【分析】利用平方根的性质即可求出x的值.【解答】解:∵x2=8,∴x=±=±2,故答案为±2.【点评】本题考查平方根的性质,利用平方根的性质可求解这类型的方程:(x+a)2=b.12.的平方根是±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.如果有意义,那么x的值是±.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得:﹣(x2﹣2)2≥0,再解即可.【解答】解:由题意得:﹣(x2﹣2)2≥0,解得:x=±,故答案为:.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.a是4的一个平方根,且a<0,则a的值是﹣2 .【考点】平方根.【分析】4的平方根为±2,且a<0,所以a=﹣2.【解答】解:∵4的平方根为±2,a<0,∴a=﹣2,故答案为﹣2.【点评】本题考查平方根的定义,注意一个正数的平方根有两个,且互为相反数.15.当x= ﹣2 时,式子+有意义.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2≥0,﹣x﹣2≥0,解得,x=﹣2,故答案为:﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.16.若一正数的平方根是2a﹣1与﹣a+2,则a= 1或﹣1 .【考点】平方根;解一元一次方程.【专题】计算题.【分析】根据一个正数的两个平方根互为相反数,分2a﹣1与﹣a+2是同一个平方根与两个平方根列式求解.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.【点评】本题考查了平方根与解一元一次方程,注意平方根是同一个平方根的情况,容易忽视而导致出错.17.计算: += 1 .【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出即可.【解答】解: +=π﹣3+4﹣π=1.故答案为:1.【点评】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.18.如果=4,那么a= ±4 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出a的值即可.【解答】解:∵ =4,∴a=±4,故答案为±4.【点评】本题考查了二次根式的性质与化简,掌握a2=16,得出a=±4是解题的关键.19.﹣8的立方根与的算术平方根的和为 1 .【考点】立方根;算术平方根.【分析】﹣8的立方根为﹣2,的算术平方根为3,两数相加即可.【解答】解:由题意可知:﹣8的立方根为﹣2,的算术平方根为3,∴﹣2+3=1,故答案为1.【点评】本题考查立方根与算术平方根的性质,属于基础题型.20.当a2=64时, = ±2 .【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a的立方根.【解答】解:∵a2=64,∴a=±8.∴=±2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.21.若|a|=, =2,且ab<0,则a+b= 4﹣.【考点】实数的运算.【分析】根据题意,因为ab<0,确定a、b的取值,再求得a+b的值.【解答】解:∵ =2,∴b=4,∵ab<0,∴a<0,又∵|a|=,则a=﹣,∴a+b=﹣+4=4﹣.故答案为:4﹣.【点评】本题考查了实数的运算,属于基础题,解答本题的关键是熟练掌握绝对值的性质和二次根式的非负性.22.若a、b都是无理数,且a+b=2,则a,b的值可以是π;2﹣π(填上一组满足条件的值即可).【考点】无理数.【专题】开放型.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…的数,而本题中a与b的关系为a+b=2,故确定a后,只要b=2﹣a即可.【解答】解:本题答案不唯一.∵a+b=2,∴b=2﹣a.例如a=π,则b=2﹣π.故答案为:π;2﹣π.【点评】本题主要考查了无理数的定义和性质,答案不唯一,解题关键是正确理解无理数的概念和性质.23.绝对值不大于的非负整数是0,1,2 .【考点】估算无理数的大小.【分析】先估算出的值,再根据绝对值的性质找出符合条件的所有整数即可.【解答】解:∵4<5<9,∴2<<3,∴符合条件的非负整数有:0,1,2.故答案为:0,1,2.【点评】本题考查的是估算无理数的大小及绝对值的性质,根据题意判断出的取值范围是解答此题的关键.24.请你写出一个比大,但比小的无理数+.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:写出一个比大,但比小的无理数+,故答案为: +.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y、z的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y﹣1=0,z+2=0,解得x=3,y=1,z=﹣2,所以,(3﹣2)2008×1=12008=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.【考点】算术平方根;平方根.【分析】先依据算术平方根的定义得到5x+19=64,从而可术的x的值,然后可求得3x﹣2的值,最后依据平方根的定义求解即可.【解答】解:∵5x+19的算术平方根是8,∴5x+19=64.∴x=9.∴3x﹣2=3×9﹣2=25.∴3x﹣2的平方根是±5.【点评】本题主要考查的是算术平方根和平方根的定义,掌握算术平方根和平方根的定义是解题的关键.27.计算:(1)+;(2)++.【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=5﹣2=3;(2)原式=﹣3+5+2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.【考点】立方根;平方根.【分析】(1)两边直接开平方即可;(2)首先将方程变形为(x+1)3=,然后把方程两边同时开立方即可求解.【解答】解:(1)由原方程直接开平方,得x﹣1=±4,∴x=1±4,∴x1=5,x2=﹣3;(2)∵8(x+1)3﹣27=0,∴(x+1)3=,∴x+1=,∴x=.【点评】本题考查了平方根、立方根的性质与运用,是基础知识,需熟练掌握.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.【考点】实数大小比较.【分析】把2,,﹣,0,﹣分别在数轴上表示出来,然后根据数轴右边的数大于左边的数即可解决问题.【解答】解:如图,根据数轴的特点:数轴右边的数字比左边的大,所以以上数字的排列顺序如下:2>>0>﹣>﹣.【点评】此题主要考查了利用数轴比较实数的大小,解答本题时,采用的是数形结合的数学思想,采用这种方法解题,可以使知识变得更直观.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?【考点】二次根式的应用.【分析】先根据BC、AC、AB的长求出P,再代入到公式S=,即可求得该三角形的面积.【解答】解:∵a=3cm,b=4cm,c=5cm,∴p===6,∴S===6(cm2),∴△ABC的面积6cm2.【点评】此题考查了二次根式的应用,熟练掌握三角形的面积和海伦公式是本题的关键.31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.【考点】实数的运算.【分析】根据相反数,倒数,以及绝对值的意义求出a+b,cd及m的值,代入计算即可求出平方根.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=±2时,原式=5,5的平方根为±.【点评】此题考查了实数的运算,平方根,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.【考点】分式的化简求值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据+(ab﹣2)2=0,可以求得a、b的值,从而可以求得+++…+的值,本题得以解决.【解答】解:∵ +(ab﹣2)2=0,∴a﹣1=0,ab﹣1=0,解得,a=1,b=2,∴+++…+=…+=+…+==.【点评】本题考查分式的化简求值、偶次方、算术平方根,解题的关键是明确分式化简求值的方法.。
八年级数学上册:第11章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.(2019·通辽)16 的平方根是( C ) A .±4 B .4 C .±2 D .+2 2.(黔南州中考)下列等式正确的是( A )A .22=2 B .33=3 C .44=4 D .55=5 3.(2019·天门)下列各数中,是无理数的是( D ) A .3.1415 B .4 C .227 D .64.(2019·荆州)下列实数中最大的是( D ) A .32B .πC .15D .|-4| 5.(潍坊中考)|1-2 |=( B )A .1-2B .2 -1C .1+2D .-1-26.下列说法:①无限小数是无理数;②无理数是无限小数;③带根号的数是无理数;④0有平方根,但0没有算术平方根;⑤负数没有平方根,但有立方根;⑥一个正数有两个平方根,它们的和为0.其中正确的有( B )A .2个B .3个C .4个D .5个7.(2019·南京)实数a ,b ,c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( A )8.(2019·绵阳)已知x 是整数,当|x -30 |取最小值时,x 的值是( A ) A .5 B .6 C .7 D .89.如图,数轴上A ,B 两点表示的数分别为-1和3 ,点B 关于点A 的对称点为C ,则点C 所表示的数为( A )A.-2-3 B .-1-3 C .-2+3 D .1+310.已知0<x <1,则x ,x 2,1x,x 的大小关系为( B )A .x 2>x >1x >xB .1x >x >x >x 2C .1x>x >x >x 2D .x >x >x 2>1x二、填空题(每小题3分,共15分)11.(2019·恩施州)0.01的平方根是__±0.1__. 12.计算:-36 +214 +327 =-32.13.(2019·舟山)数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为__b <-a <a <-b __(用“<”号连接).14.(东莞中考)已知a -b +|b -1|=0,则a +1=__2__. 15.仔细观察下列等式:1-12=12,2-25=225,3-310=3310,4-417=4417,…按此规律,第n 个等式是n -nn 2+1=nnn 2+1. 三、解答题(共75分) 16.(8分)计算: (1)(益阳中考)|-5|-327 +(-2)2+4÷(-23 ); (2)53+5-32+|3 -2|. 解:(1)原式=0 (2)原式=56 5 -32 3 +217.(9分)求下列各式中的x 的值:(1)4(x +2)2-8=0; (2)2(x -1)3-54=0.解:(1)x =-2±2 (2)x =418.(9分)已知x -1的平方根是±3,x -2y +1的立方根是3,求x 2-y 2的算术平方根.解:根据题意,得⎩⎪⎨⎪⎧x -1=9,x -2y +1=27, 解得⎩⎪⎨⎪⎧x =10,y =-8,∴x 2-y 2 =619.(9分)已知一个正数的两个平方根是2m +1和3-m ,求这个正数. 解:这个正数是4920.(9分)若x ,y 均为实数,且x -2 +6-3x +2y =8,求xy +1的平方根.解:依题意,得⎩⎪⎨⎪⎧x -2≥0,6-3x ≥0, 解得x =2,∴y =4,∴±xy +1 =±321.(10分)规定新运算“⊗”的运算法则为:a ⊗b =ab +4 ,试求(2⊗6)⊗8的值. 解:(2⊗6)⊗8=2×6+4 ⊗8=4⊗8=4×8+4 =622.(10分)“欲穷千里目,更上一层楼”说的是登得高看得远.如图,若观测点的高度为h ,观测者能看到的最远距离为d ,则d =2hR ,其中R 是地球半径(通常取6 400 km).小丽站在海边一块岩石上,眼睛离地面的高度为20 m ,她观测到远处一艘船刚露出海平面,此时该船离小丽约有多少千米?解:当h =20 m =0.02 km 时,d =2hR =2×0.02×6400 =16(km),答:该船离小丽的约有16千米23.(11分)已知a,b分别是6-13的整数部分和小数部分,求2a-b的值.解:∵3<13<4,∴-4<-13<-3,∴2<6-13<3,∴a=2,b=6-13-2=4-13,∴2a-b=13。
第11章 数的开方一、选择题(本大题共7小题,每小题3分,共21分) 1.在数轴上,原点和原点左边的所有点表示的数是( ) A .负有理数 B .负数 C .零和负有理数D .零和负实数2.14的算术平方根是( ) A .12B .-12C .116D .±123.在3.14,√33,√2,0.12·,227,π-3.145,0.2020020002…(相邻两个2之间依次多一个0),-√2163,√49中,无理数有( ) A .1个B .2个C .3个D .4个4.估计√22的值在 ( ) A .3和4之间 B .4和5之间 C .5和6之间D .6和7之间5.有下列4种说法:①负数有一个负的立方根;②1的平方根与立方根都是1;③2的立方根是±√23;④互为相反数的两个数的立方根仍互为相反数.其中,正确的个数是( ) A .1B .2C .3D .46.下列各式正确的是( ) A .√81=±9 B .|3.14-π|=π-3.14 C .√-27=-9√3D .√5-√3=√27.如图1-Z -1,已知x 2=3,那么在数轴上与实数x 对应的点可能是( )图1-Z -1A .P 1B .P 4C .P 2或P 3D .P 1或P 4二、填空题(本大题共9小题,每小题3分,共27分) 8.(1)8的立方根是 ;(2)4的算术平方根是 . 9.比较大小(填“>”“<”或“=”): (1)√15 4; (2)√78-13-13.10.√7-5的相反数是 ,|1-√3|= .11.有下列结论:①数轴上的点只能表示有理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中,正确的结论有 个.12.若√10404=102,√x =0.102,则x= ;若√3.783≈1.558,√y 3≈155.8,则y= . 13.如果数轴上的点A 表示的数为√3,那么与点A 相距2个单位的点所表示的实数是 . 14.如图1-Z -2,数轴上表示1,√5的点分别为点A ,B.若A 是线段BC 的中点,则点C 所表示的数是 .图1-Z -215.已知一个正方体的棱长是3 cm,再制作一个正方体,使它的体积是第一个正方体的体积的8倍,则所制作的正方体的棱长是 cm .16.对于任意不相等的两个正数a ,b ,定义一种运算“※”如下:a ※b=√a+ba -b,如3※2=√3+23-2=√5.那么12※4= .三、解答题(本大题共6小题,共52分) 17.(8分)将下列各数的序号填在相应的横线上:① √83;②π;③3.1415926;④-0.456;⑤3.030030003…(相邻两个3之间依次多一个0);⑥0;⑦511;⑧-√93;⑨√(-7)2;⑩√0.1.有理数: ; 无理数: ; 正实数: ; 整数: . 18.(9分)计算: (1)-√36+√214+√273;3;(2)√9+|-4|+(-1)2-√-27(3)√0.81+√17-√1.69.919.(8分)求下列各式中的x的值: (1)9x2=64;(2)27x3-64=0.20.(8分)若某数的两个平方根分别是a+3和2a-15,求这个数的平方根与立方根.21.(8分)一个底面为25 cm×16 cm的长方体玻璃容器中装满水,现将一部分水倒入一个正方体铁桶中,当铁桶装满时,玻璃容器中的水面下降了20 cm,求正方体铁桶的棱长.22.(11分)阅读理解:因为√4<√5<√9,即2<√5<3,所以√5的整数部分为2,小数部分为√5-2.解决问题:已知a -1的平方根是±1,3a+b -2的立方根是2,x 是√13的整数部分,y 是√13的小数部分,求a+b+2x+y -√13的算术平方根.答案1.D2.A3.[解析] D 所给的数中无理数有√33,√2,π-3.145,0.2020020002…(相邻两个2之间依次多一个0),共4个数.4.B5.B6.B7.[解析] D 因为x 2=3,所以x=±√3, 所以与实数x 对应的点可能是P 1或P 4. 故选D .8.[答案] (1)2 (2)2[解析] (1)因为23=8,所以8的立方根是2. (2)因为22=4,所以4的算术平方根是2. 9.[答案] (1)< (2)< [解析] (1)因为4=√16>√15, 所以√15<4. 故答案为<. (2)√78-13=-12.因为-12>-13,所以-12<-13. 故答案为<. 10.5-√7 √3-1 11.[答案] 2[解析] 在所给的4个结论中,②和③是正确的. 12.0.010404 3780000 13.√3+2或√3-2 14.[答案] 2-√5[解析] 设点C 表示的数是x.因为数轴上表示1,√5的点分别为点A ,B ,A 是线段BC 的中点,所以√5+x2=1,解得x=2-√5.15.[答案] 6[解析] 第一个正方体的体积是33=27(cm 3),则新正方体的体积为(27×8)cm 3,所以棱长为√27×83=6(cm).16.[答案] 12[解析] 根据定义的新运算,运用所学的知识解决问题.12※4=√12+412-4=√168=48=12.17.解:有理数:①③④⑥⑦⑨; 无理数:②⑤⑧⑩; 正实数:①②③⑤⑦⑨⑩; 整数:①⑥⑨.18.解:(1)原式=-6+32+3=-32.(2)原式=3+4+1+3=11. (3)原式=0.9+43-1.3=1415.19.解:(1)由题意,得x 2=649,所以x=±√649,所以x=±83.(2)由题意,得x 3=6427,所以x=√64273,所以x=43. 20.解:由题意,得a+3+2a -15=0. 解得a=4, 所以a+3=7, 故这个数为49.所以这个数的平方根为±7,立方根是√493. 21.解:设正方体铁桶的棱长为x cm . 根据题意,得x 3=25×16×20, 解得x=20.答:正方体铁桶的棱长为20 cm . 22.解:因为a -1的平方根是±1, 所以a -1=1, 所以a=2.因为3a+b -2的立方根是2, 所以3a+b -2=8, 所以b=4.因为x 是√13的整数部分,y 是√13的小数部分, 所以x=3,y=√13-3,所以a+b+2x+y-√13=9,所以a+b+2x+y-√13的算术平方根为3.。
华师大版八年级上册第11章数的开方测试题一、选择题(3分×9=27分)1、25的平方根是( )A 、±5B 、+5C 、—5D 、52、8的立方根是( )A 、±2B 、+2C 、—2D 、8±3、代数式3-x 有意义的条件是( )A 、3≠xB 、3≤xC 、3≥xD 、3>x4、下列实数中,是无理数的是( )A 、71B 、9C 、327D 、3π 5、下列等式中,正确的是( )A 、24±=B 、39=±C 、3377-=-D 、4643±=6、一个数的平方根是12-m 和1+m ,则这个数是( )A 、2B 、—2C 、4D 、97、下列说法中正确的是( )A 、无理数是无限不循环小数;B 、无理数是开不尽方的数;C 、无理数是含量有根号的数;D 、无理数是含有π的数;8、16的算术平方根是( )A 、±4B 、2C 、4D 、±29、253++b a 的平方根是±3,332--b a 的立方根是2,则a b 的值是( )A 、1B 、—1C 、4D 、—4二、填空题(3分×6=18分)10、计算:=±25.2 ,14425= ,=-3343.0 ;11、比较大小:-2,6-7-; 12、已知073232=--+--y x y x ,则y x -= ;13、21-的相反数是 ,绝对值是 ; 14、若533+-+-=x x y ,则y x -= ;15、若m m -=-4)4(2,则m 的取值范围是 ;三、解答题(55分)16、解下列方程或不等式(5分×6=30分)1、344231x x -=+-2、54135x x -≥--3、⎩⎨⎧=--=-01083,872y x y x4、⎪⎩⎪⎨⎧-≥-+<+,51221),1(345x x x x5、⎪⎩⎪⎨⎧=-+=--=++042332z y x z y x z y x 6、081)2(2=--x17、已知:8,932-==y x ,求y x -的值。
华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分) 1.化简 |1−√2|+1的结果是 ( )A.2−√2B.2+√2C.√2D.22.计算:-64 的立方根与16的平方根的和是 ( )A.0B. -8C.0或-8D.8或-83.下列实数中,最小的是 ( )A.3 B √2 C √3 D.04.已知 m =√4+√3,则以下对m 的估算正确的是 ( )A.2<m<3B.3<m<4C.4<m<5D.5<m<65.下列说法正确的是 ( ) A.18的立方根是 ±12 B. -49 的平方根是±7C.11的算术平方根是 √11D.(−1)²的立方根是-16.下列各组数中互为相反数的是 ( )A. -2 与 √(−2)2B. -2 与 √−83C. -2 与 −12 D.2 与|-2|7.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为 ( )A.1B. -1C.2D. -28.下列各数:3.14 π3 √16 2.131 331 333 1…(相邻两个1之3的个数逐次多1) 2321,√−93.其中无理数的个数为 ( )A.2个B.3个C.4个D.5个9.实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是 ( )A.|a|>4B. c-b>0C. ac>0D. a+c>010.已知min(√x,x2,x)表示取三个数中最小的那个数,例如:当x=9时min(√x,x2,x)=min(√9,92,9)=3,则当min(√x,x2,x)=116时,x的值为 ( )A.116B.18C.14D.12二、填空题(每小题3分,共15分)11.计算:(−1)2+√9= .12.已知a、b满足(a−1)2+√b+2=0,则a+b= .13.已知a2=16,√b3=2且 ab<0,则√a+b= .14.我们知道√a≥0,所√aₐ有最小值.当x= 时2+√3x−2有最小值.15.请你观察思考下列计算过程:∴112=121 ∴√121=11;∵1112=12321,∴√12321=111⋯⋯由此猜想:√12345678987654321= .三、解答题(本大题共9个小题,满分75分)16.(6分)计算:(1)|−2|+√−83−√16;(2)6×√19−√273+(√2)2.17.已知(x−7)²=121,(y+1)³=−0.064求代数式√x−2−√x+10y+√245y3的值.18.(6分)求下列各式中的x的值:(1)(x+1)²−1=0;(2)23(x+1)3+94=0.19.(8分)阅读材料:如果xⁿ=a,那么x叫做a的n次方根.例如:因为2⁴=16,(−2)⁴=16,所以2和-2都是16的4次方根,即16的4次方根是2和-2,记作±√164=±2.根据上述材料回答问题:(1)求81 的4次方根和32 的5 次方根;(2)求10°的n次方根.20.(9分)求下列代数式的值.(1)如果a²=4,b的算术平方根为3,求a+b的值;(2)已知x是25的平方根,y是16的算术平方根,且.x<y,求x-y的值.x−y21.(9分)如图是一个无理数筛选器的工作流程图.(1)当x为16时,y= ;(2)是否存在输入有意义的x值后,却始终输不出y值? 如果存在,写出所有满足要求的x值,如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)当输出的y值√3₃时,判断输入的x值是否唯一,如果不唯一,请出其中的两个.22.(10分)阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此、√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:√4<√7<√9,即2<√7<3∴√7的整数部分为2,小数部分为√7−2.请解答:(1)√57的整数部分是,小数部分是;(2)如果√11的小数部分为a,√7的整数部分为b,求|a−b|+√11的值;(3)已知:9+√5=x+y,其中x是整数,且0<y<1,求x-y的相反数.x−y23.(10分)小丽想用一块面积为400cm²的正方形纸片,沿着边的方向裁出一块面积为300cm²的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗? 若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.24.(11分)如图1,长方形OABC 的边OA 在数轴上,点O 为原点,长方形OABC 的面积为12,OC 边的长为3.(1)数轴上点 A 表示的数为 ;(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为( O ′A ′B ′C ′,移动后的长方形(O ′A ′B ′C ′与原长方形OABC 重叠部分(如图2 中阴影部分)的面积记为S.①当S 恰好等于原长方形OABC 面积的一半时,求数轴上点. A ′表示的数;②设点A 的移动距离 AA ′=x.i 当S=4时,求x 的值;ii 点 D 为线段 AA'的中点,点 E 在线段0O ′上,且 OE =12OO ′,当点D 、E 表示的数互为相反数时,求x 的值. 参考答案1. C2. C3. D4. B5. C6. A7. B8. B9. B 10. C11.4 12. -1 13.214 2315.111 1111116.解: (1)|−2|+√−83−√16=2−2−4=−4.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.17.解: :(x −7)²=121,∴x −7=±11, 则x=18 或x= -4 又∵x -2≥0 ∴x≥2 ∴x=18.∵(y+1)³= -0.064 ∴y+1= -0.4 ∴y= -1.4 ∴√x −2 - √x +10y + 245y =√18−2−√18+10×(−1.4)−√245×(−1.4)3=√16−√4+√−3433 =4-2-7 = -5.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.18.解: (1)∵(x +1)²−1=0,∴(x +1)²=1,∴x +1=±1,解得x=0或x=-2.(2)∵23(x +1)3+94=0,∴8(x +1)3+27=0,∴(x +1)3=−278,∴x +1=−32,解得 x =−52.19.解:(1)因为 3⁴=81,(−3)⁴=81,所以3 和-3 都是81的4次方根,即81的4次方根是±3;因为 2⁵=32,所以32的5次方根是2.(2)当n 为奇数时 10" 的n 次方根为10;当n 为偶数时 10" 的n 次方根为±10.20.解:(1)∵a²=4 ∴a=±2 ∵b 的算术平方根为3 ∴b=9 ∴a+b=-2+9=7或a+b=2+9=11.(2)∵x 是25的平方根 ∴x=±5.∵y 是16的算术平方根 ∴y=4.∵x<y ∴x= -521.解:(1 √2(2)存在.当x=0,1时,始终输不出y 值.理由:0,1的算术平方根是0,1,一定是有理数.(3)当x<0时,筛选器无法运行.(4)x 值不唯一 x=3或x=9.(答案不唯一)22.解: (1)7√57−7(2 )∵3<√11<4,∴a =√11−3,∴2<√7<3,∴b =2,∴|a −b|+√11=|√11 - 3−2|+√11=5−√11+√11=5.(3)∵2<√5<3,∴11<9+√5<12,∵9+√5=x +y,其中x 是整数 且0<y<1 ∴x =11,y =9+√5−11=√5−2,∴x −y =11−(√5−2)=13−√5∴x -y 的相反数为 √5−13.23.解:(1)设面积为400 cm² 的正方形纸片的边长为a cm∴a²=400.又∵a>0 ∴a=20.又∵要裁出的长方形面积为300 cm²∴若以原正方形纸片的边长为长方形的长,则长方形的宽为300÷20=15( cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm 则宽为2x cm∴6x²=300,∴x²=50.又∵ x >0,∴x =√50∴长方形纸片的长为 3√50.又∵ √50>√49=7,∴3√50>21>20∴ 小丽不能用这块纸片裁出符合要求的纸片.24.解:(1)4(2)①∵S 等于原长方形OABC 面积的一半 ∴S=6 ∴12-3×AA'=6 解得. AA ′=2.当向左运动时,如图1,( OA ′=OA −AA ′=4−2=2,∴点A'表示的数为2;当向右运动时,如图2,∵ ∴OA ′=OA +AA ′=4+2=6,.∴ 点A'表示的数为6.所以点 A'表示的数.为2 或6.②i 左移时,由题意得O C ⋅OA ′=4,∵OC =3,∴OA ′=43,∴:x =OA −OA ′=4−43= 83;同法可得,右移时, x =83,故当S=4时x =83.ii 如图1,当原长方形OABC 向左移动时,点 D 表示的数为 4−12x,点 E 表示的数为 −12x,由题意可得方程 4−12x +(−12x)=0,解得x=4; 如图2,当原长方形OABC 向右移动时,点D 、E 表示的数都是正数,不符合题意.综上所述,x 的值为4.。
八年级数学上学期新版华东师大版:第11章达标检测卷一、选择题(每题3分,共30分) 1.下列实数中,是无理数的是( )A .3B .πC.17D.92.4的算术平方根是( )A .4B .-4C .2D .±23.下列说法中,正确的是( )A .27的立方根是±3B.16的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是1 4.已知a -9+|b -4|=0,则a b的平方根是( )A.32B .±32C .±34D.345.若平行四边形的一边长为2,面积为45,则此边上的高介于( )A .3与4之间B .4与5之间C .5与6之间D .6与7之间 6.下列说法中正确的是( )A .若|a |=|b |,则a =bB .若a <b ,则a 2<b 2C .若a 2=b 2,则a =b D .若3a =3b ,则a =b7.实数a ,b 在数轴上对应点的位置如图所示,则化简(a -2)2-(b -a )2-b 的结果是( )A .-2B .2a -2b -2C .2-2bD .2-2a8.有一个数值转换器,原理如图所示,当输入x 为64时,输出y 的值是( )A .4B.34C. 3D.329.一个正方体木块的体积是343 cm 3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是( ) A.72cm 2B.494cm 2C.498 cm 2D.1472cm 2 10.如图,数轴上A ,B 两点对应的实数分别为1和5,若点B 关于点A 的对称点为点C ,则点C 所对应的实数为( )A .1- 5 B.5-2 C .- 5 D .2- 5二、填空题(每题3分,共30分)11.7的相反数是________;绝对值等于3的数是________.12.若一个正数的平方根是2m -1和-m +2,则m =________,这个正数是________. 13.比较大小:(1)-10________-3.2;(2)3130________5.14.一个圆的面积变为原来的n 倍,则它的半径是原来半径的________倍. 15.若a 2=9,3b =-2,则a +b =________.16.已知x ,y 都是实数,且y =x -3+3-x +4,则yx =________.17.点A 在数轴上和表示3的点相距5个单位长度,则点A 表示的数为________________. 18.若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是________. 19.若x ,y 为实数,且满足|x -3|+y +3=0,则⎝ ⎛⎭⎪⎫x y2 023的值是________.20.设[x )表示大于x 的最小整数,如[3)=4,[-1.2)=-1,那么⎣⎢⎡⎭⎪⎫193=________;[-26)=________.三、解答题(21题12分,22题9分,23,24题每题6分,25题7分,26,27题每题10分,共60分) 21.计算:(1)16+|-3|+(-8)×⎝ ⎛⎭⎪⎫-34; (2)3 2+5 2-4 2;(3)3(3+2)-2(3-2); (4)(-1)2 023+38-3+2×22.22.求下列各式中未知数的值:(1)|a -2|=5; (2)4x 2=25; (3)(x -0.7)3=0.027. 23.已知某正数的两个平方根分别是a -3和2a +15,b 的立方根是-3,求a -b 的值. 24.已知a ,b ,c 在数轴上对应点的位置如图所示,化简:||a -||a +b +(c -a )2+||b -c .25.已知a ,b ,c ,d ,e ,f 为实数,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值是2,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值.26.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而1<2<2,于是可用2-1来表示2的小数部分.请解答下列问题: (1)35的整数部分是________,小数部分是____________;(2)如果11的小数部分为a ,27的整数部分为b ,求a +b -11的值;(3)已知90+117=x +y ,其中x 是整数,且0<y <1,求x +117+59-y 的平方根. 27.木工李师傅现有一块面积为 4 m 2的正方形胶合板,准备做装饰材料用,他设计了如下两种方案:方案一:沿着边的方向裁出一块面积为3 m 2的长方形装饰材料.方案二:沿着边的方向裁出一块面积为3 m 2的长方形装饰材料,且其长与宽之比为3:2. 李师傅设计的两种方案是否可行?若可行,请帮助解决如何裁剪;若不可行,请说明理由.答案一、1.B 2.C 3.C 4.B 5.B 6.D 7.D8.B 【点拨】64的立方根是4,4的立方根是34. 9.D 【点拨】由题意可知,小正方体木块的体积为3438cm 3,则每个小正方体木块的棱长为72 cm ,故每个小正方体木块的表面积为⎝ ⎛⎭⎪⎫722×6=1472(cm 2).10.D二、11.-7;± 3 12.-1;9 13.(1)> (2)> 14.n15.-5或-11 【点拨】∵a 2=9,3b =-2,∴a 为3或-3,b 为-8, 则a +b 为-5或-11.易错警示:本题容易将平方根与算术平方根相混淆,从而导致漏解. 16.6417.3+5或3- 5 【点拨】数轴上到某个点距离为a (a >0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.7 【点拨】∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4. ∴x +y =3+4=7.19.-1 【点拨】∵|x -3|+y +3=0, ∴x =3,y =-3,∴⎝ ⎛⎭⎪⎫x y2 023=(-1)2 023=-1.20.2;-5三、21.解:(1)原式=4+3+6=13. (2)原式=(3+5-4)2=4 2. (3)原式=3 3+3 2-2 3+2 2 =3+5 2.(4)原式=-1+2-3+1=-1.技巧点拨:实数的运算顺序为先算乘方、开方,再算乘、除,最后算加、减,如果没有括号,在同一级运算中要从左到右依次运算,有括号的先算括号里的.无论何种运算,都要注意先定符号后运算.22.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.(2)∵4x 2=25,∴x 2=254.∴x =±52.(3)∵(x -0.7)3=0.027, ∴x -0.7=0.3.∴x =1.23.解:∵正数的两个平方根分别是a -3和2a +15, ∴(a -3)+(2a +15)=0, 解得a =-4.∵b 的立方根是-3,∴b =-27, ∴a -b =-4-(-27)=23.24.解:由数轴可知b <a <0<c ,∴a +b <0,c -a >0,b -c <0.∴原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .25.解:∵a ,b 互为倒数,∴ab =1. ∵c ,d 互为相反数,∴c +d =0. ∵|e |=2,∴e 2=2. ∵f =8,∴f =64.∴原式=12×1+05+2+364=132.26.解:(1)5;35-5(2)因为3<11<4,5<27<6, 所以a =11-3,b =5, 所以原式=11-3+5-11=2. (3)因为10<117<11, 所以100<90+117<101, 所以x =100,y =117-10,所以原式=100+117+59-(117-10)=169.因为169的平方根为±13,所以x +117+59-y 的平方根为±13. 27.解:方案一可行. ∵正方形胶合板的面积为4 m 2, ∴正方形胶合板的边长为4=2(m).如图所示,沿着EF裁剪.∵BC=EF=2 m,∴只要使BE=CF=3÷2=1.5(m)就满足条件.方案二不可行.理由如下:设所裁长方形装饰材料的长为3x m、宽为2x m. 则3x·2x=3,即2x2=1.解得x=12(负值已舍去).∴所裁长方形的长为312m.∵312>2,∴方案二不可行.【点拨】方案一裁剪方法不唯一.。
第11章 数的开方单元检测姓名:__________班级:__________考号:__________一、单选题1.在-1.414, , ,3.14,2 ,3.212212221…这些数中,无理数的个数为( )A . 2B . 3C . 4D . 52.16的算术平方根等于( )A . ±4B . 一4C . 4D .3.下列命题中,正确的是( )A 、两个无理数的和是无理数B 、两个无理数的积是实数C 、无理数是开方开不尽的数D 、两个有理数的商有可能是无理数4x 的取值范围是( )A .x <2B .x ≤2C .x >2D .x ≥25. 的平方根是( )A . 2B . ﹣2C . ±2D . 46.下列四个实数中最小的是( )A .B . 2C .D . 1.47.下列各数是无理数的是( )A . 0.37B . 3.14C . 2π D . 0 8.面积为2的正方形的边长是( )A . 整数B . 分数C . 有理数D . 无理数9.在实数0,310,1- )A .0B .310C .1-D 10.比较22,3,7的大小,正确的是( )A .7<3<22B .22<7<3C .22<3<7D .7<22<311 )A . 3±B . 3C . 3-D . 81二、填空题12. 的算术平方根是__, 的立方根是___, 绝对值是______.13.面积为3的正方形边长是______.14﹣35,则x =_____=6,则x =_____. 15.-8的立方根是_________,81的算术平方根是__________.16.-64______.三、解答题17.在数轴上表示下列各数:2 的相反数,绝对值是 的数,-1 的倒数.18.(1;(219.如果2a -1和5-a 是一个正数m 的平方根,3a +b -1的立方根是-2, 求a +2b 的平方根.20.解方程:(1)x 2=16; (2)(x ﹣4)2=4;(3)x 3=-125; (4)()313903x +-=.21.观察下列各式及验证过程:==========(1(2)针对上述各式反映的规律,写出用n(n≥2的自然数)表示的等式,并进行验证.22.阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的小数部分为b,求的值.23的小数部分我们1的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<7<3,即23的整数部分为22.请解答:(1的整数部分是,小数部分是.(2a,b,求a+b(3)已知:x是y是其小数部分,请直接写出x﹣y的值的相反数.参考答案1.C【解析】分析:根据无理数的定义及无理数常见的三种形式解答即可.详解: -1.414,3.14是有理数;,,2,3.212212221…是无理数;故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如,等;②圆周率π;③构造的无限不循环小数,如(0的个数一次多一个).2.C【解析】试题分析:∵42=16,,"故选C.考点:算术平方根.3.D【解析】试题分析:两个实数相加的和为有理数。
实 用 文 档 1 第11章 数的开方检测题 【本检测题满分:100分,时间:90分钟】 一、选择题(每小题3分,共30分)1.估算192+的值是在( )A.5和6之间B.6和7之间C.7和8之间D.8和9之间2.在下列各数中是无理数的有( )-0.333…,4,5,3π,3.141 5,2.010 101…(相邻两个1之间有1个0), 76.012 345 6…(小数部分由连续的自然数组成).A.3个B.4个C. 5个D. 6个 3.下列语句中,正确的是( ) A.-9的平方根是-3 B.9的平方根是3C.0没有算术平方根D.9的算术平方根是34.下列结论中,正确的是( )A.2(6)6--=-B.2(3)9-=C.2(16)16-=±D.216162525⎛⎫--= ⎪⎝⎭5.2(9)-的平方根是x ,64的立方根是y ,则x y +的值为( )A.3B.7C.3或7D.1或76.下列各式中,计算不正确的是( )A .2(3)3=B .2(3)3-=-C .2(3)3-=D .2(3)3--=-7.下列运算中,错误的有( )①2551114412=;②2(4)4-=±;③22222-=-=-;④1111916254520+=+=.A.1个B.2个C.3个D.4个8.下列说法中,正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数9.若24a =,29b =,且0<ab ,则a b -的值为( )A.-2B.±5C.5D.510.若2m m =-,则实数m 在数轴上的对应点一定在( )A.原点左侧B.原点右侧C.原点或原点左侧D. 原点或原点右侧二、填空题(每小题3分,共24分)11.平方等于3的数是_________;立方等于-64的数是_________.12.计算:3616+=__________;3318-⨯=___________.13.212104a b ⎛⎫++= ⎪⎝⎭,则ab =________.14.若一个正数的平方根分别是21a -和2a -+,则a = ,这个正数是 .15.33270x -=,则x = .16.若a ,b 互为相反数,c ,d 322a b cd -172(4)a --a 值是 .1812a a a --的最小值是 .三、解答题(共46分)19.(6分)求下列各式的值:(1 1.44(2)30.027-;(3610-(4964;(524125+(6)310227---20.(6分)已知x +12的平方根是13±26x y +-的立方根是2,求3xy 的算术平方根.。
第十一章数的开方(测基础)——2022-2023学年华东师大版数学八年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列各数是负数的是( )A.0B.C.D.2.实数的绝对值是( )A. B. C. D.3.下列各数中,没有平方根的是( )A. B. C. D.4.下列各式计算正确的是( )A. B.C. D.5.如图,数轴上,,A,B两点对应的实数分别是和-1,则点C所对应的实数是( )A. B.C. D.6.如果a是的平方根,那么等于( )A. B. C. D.或7.下列说法:①一个数的平方根等于它本身,这个数是0或1;②实数包括无理数和有理数;③2的算术平方根是;④无理数是带根号的数.正确的有( )A.1个B.2个C.3个D.4个8.若,则等于( )A.xB.2xC.0D.-2x9.已知,则的值为( )A.1B.2C.3D.410.已知x为实数,且,则的平方根为( )A.3B.-3C.3或-3D.2或-2二、填空题(每小题4分,共20分)11.计算:________.12.一个正数的平方根分别是和,则___________.13.的整数部分是_________.14.若,则___________.15.大于且小于的整数有__________个.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)“”是一个著名的数学“诡辩”,有人用下述方法“说明”这一结果是“正确”的.因为,所以,,,所以.“”这个结果显然是不正确的,但问题出现在哪里呢?请你找一找,并说明理由.17.(8分)计算:(1);(2).18.(10分)已知,,π,3.1416,0,,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出这些数中所有的有理数;(2)写出这些数中所有的无理数;(3)把这些数按由小到大的顺序排列起来,并用“<”连接.19.(10分)已知和分别是a的两个平方根,是a的立方根.(1)求a,x,y的值;(2)求的平方根和算术平方根.20.(12分)如图,a,b,c是数轴上三个点A,B,C所对应的实数。
第11章 数的开方 单元检测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列实数中,无理数是( )A.√3B.√273C.3.14D.7132. 4的平方根是( )A.2B.4C.±2D.±√23. 下列各式中正确的是( )A.√(−2)2=−2B.±√9=3C.√16=8D.√22=24. 设4−√2的整数部分是a ,小数部分是b ,则a −b 的值为( )A.1−√22 B.√2 C.1+√22 D.−√25. 下列说法正确的是( )A.144的平方根等于12B.25的算术平方根等于5C.√16的平方根等于±4D.√93等于±3 6. 若√x +6+√2+y =0,则√xy =( )A.2√2B.2√3C.−2√2D.−2√37. 若|a|=5,√b 2=3,且a 和b 均为正数,则a +b 的值为( )A.8B.−2C.2D.−88. −64的立方根与√64的平方根之和为( )A.−2或2B.−2或−6C.−4+2√2 或−4−2√2D.09. 下列说法正确的是()A.两个无理数的和一定是无理数B.负数没有平方根和立方根C.有理数和数轴上的点一一对应D.绝对值最小的数是010. √2−√3的绝对值是()A.√3+√2B.−√3−√2C.√3−√2D.√2−√3二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 4的算术平方根为________.12. 请你写出一个大于1,且小于3的无理数是________.13. 写一个在−2和−1之间的无理数________.14. 16的平方根是________;√5−2的相反数是________;|√2−3|=________.15. 如图,M,N,P,Q是数轴上的四个点,这四个点中最适合表示√7的点是________.16. 在数轴上如果点A表示√2,点B表示√5,则点A在点B的________,A、B两点的距离是________.17. −27的立方根与√81的平方根的和是________.18. 比较大小:2√3________3√2,−2√3________−3√2.19. 设√3的整数部分是a,小数部分是b,求a2+b2的值为________.20. 已知2a −1的平方根是±3,3a +b −1的算术平方根是4,求a +2b =________.三、 解答题 (本题共计 8 小题 ,共计60分 , )21. 已知a 为√240的整数部分,b −1是400的算术平方根,求√a +b .22. 若√17+1的整数部分为x ,小数部分为y ,求(√17+x)(y −1)的值.23. 计算:(1)√(−4)2+√(−4)33×(−12)2(2)求(x −2)2=9中x 的值.24. 计算:6√12−√−643−(√6−1)×√325. 已知2a −1的算术平方根足3,3a +b −1的立方根是2,求a −2b 的平方根.26. 小丽想用一块面积是400cm2的正方形纸片,沿着边的方向裁出一块面积是300cm2的长方形纸片,是它的长宽之比是3:2,她能裁出来吗?为什么?27. 小明想用一块面积为16cm2的正方形纸片,沿边的方向裁出一块面积为12cm2的长方形纸片,使它的长宽之比为3:2,他能裁出吗?28. 阅读下面的文字,解答问题.大家都知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能写出来,于是小明用√2−1来表示√2的小数部分.事实上,小明的表示方法是有道理的,因为√2的整数部分是1,用这个数减去其整数部分,差就是小数部分,所以√2−1是√2的小数部分.请解答:(1)你能求出√5+2的整数部分a和小数部分b吗?并求ab的值;(2)已知10+√3=x+y,其中x是整数,且0<y<1,请求出x−y的相反数.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】A、√3是无理数;3=3是有理数;B、√27C、3.14为有理数;D、7是有理数;132.【答案】C【解答】解:∵ (±2)2=4,∵ 4的平方根是±2故选(C)3.【答案】D【解答】解:√(−2)2=√4=2;±√9=±3;√16=4;√22=2.则D正确,其余错误.故选D.4.【答案】B【解答】解:√2≈1.732,∵ 整数部分a=2,小数部分b=4−√2−2=2−√2,∵ a−b=2−(2−√2)=√2.故选:B.5.【答案】B【解答】解:A,144的平方根是12和−12,不符合题意;B,25的算术平方根是5,符合题意;C,√16=4,4的平方根是2和−2,不符合题意;3为9的立方根,不符合题意.D,√9故选B.6.【答案】B【解答】由题意得,x+6=0,2+y=0,解得x=−6,y=−2,所以√xy=√(−6)×(−2)=2√3.7.【答案】A【解答】解:根据题意得:a=±5,b=±3,∵ a和b都为正数,∵ a=5,b=3,则a+b=5+3=8.故选A.8.【答案】C【解答】3=−4,√64=8,解:√−64∵ 8的平方根为±2√2,∵ −64的立方根与√64的平方根之和为−4±2√2.故选C.9.【答案】D【解答】解:A、两个无理数的和一定不一定是无理数,例如,√2+(−√2)=0,故选项错误;B、负数有立方根没有平方根,故选项错误;C、实数和数轴上的点一一对应,故选项错误;D、绝对值为非负数,绝对值最小的数是0,故选项正确.故选D.10.【答案】C【解答】解:√2−√3的绝对值是√3−√2.故选C.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】2【解答】解:∵ (±2)2=4,∵ 4的算术平方根是2.故答案为:2.12.【答案】√2【解答】∵ 1=√1,3=√9,∵ 写出一个大于1且小于3的无理数是√2.13.【答案】−√2,−√3等【解答】解:在−2和−1之间的无理数是−√2,−√3..14.【答案】±4,2−√5,3−√2【解答】解:16的平方根是±4;√5−2的相反数是2−√5;|√2−3|=3−√2.故答案为:±4,2−√5,3−√2.15.【答案】P【解答】解:∵ 4<7<9,∵ 2<√7<3,∵ √7在2与3之间,且更靠近3.故答案为:P.16.【答案】左边,√5−√2【解答】解;∵ 5>2,∵ √5>√2.∵ 点A在点B的左边.A、B两点的距离=√5−√2.故答案为:左边;√5−√2.17.【答案】0或−6【解答】解:∵ −27的立方根是−3,√81=9的平方根是±3,∵ 它们的和为0或−6.故答案为:0或−6.18.【答案】<,>【解答】解:∵ 2√3=2×3=√12,3√2=√18,∵ 2√3<3√2;−2√3>3√2,故答案为:<,>.19.【答案】5−2√3【解答】解:∵ √1<√3<√4,即1<√3<2,∵ a=1,b=√3−1,∵ a2+b2=12+(√3−1)2=1+3−2√3+1=5−2√3.故答案为:5−2√3.20.【答案】9【解答】依题知:2a−1=9①3a+b−1=16②解得:a=5,b=2,所以a+2b=9,三、解答题(本题共计8 小题,每题10 分,共计80分)21.【答案】解:∵ a为√240的整数部分,又15<√240<16,∵ a=15,∵ b−1是400的算术平方根,∵ b−1=20,则b=21,故√a+b=√15+21=6.【解答】解:∵ a为√240的整数部分,又15<√240<16,∵ a=15,∵ b−1是400的算术平方根,∵ b−1=20,则b=21,故√a+b=√15+21=6.22.【答案】解:∵ 4<√17<5,∵ √17的整数部分是4,∵ √17+1的整数部分是4+1=5,即x=5,小数部分是√17−4,即y=√17−4,∵ (√17+x)(y−1)=(√17+5)(√17−4−1)=−8,即(√17+x)(y−1)的值是−8.【解答】解:∵ 4<√17<5,∵ √17的整数部分是4,∵ √17+1的整数部分是4+1=5,即x =5, 小数部分是√17−4,即y =√17−4, ∵ (√17+x)(y −1)=(√17+5)(√17−4−1)=−8, 即(√17+x)(y −1)的值是−8.23.【答案】解:(1)原式=4−1=3;(2)开平方得:x −2=±3,解得:x 1=5,x 2=−1.【解答】解:(1)原式=4−1=3;(2)开平方得:x −2=±3,解得:x 1=5,x 2=−1.24.【答案】6√12−√−643−(√6−1)×√3 =3√2−(−4)−3√2+√3=4+√3【解答】6√12−√−643−(√6−1)×√3 =3√2−(−4)−3√2+√3=4+√325.【答案】由题意得:2a −1=9,3a +b −1=−8, 解得:a =5,b =−22,则a −2b =5+44=49,49的平方根是±7.【解答】由题意得:2a−1=9,3a+b−1=−8,解得:a=5,b=−22,则a−2b=5+44=49,49的平方根是±7.26.【答案】解:设长方形纸片的长为3Xcm,宽为2Xcm.3X⋅2X=300,X=5√2,因此,长方形纸片的长为15√2cm.因为15√2>21,而正方形纸片的边长只有20cm,所以不能裁出符合要求的纸片.【解答】解:设长方形纸片的长为3Xcm,宽为2Xcm.3X⋅2X=300,X=5√2,因此,长方形纸片的长为15√2cm.因为15√2>21,而正方形纸片的边长只有20cm,所以不能裁出符合要求的纸片.27.【答案】解:设长方形的长为3xcm,宽为2xcm,根据题意得:6x2=12,解得:x=√2,∵ 正方形的面积为16cm2,∵ 正方形的边长为4cm,∵ 长方形的长为3√2>4,则不能裁出这样的长方形.【解答】解:设长方形的长为3xcm,宽为2xcm,根据题意得:6x2=12,解得:x=√2,∵ 正方形的面积为16cm2,∵ 正方形的边长为4cm,∵ 长方形的长为3√2>4,则不能裁出这样的长方形.28.【答案】解:(1)∵ 4<5<9,∵ 2<√5<3.∵ 4<√5+2<5.∵ a=4,b=√5+2−4=√5−2.∵ ab=4×(√5−2)=4√5−8.(2)∵ 1<3<4,∵ 1<√3<2.∵ 11<10+√3<12.∵ x=11,y=10+√3−11=√3−1.∵ x−y=11−(√3−1)=12−√3.∵ x−y的相反数为√3−12.【解答】解:(1)∵ 4<5<9,∵ 2<√5<3.∵ 4<√5+2<5.∵ a=4,b=√5+2−4=√5−2.∵ ab=4×(√5−2)=4√5−8.(2)∵ 1<3<4,∵ 1<√3<2.∵ 11<10+√3<12.∵ x=11,y=10+√3−11=√3−1.∵ x−y=11−(√3−1)=12−√3.∵ x−y的相反数为√3−12.。
第11章达标测试卷
一、选择题(每题3分,共30分) 1.9的算术平方根是( ) A .±3
B .3
C .-3
D. 3
2.下列4个数:9,22
7,π,(3)2,其中无理数是( ) A.9
B.227
C .π
D .(3)2
3.下列各式中正确的是( ) A.
49144=±712
B .-
3
-278=-3
2
C.-9=-3
D.3
(-8)2=4
4.如图,数轴上点N 表示的数可能是( ) A.10
B. 5
C. 3
D. 2
5.比较32,52,-6
3的大小,正确的是( )
A.32<52<-63 B .-63<32<52 C.32<-63<52 D .-63<52<32 6.若a 2=4,b 2=9,且ab >0,则a +b 的值为( ) A .-1
B .±5
C .5
D .-5
7.设边长为a 的正方形的面积为2.下列关于a 的四种结论:①a 是2的算术平方根;②a 是无理数;③a 可以用数轴上的一个点来表示;④0<a <1.其中正确的是( ) A .①②
B .①③
C .①②③
D .②③④
8.如图,有一个数值转换器,原理如下:
当输入的x为64时,输出的y等于()
A.2 B.8 C. 2 D.8
9.一块正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每块小正方体木块的表面积是()
A.7
2cm
2 B.
49
4cm
2 C.
49
8cm
2 D.
147
2cm
2
10.如图,数轴上A,B两点对应的实数分别为1和3,若点A关于点B的对称点为点C,则点C所对应的实数为()
A.23-1 B.1+ 3 C.2+ 3 D.23+1
二、填空题(每题3分,共30分)
11.6的相反数是________;绝对值等于2的数是________.
12.某个数的平方根分别是a+3和2a+15,则这个数为________.
13.4+3的整数部分是________,小数部分是________.
14.在3
5,π,-4,0这四个数中,最大的数是________.
15.若2x+7=3,(4x+3y)3=-8,则3
x+y=________.
16.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.17.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.
18.对于任意两个不相等的实数a,b,定义运算※如下:a※b=
a+b
a-b
,那么7※9
=________.
19.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.20.请你认真观察、分析下列计算过程:
(1)∵112=121,∴121=11;
(2)∵1112=12 321,∴12 321=111;
(3)∵1 1112=1 234 321,∴ 1 234 321=1 111;…
由此可得,12 345 678 987 654 321=______________________.
三、解答题(21题12分,26,27,28题每题8分,其余每题6分,共60分) 21.计算:
(1)(-1)2 017+16-9
4;(2)
1
4+0.5
2-
3
8;
(3)-(-2)2+(-2)2-3
-82;(4)2+|3-32|-(-5)2.
22.已知|3x-y-1|和2x+y-4互为相反数,求x+4y的平方根.
23.已知3既是x-1的算术平方根,又是x-2y+1的立方根,求4x+3y的平方根和立方根.
24.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+3
8cd的值.
25.已知a,b,c在数轴上对应点的位置如图所示,化简:||a-||
a+b+(c-a)2+||
b-c.
26.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d 代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.
(1)计算冰川消失16年后苔藓的直径;
(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?
27.观察下列一组等式,然后解答后面的问题:
(2+1)(2-1)=1,(3+2)(3-2)=1,(4+3)(4-3)=1,(5+
4)(5-4)=1,…
(1)观察上面的规律,计算下面的式子:
1
2+1+
1
3+2
+
1
4+3
+…+
1
2 019+ 2 018
;
(2)利用上面的规律,试比较11-10与12-11的大小.
28.李奶奶新买了一套两室一厅的住房,将原边长为1 m的方桌换成了边长是
1.3 m的方桌.为使新方桌有块桌布,且能利用原边长为1 m的桌布,既节约
又美观,李奶奶问在读八年级的孙子小刚有什么方法.聪明的小刚想了想说:“奶奶,你再去买一块和原来一样的桌布,按照如图①,图②所示的方法做就行了.”
(1)小刚的做法对吗?为什么?
(2)你还有其他方法吗?请画出图形.
答案
一、1.B 2.C 3.D 点拨:A 项中49144=712;B 项中-3-278=3
2;C 项中-9无算术平方
根;只有D 项正确. 4.A 5.D 6.B
7.C 点拨:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误. 8.D
9.D 点拨:由题意可知,小正方体木块的体积为343
8 cm 3,则每块小正方体木块的棱长为72 cm ,故每块小正方体木块的表面积为⎝ ⎛⎭⎪⎫722
×6=1472(cm 2).
10.A
二、11.-6;±2 12.9 13.5;3-1 14.π 15.-1
16.1-6或1+6 点拨:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.
17.7 点拨:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7. 18.-2
19.-1 点拨:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1. 20.111 111 111
三、21.解:(1)(-1)2 017+16-94=-1+4-32=32.
(2)
14+0.52
-38=12+0.5-2=-1.
(3)-(-2)2+(-2)2-3
-82=-4+2-(-4)=2.
(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6. 22. 解:根据题意,得||3x -y -1+2x +y -4=0, 即⎩⎨⎧3x -y -1=0,2x +y -4=0,解得⎩⎨⎧x =1,y =2,
所以x +4y =9.所以x +4y 的平方根是 ±3.
23.解:根据题意得x -1=9且x -2y +1=27,解得x =10,y =-8.∴4x +3y =16,其平方根为±4,立方根为316. 24.解:由已知得a +b =0,cd =1, 所以原式=0+3
8=2.
25.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c . 26.解:(1)当t =16时,d =7×16-12=7×2=14(厘米). 答:冰川消失16年后苔藓的直径为14厘米.
(2)当d =35时,t -12=5,即t -12=25,解得t =37.
答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的. 27.解:(1)
12+1+13+2+14+3+…+1
2 019+ 2 018
=(2-1)+(3-2)+(4-3)+…+( 2 019- 2 018)= 2 019-1. (2)因为111-10=11+10,1
12-11
=12+11,且11+10<12+
11, 所以
111-10<112-11
.
又因为11-10>0,12-11>0,所以11-10>12-11.
点拨:此题运用归纳法,先由具体的等式归纳出一般规律,再利用规律来解决问题.
28.解:(1)小刚的做法是对的,因为将边长为1 m的两个正方形分别沿着一条对角线剪开,成为四个大小相同、形状完全一样的等腰直角三角形,然后拼成一个大正方形.这个大正方形的面积为2 m2,其边长为 2 m,而2>1.3,故能铺满新方桌;
(2)有.如图所示.。