图论入门
- 格式:pptx
- 大小:397.89 KB
- 文档页数:19
图论基本知识对于网络的研究,最早是从数学家开始的,其基本的理论就是图论,它也是目前组合数学领域最活跃的分支。
我们在复杂网络的研究中将要遇到的各种类型的网络,无向的、有向的、加权的……这些都可以用图论的语言和符号精确简洁地描述。
图论不仅为物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。
图论,尤其是随机图论已经与统计物理并驾齐驱地成为研究复杂网络的两大解析方法之一。
考虑到物理学家对于图论这一领域比较陌生,我在此专辟一章介绍图论的基本知识,同时将在后面的章节中不加说明地使用本章定义过的符号。
进一步研究所需要的更深入的图论知识,请参考相关文献[1-5]。
本章只给出非平凡的定理的证明,过于简单直观的定理的证明将留给读者。
个别定理涉及到非常深入的数学知识和繁复的证明,我们将列出相关参考文献并略去证明过程。
对于图论知识比较熟悉的读者可以直接跳过此章,不影响整体阅读。
图的基本概念图G 是指两个集合(V ,E),其中集合E 是集合V×V 的一个子集。
集合V 称为图的顶点集,往往被用来代表实际系统中的个体,集合E 被称为图的边集,多用于表示实际系统中个体之间的关系或相互作用。
若{,}x y E ,就称图G 中有一条从x 到y 的弧(有向边),记为x→y ,其中顶点x 叫做弧的起点,顶点y 叫做弧的终点。
根据定义,从任意顶点x 到y 至多只有一条弧,这是因为如果两个顶点有多种需要区分的关系或相互作用,我们总是乐意在多个图中分别表示,从而不至于因为这种复杂的关系而给解析分析带来困难。
如果再假设图G 中不含自己到自己的弧,我们就称图G 为简单图,或者更精确地叫做有向简单图。
以后如果没有特殊的说明,所有出现的图都是简单图。
记G 中顶点数为()||G V ν=,边数为()||G E ε=,分别叫做图G 的阶和规模,显然有()()(()1)G G G ενν≤-。
图2.1a 给出了一个计算机分级网络的示意图,及其表示为顶点集和边集的形式。
第6章图论一、内容提要1.图的定义定义1.(图的定义一)图G = (V, E)是一个系统,其中(1)V≠∅是一个有限集合;V中的每一元素v∈V都称为图G的一个结点;V称为图G 的结点集;(2)E是一个有限集合;E中的每一元素e∈E都称为图G的一条边;E称为图G的边集。
定义2. (图的定义二)图G = (V, E)是一个系统,其中(1)V ≠∅是一有限集合;V中的每一元素v∈V都称为图G的一个结点;V称为图G的结点集;(2)E⊆V⨯V是一有限集合,一个V上的关系;E中的每一元素(u,v)∈E都称为图G的一条边(这里u, v∈V);E称为图G的边集。
定义3. (图的定义三)图G= (V,∑, E)是一个系统,其中(1)V ≠∅是一有限集合;V中的每一元素v∈V都称为图G的一个结点;V称为图G的结点集;(2)∑是一有限集合;∑中的每一元素σ∈∑都称为图G中的一个标号;∑称为图G的标号集;(3)E ⊆V⨯∑⨯V是一有限集合,一个三元关系;E中的每一元素(u,σ ,v)∈E都称为图G的一条边或弧,此边起自u而终于v;称u是此边的起点,称σ是此边的标号,称v是此边的终点,起点和终点统称为边的端点(这里u, v∈V , σ∈∑);E称为图G的边集。
定义4. (图的定义四)图G=(V,E, γ)是一个系统,其中(1)V ≠∅是一有限集合;V中的每一元素v∈V都称为图G的一个结点;V称为图G 的结点集;(2)E是一个有限集合;E中的每一元素e∈E都称为图G的一条边;E称为图G的边集。
(3)γ是边到结点集的一个关联函数,即γ:E→2V(无向图) 或γ:E→ V⨯V (有向图) 。
一般来说,它将E中的每条边e∈E与结点集V中的一个二元子集{u,v}∈2V (或{u,v}⊆V)相关联或与结点集V上的一个二元组(u,v)∈V⨯V相关联,即γ(e)={u,v} (无向图) 或γ(e)= (u,v) (有向图) ,称u是此边的起点,称v是此边的终点,结点u和v统称为边的端点。
图论基础:图的基本概念和应用图论是数学中的一个分支领域,研究的是图的性质和图上的问题。
图被广泛应用于计算机科学、电子工程、运筹学、社交网络分析等领域。
本文将介绍图论的基本概念和一些常见的应用。
一、图的基本概念1. 顶点和边图是由顶点和边组成的,顶点代表图中的元素,边则代表元素之间的关系。
通常顶点表示为V,边表示为E。
2. 有向图和无向图图可以分为有向图和无向图。
在无向图中,边是没有方向的,顶点之间的关系是双向的;而在有向图中,边是有方向的,顶点之间的关系是单向的。
3. 权重在一些应用中,边可能具有权重。
权重可以表示顶点之间的距离、成本、时间等概念。
有权图是指带有边权重的图,而无权图则是指边没有权重的图。
4. 路径和环路径是指由一系列边连接的顶点序列,路径的长度是指路径上边的数量。
环是一种特殊的路径,它的起点和终点相同。
5. 度数在无向图中,顶点的度数是指与该顶点相关联的边的数量。
在有向图中分为出度和入度,出度是指从该顶点出去的边的数量,入度是指指向该顶点的边的数量。
二、图的应用1. 最短路径问题最短路径问题是图论中的一个经典问题,它研究如何在图中找到两个顶点之间的最短路径。
这个问题有许多实际应用,例如在导航系统中寻找最短驾驶路径,或者在电信网络中找到最短的通信路径。
2. 最小生成树最小生成树是指一个连接图中所有顶点的无环子图,并且具有最小的边权重之和。
这个概念在电力网络规划、通信网络优化等领域有广泛的应用。
3. 路由算法在计算机网络中,路由算法用于确定数据包在网络中的传输路径。
图论提供了许多解决路由问题的算法,如最短路径算法、Bellman-Ford 算法、Dijkstra算法等。
4. 社交网络分析图论在社交网络分析中起着重要的作用。
通过构建社交网络图,可以分析用户之间的关系、信息传播、社区发现等问题。
这些分析对于推荐系统、舆情监测等领域具有重要意义。
5. 电路设计图论在电路设计中也有应用。
通过将电路设计问题转化为图论问题,可以使用图论算法解决电路布线、最佳布局等问题。
基本知识点:一、图的基本定义:平凡图:只有一个顶点无边的图。
非平凡图:其他所有图。
空图:边集合为空的图。
简单图:既没有环也没有重边的图。
复合图:其他所有的图。
同构图:顶点集合之间存在双射(一一对应关系),对应边重数和端点对应相等。
标定图:给图的点和边标上符号。
非标定图:不标号。
非标定图代表一类相互同构的图。
完全图:每两个不同顶点之间都有一条边相连的简单图。
N 个顶点的完全图只有一个,记为n K 。
偶图(二部图):具有二分类(,)X Y 的图,他的点集可以分解为两个(非空)子集X 和Y ,使得每条边的一个端点在X 中,另一个端点在Y 中。
完全偶图 :指具有二分类(,)X Y 的简单偶图,其中X 的每个顶点与Y 的每个顶点相连。
若,X m Y n ==,则这样额完全偶图记为:,m n K 。
k —正则图:设(,)G V E =为简单图,如果对所有的结点v V ∈,有()d v k =,称G 为k —正则图。
完全图和完全偶图,n n K 均是正则图。
图划分:若一个n 阶简单图G 各点的度为i d ,则分正整数k 为n 个部分的划分i d ∑称为是图划分。
子图:边集合和点集合均是原图的子集,且待判定图中的边的重数不超过原图中对应的边的重数。
生成子图:点集合相等,边集合为原图子集的图。
导出子图:由顶点集为原图G 真子集的所有点,及两端点均在该集合中的边的全体组成的子图V ‘。
'[]G V 和G v -。
边导出子图:由原图G 边的真子集,该图中边的断点全体为顶点组成的子图E ‘。
'[]G E 和{}G e -。
图的运算:并,交,差,对称差,联图,积图,合成图,极图路与图的联通性:途径:迹:边互不相同的途径。
路:边和点都互不相同的途径。
连通的:两个顶点之间存在路。
连通图:每一对顶点之间都有一条路。
连通分支:将V 划分为一些等价类12,,...k V V V 。
两个顶点u 和v 是连通的当且仅当他们属于同一个子集i V ,称子图()i G V 为连通分支。
离散数学中的图论入门图论是离散数学的一个重要分支,研究的对象是图。
图是由一些点和连接这些点的边组成的数学模型,可以用来描述现实世界中的各种关系和问题。
本文将介绍图论的基本概念和常见应用,帮助读者初步了解图论的入门知识。
一、图的定义与基本术语图由顶点集合和边集合组成。
顶点集合是图中的点的集合,用V表示;边集合是图中连接顶点的边的集合,用E表示。
图可以分为有向图和无向图。
有向图中的边是有方向的,表示从一个顶点指向另一个顶点的关系;无向图中的边是无方向的,表示两个顶点之间的关系。
图还可以分为简单图和多重图。
简单图中不存在重复的边和自环(起点和终点相同的边);多重图中可以存在重复的边和自环。
图中的边可以带权重,表示顶点之间的距离、代价或其他属性。
带权图可以用来解决最短路径、最小生成树等问题。
图的度是指与顶点相关联的边的数量。
对于无向图,顶点的度等于与之相连的边的数量;对于有向图,顶点的度分为入度和出度,分别表示指向该顶点的边的数量和从该顶点指出的边的数量。
二、图的表示方法图可以用邻接矩阵和邻接表两种方式进行表示。
邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否存在边。
如果顶点i和顶点j之间存在边,则邻接矩阵中第i行第j列的元素为1;否则为0。
邻接矩阵适用于稠密图,但对于稀疏图来说,会浪费较多的存储空间。
邻接表是由若干个链表构成的数组,数组的每个元素对应一个顶点,链表中存储与该顶点相连的其他顶点。
邻接表适用于稀疏图,可以有效地节省存储空间。
三、常见的图论算法与应用1. 深度优先搜索(DFS):DFS是一种用于遍历图的算法,通过递归的方式依次访问与当前顶点相邻的未访问过的顶点,直到所有顶点都被访问过为止。
DFS可以用来解决连通性、可达性等问题。
2. 广度优先搜索(BFS):BFS也是一种用于遍历图的算法,通过队列的方式按层次遍历图中的顶点。
BFS可以用来求解最短路径、网络分析等问题。
3. 最小生成树(MST):最小生成树是指在连通图中选择一棵生成树,使得树中所有边的权重之和最小。