图论基础
- 格式:doc
- 大小:67.50 KB
- 文档页数:9
图论的基础概念和算法图论是数学的一个分支,研究的对象是图。
图是由一组互不相连的节点(顶点)和连接这些节点的边(边)组成的数学结构。
图论的基础概念包括顶点、边、路径、环、度数等。
本文将介绍图论的基础概念以及常用的图算法。
一、基础概念1. 图的定义和表示图由顶点集合和边集合组成。
顶点集合用V表示,边集合用E表示。
图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维数组,用来表示图中顶点之间的连接关系。
邻接表是一个链表数组,用来表示每个顶点相邻顶点的列表。
2. 顶点和边顶点是图的基本组成单位,用来表示图中的一个节点。
边是连接两个顶点的线段,用来表示两个顶点之间的关系。
3. 路径和环路径是由一系列相邻顶点连接而成的顶点序列。
路径的长度是指路径上经过的边的数目。
环是起点和终点相同的路径。
4. 度数顶点的度数是指与其相邻的边的数目。
入度是指指向该顶点的边的数目,出度是指由该顶点指向其他顶点的边的数目。
图中顶点的度数可以用来判断顶点的重要性。
二、常用算法1. 广度优先搜索(BFS)广度优先搜索是一种用来遍历和搜索图的算法。
从一个起始顶点开始,逐层扩展,先访问距离起始顶点最近的顶点,然后访问它们的相邻顶点,并逐渐向外扩展。
广度优先搜索可以用来计算两个顶点之间的最短路径。
2. 深度优先搜索(DFS)深度优先搜索是另一种常用的图遍历算法。
从一个起始顶点开始,沿着一条路径尽可能深入地访问图,直到不能再继续深入为止,然后回溯到上一个顶点,继续探索其他路径。
深度优先搜索可以用来计算连通分量、拓扑排序和寻找环等。
3. 最小生成树最小生成树是指图中通过连接所有顶点的子图,并且该子图的边权重之和最小。
常用的最小生成树算法包括Prim算法和Kruskal算法。
Prim算法从一个顶点开始,逐步扩展最小生成树的边,直到包含所有顶点为止。
Kruskal算法则是从边的权重最小的边开始,逐步增加边到最小生成树中,直到包含所有顶点为止。
4. 最短路径算法最短路径算法用来计算两个顶点之间的最短路径。
图论基础图的表示与常见算法图论是数学的一个分支,研究的是图这种数学结构。
图由节点(顶点)和边组成,是研究网络、关系、连接等问题的重要工具。
在图论中,图的表示和算法是非常重要的内容,本文将介绍图的表示方法以及一些常见的图算法。
一、图的表示1. 邻接矩阵表示法邻接矩阵是表示图的一种常见方法,适用于稠密图。
对于一个有n 个节点的图,邻接矩阵是一个n×n的矩阵,其中第i行第j列的元素表示节点i到节点j是否有边相连。
如果有边相连,则该元素的值为1或边的权重;如果没有边相连,则该元素的值为0或者无穷大。
邻接矩阵的优点是可以方便地进行边的查找和修改,但缺点是对于稀疏图来说,会浪费大量的空间。
2. 邻接表表示法邻接表是表示图的另一种常见方法,适用于稀疏图。
对于一个有n 个节点的图,邻接表是一个长度为n的数组,数组中的每个元素是一个链表,链表中存储了与该节点相连的其他节点。
邻接表的优点是节省空间,适用于稀疏图,但缺点是查找边的时间复杂度较高。
3. 关联矩阵表示法关联矩阵是表示图的另一种方法,适用于有向图。
对于一个有n个节点和m条边的图,关联矩阵是一个n×m的矩阵,其中第i行第j列的元素表示节点i和边j的关系。
如果节点i是边j的起点,则该元素的值为-1;如果节点i是边j的终点,则该元素的值为1;如果节点i与边j无关,则该元素的值为0。
关联矩阵适用于有向图,可以方便地表示节点和边之间的关系。
二、常见图算法1. 深度优先搜索(Depth First Search,DFS)深度优先搜索是一种用于遍历或搜索图的算法。
从起始节点开始,沿着一条路径一直向下搜索,直到到达叶子节点,然后回溯到上一个节点,继续搜索其他路径。
DFS可以用递归或栈来实现。
2. 广度优先搜索(Breadth First Search,BFS)广度优先搜索是另一种用于遍历或搜索图的算法。
从起始节点开始,先访问起始节点的所有邻居节点,然后再依次访问邻居节点的邻居节点,以此类推。
图论基础知识汇总(总32页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除图与网络模型及方法§1 概论图论起源于18世纪。
第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。
1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。
1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”。
哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。
图论中所谓的“图”是指某类具体事物和这些事物之间的联系。
如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。
图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。
哥尼斯堡七桥问题就是一个典型的例子。
在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。
当 然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。
欧拉为了解决这个问题,采用了建立数学模型的方法。
他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。
问题成为从任一点出发一笔画出七条线再回到起点。
欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。
图与网络是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。
数学中的图论基础图论作为数学中的一个重要分支,研究的是图这种数学结构。
图论不仅在数学理论中有着重要的地位,而且在计算机科学、运筹学、电路设计等领域也有着广泛的应用。
本文将介绍数学中的图论基础知识,包括图的基本概念、性质以及一些经典的应用。
1. 图的基本概念图由节点(顶点)和边组成,是图论研究的基本对象。
图可以分为有向图和无向图两种。
1.1 有向图有向图中的边是有方向的,即从一个节点指向另一个节点。
有向图用表示,其中为节点集合,为有向边的集合。
1.2 无向图无向图中的边是没有方向的,即连接两个节点的边不区分起点和终点。
无向图用表示,其中为节点集合,为无向边的集合。
2. 图的性质图论中有许多重要的性质和定理,这些性质对于研究图的结构和特点具有重要意义。
2.1 连通图在无向图中,如果任意两个节点之间都存在路径相连,则称该图是连通图。
连通图中任意两个节点都是连通的,不存在孤立的节点。
2.2 完全图完全图是一种特殊的图,任意两个节点之间都存在一条边相连。
完全图用表示,其中表示图中节点的个数。
2.3 欧拉图欧拉图是指一条路径经过图中每条边恰好一次的连通图。
欧拉图有一个著名的结论——存在欧拉回路的充要条件是该图所有节点度数为偶数。
2.4 哈密顿图对于一个图,如果存在一条路径经过图中每个节点恰好一次,则称该路径为哈密顿路径。
如果存在一条经过每个节点恰好一次的回路,则称该回路为哈密顿回路。
3. 图论的应用图论在现实生活和学术研究中有着广泛的应用。
以下介绍一些图论在实际问题中的应用场景。
3.1 网络路由在计算机网络中,路由器通过构建网络拓扑图并使用图论算法来选择最佳路径,实现数据的传输和通信。
3.2 交通规划交通规划中的交通流量分析、交通网络设计等问题可以通过图论模型进行建模和求解,帮助优化城市交通系统。
3.3 社交网络分析社交网络中的节点表示个体,边表示个体之间的关系。
通过图论分析社交网络的拓扑结构和节点之间的连接关系,可以帮助推荐系统、信息传播等问题。
图论基础:图的基本概念和应用图论是数学中的一个分支领域,研究的是图的性质和图上的问题。
图被广泛应用于计算机科学、电子工程、运筹学、社交网络分析等领域。
本文将介绍图论的基本概念和一些常见的应用。
一、图的基本概念1. 顶点和边图是由顶点和边组成的,顶点代表图中的元素,边则代表元素之间的关系。
通常顶点表示为V,边表示为E。
2. 有向图和无向图图可以分为有向图和无向图。
在无向图中,边是没有方向的,顶点之间的关系是双向的;而在有向图中,边是有方向的,顶点之间的关系是单向的。
3. 权重在一些应用中,边可能具有权重。
权重可以表示顶点之间的距离、成本、时间等概念。
有权图是指带有边权重的图,而无权图则是指边没有权重的图。
4. 路径和环路径是指由一系列边连接的顶点序列,路径的长度是指路径上边的数量。
环是一种特殊的路径,它的起点和终点相同。
5. 度数在无向图中,顶点的度数是指与该顶点相关联的边的数量。
在有向图中分为出度和入度,出度是指从该顶点出去的边的数量,入度是指指向该顶点的边的数量。
二、图的应用1. 最短路径问题最短路径问题是图论中的一个经典问题,它研究如何在图中找到两个顶点之间的最短路径。
这个问题有许多实际应用,例如在导航系统中寻找最短驾驶路径,或者在电信网络中找到最短的通信路径。
2. 最小生成树最小生成树是指一个连接图中所有顶点的无环子图,并且具有最小的边权重之和。
这个概念在电力网络规划、通信网络优化等领域有广泛的应用。
3. 路由算法在计算机网络中,路由算法用于确定数据包在网络中的传输路径。
图论提供了许多解决路由问题的算法,如最短路径算法、Bellman-Ford 算法、Dijkstra算法等。
4. 社交网络分析图论在社交网络分析中起着重要的作用。
通过构建社交网络图,可以分析用户之间的关系、信息传播、社区发现等问题。
这些分析对于推荐系统、舆情监测等领域具有重要意义。
5. 电路设计图论在电路设计中也有应用。
通过将电路设计问题转化为图论问题,可以使用图论算法解决电路布线、最佳布局等问题。
第一讲图论基础知识自从1736年欧拉(L.Euler)利用图论的思想解决了哥尼斯堡(Konigsberg)七桥问题以来,图论经历了漫长的发展道路。
在很长一段时期内,图论被当成是数学家的智力游戏,解决一些著名的难题。
如迷宫问题、匿门博奕问题、棋盘上马的路线问题、四色问题和哈密顿环球旅行问题等,曾经吸引了众多的学者。
图论中许多的概论和定理的建立都与解决这些问题有关。
1847年克希霍夫(Kirchhoff)第一次把图论用于电路网络的拓扑分析,开创了图论面向实际应用的成功先例。
此后,随着实际的需要和科学技术的发展,在近半个世纪内,图论得到了迅猛的发展,已经成了数学领域中最繁茂的分支学科之一。
尤其在电子计算机问世后,图论的应用范围更加广泛,在解决运筹学、信息论、控制论、网络理论、博奕论、化学、社会科学、经济学、建筑学、心理学、语言学和计算机科学中的问题时,扮演着越来越重要的角色,受到工程界和数学界的特别重视,成为解决许多实际问题的基本工具之一。
图论研究的课题和包含的内容十分广泛,专门著作很多,很难在一本教科书中概括它的全貌。
作为离散数学的一个重要内容,本书主要围绕与计算机科学有关的图论知识介绍一些基本的图论概论、定理和研究内容,同时也介绍一些与实际应用有关的基本图类和算法,为应用、研究和进一步学习提供基础。
第1章无向图和有向图学习要求:仔细领会和掌握图论的基本概论、术语和符号,对于图论研究的一些最基本的课题,如道路问题、连通性问题和着色的问题等,应掌握主要的定理内容和证明方法以及基本的构造方法,以便为下一章研究提供理论工具。
学习本章要用到集合和线性代数矩阵运算的知识,特别是集合数和矩阵秩的概念。
§4-1-1 图的基本概念图是用于描述现实世界中离散客体之间关系的有用工具。
在集合论中采用过以图形来表示二元关系的办法,在那里,用点来代表客体,用一条由点a指向点b的有向线段来代表客体a和b之间的二元关系aRb,这样,集合上的二元关系就可以用点的集合V和有向线的集合E构成的二元组(V,E)来描述。
基本知识点:一、图的基本定义:平凡图:只有一个顶点无边的图。
非平凡图:其他所有图。
空图:边集合为空的图。
简单图:既没有环也没有重边的图。
复合图:其他所有的图。
同构图:顶点集合之间存在双射(一一对应关系),对应边重数和端点对应相等。
标定图:给图的点和边标上符号。
非标定图:不标号。
非标定图代表一类相互同构的图。
完全图:每两个不同顶点之间都有一条边相连的简单图。
N 个顶点的完全图只有一个,记为n K 。
偶图(二部图):具有二分类(,)X Y 的图,他的点集可以分解为两个(非空)子集X 和Y ,使得每条边的一个端点在X 中,另一个端点在Y 中。
完全偶图 :指具有二分类(,)X Y 的简单偶图,其中X 的每个顶点与Y 的每个顶点相连。
若,X m Y n ==,则这样额完全偶图记为:,m n K 。
k —正则图:设(,)G V E =为简单图,如果对所有的结点v V ∈,有()d v k =,称G 为k —正则图。
完全图和完全偶图,n n K 均是正则图。
图划分:若一个n 阶简单图G 各点的度为i d ,则分正整数k 为n 个部分的划分i d ∑称为是图划分。
子图:边集合和点集合均是原图的子集,且待判定图中的边的重数不超过原图中对应的边的重数。
生成子图:点集合相等,边集合为原图子集的图。
导出子图:由顶点集为原图G 真子集的所有点,及两端点均在该集合中的边的全体组成的子图V ‘。
'[]G V 和G v -。
边导出子图:由原图G 边的真子集,该图中边的断点全体为顶点组成的子图E ‘。
'[]G E 和{}G e -。
图的运算:并,交,差,对称差,联图,积图,合成图,极图路与图的联通性:途径:迹:边互不相同的途径。
路:边和点都互不相同的途径。
连通的:两个顶点之间存在路。
连通图:每一对顶点之间都有一条路。
连通分支:将V 划分为一些等价类12,,...k V V V 。
两个顶点u 和v 是连通的当且仅当他们属于同一个子集i V ,称子图()i G V 为连通分支。
数学中的图论基础图论是数学中的一个重要分支,研究的对象是图。
图是由若干个顶点和连接这些顶点的边组成的数学结构。
图论作为一门独立的学科,具有广泛的应用领域,涉及计算机科学、运筹学、电子工程、通信网络等多个领域。
本文将介绍图论的基础知识,包括图的定义、常见术语、图的分类以及常用算法等内容。
**1. 图的定义**在图论中,图是由顶点集合和边集合组成的数学结构。
一个图$G$可以表示为$G=(V, E)$,其中$V$是顶点集合,$E$是边集合。
顶点集合$V$可以是任意非空集合,而边集合$E$则是顶点之间的连接关系。
边可以是有向的,也可以是无向的,分别对应有向图和无向图。
**2. 常见术语**- 顶点:图中的一个节点,用来表示实体或对象。
- 边:连接顶点的线段,用来表示顶点之间的关系。
- 有向图:图中的边有方向,即从一个顶点到另一个顶点。
- 无向图:图中的边没有方向,即边是双向的。
- 路径:顶点的一个序列,使得相邻顶点之间有边相连。
- 环:起点和终点相同的路径。
- 连通图:图中任意两个顶点之间都存在路径。
- 子图:一个图的顶点和边的非空集合,且该集合包含于原图的顶点和边的集合中。
根据图的性质和特点,图可以分为多种不同类型,常见的图包括: - 无向图:边没有方向的图。
- 有向图:边有方向的图。
- 完全图:任意两个顶点之间都有边相连的图。
- 二分图:顶点可以分为两个不相交的集合,使得同一集合内的顶点没有边相连。
- 树:无环连通图。
- 森林:由若干棵树组成的图。
- 连通图:任意两个顶点之间都存在路径的图。
- 强连通图:有向图中任意两个顶点之间都存在双向路径的图。
**4. 常用算法**在图论中,有许多经典的算法被广泛应用于解决各种问题,其中最常见的算法包括:- 深度优先搜索(DFS):从起始顶点开始,沿着一条路径一直向下搜索,直到不能再继续为止,然后回溯到上一个顶点继续搜索。
- 广度优先搜索(BFS):从起始顶点开始,先访问其所有相邻顶点,然后再依次访问这些相邻顶点的相邻顶点,以此类推。
1、略2、计算有向无圈图的根输入一个有向无圈图DAG,计算和输出DAG的根r(即r到其他任何顶点都有一条路。
若图中没有根,则输出“not found”)。
输入:顶点数n和边数e;以下为e行,每行为一条有向边的两个端点输出:根r或者“not found”算法分析设const mx=100;{顶点数的上限}varn,e,i,j,k,a,b:integer;{ 顶点数n、边数e}g:array[1..mx,1..mx]of boolean;{传递闭包}bn:boolean;{根存在标志}1、输入信息,计算传递闭包readln(n,e);{输入顶点数和边数}fillchar(g,sizeof(g),0);{ 有向无圈图初始化}for i:=1 to e do{输入信息,构造传递闭包的初始值}begin readln(a,b);g[a,b]:=true end;for k:=1 to n do{计算传递闭包}for i:=1 to n dofor j:=1 to n doif g[i,j] or g[i,k] and g[k,j]then g[i,j]:=true;2、计算DAG的根然后枚举每一个顶点。
根据传递闭包的信息,若当前顶点至其它所有顶点有路,则判定该顶点即为根。
若没有一个顶点可作为DAG的根,则输出失败信息for i:=1 to n do{枚举每一个可能的根}beginbn:=true;{设定I至其他所有顶点有路的标志}for j:=1 to n do{若I至任一个顶点无路,则返回bn为false}if (i<>j) and not g[i,j]then begin bn:=false; break end;if bn then break{若I至其他所有顶点有路,则输出根i}end;if bn then writeln(i)else writeln('not found'){若不存在根,则输出失败信息}3、寻找满足条件的连通分支输入一张顶点带权的无向图,分别计算含顶点数最多的一个连通分支和顶点的权之和最大的一个连通分支。
输入:n(顶点数,1<=n<=20)以下n行,依次表示顶点1 ~ 顶点n上的权;e(边数,1<=e<=210)以下e行,每行为有边连接的一对顶点。
输出:两行,一行为含顶点数最多的一个连通分支,一行为顶点的权之和最大的一个连通分支,输出时按顶点编号从小到大输出。
[问题分析]通过longlink计算出每个顶点所在的连通分支,然后在所有可能的连通分支中找出满足条件的解。
至于计算连通分支的顶点方案也不难,只要分别从连通分支中任选一个代表顶点,由此出发,通过深度优先搜索即可得到顶点方案。
设best,besti—含顶点数最多的连通分支中的顶点数和代表顶点;max,maxk——顶点的权和最大的连通分支的顶点权和和代表顶点计算best,besti,max,maxk的过程如下:1、读入无向图的信息;2、计算传递闭包longlink;3、穷举每一个顶点for I:=1 to n dobegink:=0;s:=0for j:=1 to n do{计算顶点i所在连通分支中的顶点总数k和顶点的权之和s} if longlink[i,j] then begininc(k);inc(s,顶点j的权)end;if k>best then begin best:=k;besti:=I end;{若k为目前最大,则记入best,i 作为代表顶点记入besti}if s>max then begin max:=s;maxk:=I end;{若s为目前最大,则记入max,i 作为代表顶点记入maxk} if k=n then break; {若整个图是连通图,则退出}end;4、dfs(besti); {从代表顶点besti出发,深度优先搜索含顶点数最多的连通分支}5、dfs(maxk); {从代表顶点maxk出发,深度优先搜索顶点的权之和最大的连通分支}显然,以上算法的时间复杂度为O(n*n)。
[参考程序]program ex3;const maxn=20;varw:array[1..maxn] of longint;link,longlink:array[1..maxn,1..maxn] of boolean;out:array[1..maxn] of boolean;n,e,i,j,k,s,x,y,best,besti,max,maxk:longint;procedure dfs(k:longint);var i:longint;beginfor i:=1 to n doif (longlink[k,i])and(not out[i]) thenbeginout[i]:=true;dfs(i);end;end;beginread(n);for i:=1 to n do read(w[i]);read(e);fillchar(link,sizeof(link),false);for i:=1 to e dobeginread(x,y);link[x,y]:=true;link[y,x]:=true;end;longlink:=link;for k:=1 to n dofor i:=1 to n dofor j:=1 to n dolonglink[i,j]:=longlink[i,j] or longlink[i,k] and longlink[k,j]; best:=1; besti:=1;max:=w[1]; maxk:=1;for i:=1 to n dobegink:=0;s:=0;for j:=1 to n doif longlink[i,j] thenbegininc(k);inc(s,w[i])end;if k>best then begin best:=k;besti:=i; end; if s>max then begin max:=s;maxk:=i; end;if k=n then break;end;fillchar(out,sizeof(out),false);out[besti]:=true;dfs(besti);for i:=1 to n doif out[i] then write(i,' ');writeln;fillchar(out,sizeof(out),false);out[maxk]:=true;dfs(maxk);for i:=1 to n doif out[i] then write(i,' ');writeln;end.输入:534581051 21 32 53 44 5输出:1 2 53 4 54、计算DAG中的最长路输入一个有向无圈图DAG,计算和输出DAG中最长路的长度输入:顶点数n和边数e;以下为e行,每行为一条有向边的两个端点和边权输出:最长路的长度算法分析设constmax=100;{顶点数的上限}maxint=10000;varn,e,i,j,k,a,b,ans:integer;{顶点数n、边数e }g:array[1..max,1..max]of integer;{g[I,j]为顶点I至顶点j的路径长度}1、输入有向无圈图的信息首先输入有向无圈图的信息。
若顶点I至顶点j有边,则g[I,j]设为wij;否则g[I,j]设为-∞。
readln(n,e);{输入输入顶点数和边数}fillchar(g,sizeof(g),0);{最长路径长度矩阵初始化for i:=1 to e do{输入边信息,构造最长路径长度矩阵的初始值}begin readln(a,b, wab ); g[a,b]:= wabend;for i:=1 to n do{将最长路径长度矩阵中无边的元素设为-∞}for j:=1 to n doif (i<>j)and(g[i,j]=0) then g[i,j]:=-maxint;2、按照计算传递闭包的思想计算每一对顶点间的最长路,找出最长路径长度for k:=1 to n do{计算最长路径长度矩阵}for i:=1 to n dofor j:=1 to n doif g[i,k]+g[k,j]>g[i,j]then g[i,j]:=g[i,k]+g[k,j];ans:=0;{ 最长路径长度初始化}for i:=1 to n do{枚举所有可能的顶点对,将其中的最大g值找出来}for j:=1 to n doif g[i,j]>ans then ans:=g[i,j];{调整最长路径长度}writeln(ans){输出最长路径长度}5、计算带权有向图的中心输入一个带权有向图G ,计算和输出G 的中心v(v 是G 的一个顶点,v 的偏心距定义为输入:顶点数n 和边数e ;以下为e 行,每行为一条有向边的两个端点和边权输出:G 的中心v算法分析const mx=100;varn,e,i,j,k,a,b,ans:integer;{ 顶点数为n ,边数为e ,中心为ans}w,bt,b0:real;{bt 为所有顶点偏心距的最小值,b0为当前顶点的偏心距}g:array[1..mx,1..mx]of real;{最短路长矩阵。
初始时g[i,i]=0,g[I,j]=计算后,g[i,j]存储顶点I 至顶点j 的最短路长}1、 输入信息,构造最短路长矩阵greadln(n,e);{输入顶点数和边数}for i:=1 to n do{输入信息,构造最短路长矩阵g 的初始值}for j:=1 to n doif i<>j then g[i,j]:=maxintelse g[i,j]:=0;for i:=1 to e dobegin readln(a,b,w);g[a,b]:=w;end;for k:=1 to n do{计算任一对顶点间的最短路长}for i:=1 to n dofor j:=1 to n doifg[i,k]+g[k,j]<g[i,j]then g[i,j]:=g[i,k]+g[k,j];2、 计算图的中心依次计算每一个顶点i 的偏心距b0。
每计算一个顶点的偏心距b0,调整所有顶点偏心距的最小值和图的中心(即顶点I 的偏心距b0小于所有顶点偏心距的最小值bt ,则bt 设为b0,图的中心ans 设为i )。
依次类推,直至所有顶点的偏心距计算完为止。
此时的ans 即为问题的解bt:=maxint; ans:=0;{所有顶点偏心距的最小值和图的中心初始化}for i:=1 to n dobegin }{max 的最短路长到从v w V w )的中心为中偏心距最小的顶点称G Gb0:=0;{顶点I的偏心距初始化}for j:=1 to n do if g[i,j]>b0 then b0:=g[i,j];{计算顶点I的偏心距}if b0<bt{若顶点I的偏心距为目前最小,则记下,并将顶点I设为图的中心}then begin bt:=b0; ans:=i endend;writeln(ans){输出图的中心}6、snow问题描述:随着白天越来越短夜晚越来越长,我们不得不考虑铲雪问题了。