概率论课件 特征函数
- 格式:ppt
- 大小:1.32 MB
- 文档页数:25
第一章概率论基础1.1 概率公理与随机变量1.2多维随机变量与条件随机变量1.3 随机变量的函数1.4 数字特征与条件数学期望1.5 特征函数1.6 典型分布1.7 随机变量的仿真与实验1.5 特征函数(Characteristic Function)特征函数、矩发生函数和概率发生函数在分析随机变量和向量的各种问题中有着非常重要的意义,特别是在分析独立随机变量、向量和的概率与矩特性时,应用它们是十分方便的。
在分析特征函数、矩发生函数和概率发生函数时,我们特别强调了变换分析技术。
由此建立了傅立叶变换、Z变换等分析随机信号与系统的概率、矩特性的关系式,从而形成随机信号概率与矩特性的变换分析理论与技术。
一、特征函数及概率密度函数的傅立叶变换定义1.2随机变量,其特征函数定义为式中,v 为确定的实变量。
1.5 特征函数X ()[]j v X X v E e Φ=()X v Φ1.5 特征函数若随机变量的概率密度函数为,则其特征函数为:c.r.v .d.r.v . X )(x f ()()jvxX v f x e dxΔ+∞−∞Φ=∫1()ikjvxX i i v p e Δ=Φ=∑定理1.4随机变量X 的概率密度函数与其特征函数之间是一对傅立叶变换,或式中,表示傅立叶变换对。
()()X f x v ←⎯→Φ−F ()()X f x v −←⎯→ΦF ←⎯→F随机变量概率密度函数与特征函数关系()f x()X vΦ()j xf x e dx ω−+∞jvx dx+∞举例例:随机变量的特征函数为,求其概率密度函数。
X ()jv v pe q Φ=+)(x f 。
01()X [0],[1]()()(1)jv jv jv v pe q qe pe P X q P X p f x q x p x δδΦ=+=+∴====∴=+−∵随机变量有 解法1:举例-续解法2:()()()(1)()()(1)v f x q x p x x x f x q x p x δδδδΦ=++→−=+−此题亦可直接对进行反傅立叶变化得:将右端,有q p)(x f 0 1例1.20求二项分布Binomial的特征函数。
第七章 特征函数7.1 特征函数的定义及基本性质定义1:设X 为维实随机向量,称为n Xit TEe t =)(ϕX 的特征函数(characteristicfunction )。
一些常见分布的特征函数。
例1:,则其c.f.为),(~p n B X .1,)()(p q pe q t n it −=+=ϕ例2:X 服从参数为λ的Poisson 分布,则其c.f.为 ).1(exp )(−=it e t λϕ例3:,则其c.f.为),(~2σµN X .)(2221t t i e t σµϕ−=特征函数基本性质:1) 1)0(=ϕ;2) (有界)n R t t ∈∀≤,1)(ϕ 3) (共轭对称);_______)()(t t −=ϕϕ4) (非负定)对任意给定正整数,任意t 和任意复数m n m R t t ∈L 21,m αααL 21,,0≥)(11−∑∑==m l mk k l k l t t ααϕ;5) )(t ϕ为n R 上的连续函数。
证明:4) 0)(2111)(11≥==−∑∑∑===−==ml Xit l ml mk k l X t t i ml mk k l k l TlTk l Ee E Ee t t αααααϕ∑∑。
定理1:(Bocher )n R 上的函数)(t ϕ是某个随机变量的特征函数当且仅当)(t ϕ连续非负定且1)0(=ϕ。
定理2:(增量不等式)设)(t ϕ是X 的特征函数,则对任意t 有n R h ∈,[])(Re 12)()(2h t h t ϕϕϕ−≤−+由此)(t ϕ在n R 上一致连续。
证明:[][]∫∫−=−=−++dP ee dP ee t h t Xih Xit Xit Xh t i T T T T 1)()()(ϕϕ,由Schwarz 不等式[])(Re 121)()(222h dP edP et h t Xih Xit T T ϕϕϕ−=−≤−+∫∫。
第3章 特征函数:随机变量的刻画3.1 特征函数定义定义 3.1.1 假设X 是定义在概率空间),,(P F Ω上的随机变量,它的分布函数为)(x F ,称)exp(itX 的数学期望)][exp(itX E 为X 的特征函数,或者分布函数)(x F 的特征函数,记为)(t X ϕ或)(t ϕ;此处12-=i 。
对复随机变量的数学期望定义如下:如福随机变量为iY X Z +=,其中Y X ,均为实随机变量,则Z 的数学期望定义为)()()(Y iE X E Z E += (3.1.1)由于)sin()cos()exp(tX i tX itX += (3.1.2)因此,⎰⎰∞∞-∞∞-+=+==)()sin()()cos( )][sin()][cos( )][exp()(x dF tx i x dF tx tX iE tX E itX E t X ϕ⎰∞∞-=)()exp(x dF itx (3.1.3)于是,X 的特征函数也可以称为对分布函数)(x F 的富立埃-斯蒂阶变换。
因为对任意R t ∈, )cos(tX 和)sin(tX 均为有界连续函数,故)][cos(tX E 和)][sin(tX E 均为有限,因此,任意随机变量的特征函数总是存在的。
随机向量的特征函数:如果),,,(21m X X X X =是m 维随机向量,则其特征函数定义为)]}({exp[)(2211n n X X t X t X t i E t +++= ϕ⎰⎰∞∞-∞∞-+++=),,,()](exp[ 212211n n n x x x dF x t x t x t i (3.1.4)● 当X 为离散随机变量时,其特征函数为∑==kk kX p itxitX E t )exp()][exp()(ϕ (3.1.5)此处)(k k x X P p ==。
● 当X 为连续随机变量时,其特征函数为⎰∞∞-== )()exp()][exp()(dx x f itx itX E t X ϕ (3.1.6)显然,随机变量特征函数的计算需要进行复数运算(复数求和)或者进行实变复值函数的积分。