概率论与数理统计
- 格式:pptx
- 大小:837.73 KB
- 文档页数:159
第一章 概率论第一节 随机事件和概率一、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
(2)加法原理(两种方法均能完成此事):n m +某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):n m ⨯某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由n m ⨯种方法来完成。
(4)一些常见排列① 特殊排列② 相邻③ 彼此隔开④ 顺序一定和不可分辨【例1】 袋中有N 个球,其中M 个为白色,从中有放回地取出n 个:①N =10,M =2, n =3;②N =10,M =4,n =3.考虑以下各事件的排列数: (Ⅰ)全不是白色的球. (Ⅱ)恰有两个白色的球. (Ⅲ)至少有两个白色的球. (Ⅳ)至多有两个白色的球. (Ⅴ)颜色相同. (Ⅵ)不考虑球的颜色.解:①当M =2时,(Ⅰ)83. (Ⅱ)3³22³8. (Ⅲ)3³22³8+23.(Ⅳ)3³22³8+3³2³83+83(或103-23). (Ⅴ)23+83. (Ⅵ)103. ②当M =4时,将上面的2→4,8→6即可.二、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
例如:掷一枚硬币,出现正面及出现反面;掷一颗骰子,出现“1”点、“5”点和出现偶数点都是随机事件;电话接线员在上午9时到10时接到的电话呼唤次数(泊松分布);对某一目标发射一发炮弹,弹着点到目标的距离为0.1米、0.5米及1米到3米之间都是随机事件(正态分布)。
概率论与数理统计概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
在生物学,物理学,化学等领域,常常需要采用概率论和数理统计的方法,来研究和分析现象。
这篇文章将要探讨概率论和数理统计的一些基本概念和方法,并介绍它们在现实生活中的应用。
一、概率论概率论是一门研究随机现象及其规律的数学学科。
它的基本思想是通过建立数学模型,来描述随机事件的概率分布及其规律。
随机事件指某一次试验中可能发生或不发生的事情,例如掷骰子、抛硬币、抽扑克牌等,这些事件的结果是随机的,因此需要采用概率论的方法来研究。
1.概率和概率分布概率是指某一事件发生的可能性,用一个数值来表示。
在概率论中,对于某一特定随机事件,概率的大小常常用P(A)来表示,其中A是这个事件。
例如,抛一枚硬币,正面朝上的概率是0.5,用数学语言可以表示为P(正面)=0.5,反面朝上的概率也是0.5,即P(反面)=0.5。
概率分布是指某个随机事件的各种结果的概率分布情况。
在一次试验中,随机事件可能会有多个结果,即样本空间。
概率分布用来描述每个结果的概率大小。
例如,抛一枚硬币的样本空间是{正面,反面},正面和反面各占1/2的概率。
2.条件概率和独立事件条件概率是指在已知某个事件发生的情况下,某个随机事件会发生的概率。
条件概率的计算方法一般采用贝叶斯公式,例如给定事件A,以及事件B,P(A|B)表示在B发生的情况下,A 发生的概率,则条件概率可以表示为:P(A|B) = P(AB)/P(B)其中AB表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
独立事件是指某个随机事件的发生不会对另一个随机事件的发生产生影响。
如果事件A、B是独立事件,则可以表示为P(A|B) = P(A),P(B|A) = P(B),即A和B的概率相互独立,并不受对方的影响。
3.期望值和方差期望值是统计学中一个非常重要的概念,用来描述一个随机变量的总体平均数。
统计学、概率论和数理统计的区别和联系今天我们就来说说统计学、概率论和数理统计为什么要说他们呢,因为这⼏个字眼⼤家肯定是已经⽆数次地碰到过了,但他们究竟代表了什么,以及他们之间的区别与联系,相信⼤家平时肯定是没怎么关注过,⽽是更多的混为⼀谈。
然⽽今天,随着⼤数据与数据科学的热⽕朝天,这⼏个词重新被⼤家给予了⾼度关注,特别是统计学。
原因也很⾃然:分析思维是数据科学的核⼼思维⽅式,⽽分析思维就是关于计算与统计的思维。
统计思维⽣长的⼟壤就是概率论和数理统计。
1、统计学⾸先说说统计学,关于这个词其实是个历史遗留问题。
因为从统计学的发展历史来看,最早的统计学和国家经济学有密切的关系。
统计学的英⽂是“statistic”,其实它是源于意⼤利⽂的“stato”,意思是“国家”、“情况”,也就是后来英语⾥的state(国家),在⼗七、⼗⼋世纪,统计学很多时候都是以经济学的姿态出现的。
根据维基百科:By the 18th century, the term 'statistics' designated the systematic collection of demographic and economic data by states. For at least two millennia, thesedata were mainly tabulations of human and material resources that might betaxed or put to military use.统计学最开始来源于经济学和政治学。
17世纪的经济学家William Petty和他的《政治算术》⼀书揭开了统计学的起源(维基百科):The birth of statistics is often dated to 1662, when John Graunt, along with William Petty, developed early human statistical and census methods that provided a framework for modern demography. He produced the first life table, giving probabilities of survival to each age. Hisbook Natural and Political Observations Made upon the Bills of Mortality usedanalysis of the mortality rolls to make the first statistically basedestimation of the population of London.所以从⼀开始,统计学就跟经济学、政治学密不可分的。
概率论与数理统计基本概念
概率论与数理统计是研究事件发生的可能性,以及由此衍生的结果
的一门学科。
它可以帮助人们提高分析和预测能力。
可以帮助我们了
解自然界及其客观原理,以及把握当代社会经济实体及其活动。
一、概率概念:
1. 随机事件:指事件发生以来,在所有结果中,用概率值去衡量其发
生的可能性,及其各个单一结果的概率分布情况;
2. 概率:是用来衡量某一随机事件发生的可能性的数值,可以给出这
个事件发生的可能性大小;
3. 概率分布:是某一随机变量及其可能取值之间发生关系的一种描述;
二、数理统计概念:
1、统计:是指对数据进行定量描述,尝试从数据中获得解释性的统计
特征;
2、变量:是指以数值形式表示的某类事物,是研究目标内容分析的一
种实际基础;
3、统计分布:是给定一组数据,通过统计手段,计算出变量的概率分
布情况,及其可能的变化规律;
4、极限定理:是一种概率论的定理,旨在探讨一个系统在重复抽样下,抽样结果的收敛情况;
5、数据描述:是指对数据的描述,可以让人简单明了地理解数据,及
其特征和趋势;
6、统计推断:是指根据统计样本信息,以概率结果作为有效依据,做
出关于总体参数情况的推断;
7、回归分析:是指建立一条回归函数模型,以描述解释变量对被解释
变量的影响;
8、判别分析:是指构建一个准确的模型,能够根据输入的观测值来准
确地判断属于哪一类人或物;
9、聚类分析:是指将一组数据进行分类,从而揭示内部数据间的关系,辅助决策;
10、卡方检验:是指判断某一种统计判断是否证实对某一总体分布结
果的检验,从而决定是否接受或拒绝假设。
概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。
下面将对概率论与数理统计的一些重要知识点进行总结。
一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。
- 概率:用来描述随机事件发生的可能性大小的数值。
2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。
- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。
3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。
- 离散随机变量:取有限个或可列个数值的随机变量。
- 连续随机变量:取无限个数值的随机变量。
4. 期望与方差- 期望:反映随机变量平均取值的数值。
- 方差:反映随机变量取值偏离期望值的程度。
5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。
- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。
二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。
- 抽样分布:指用统计量对不同样本进行计算所得到的分布。
2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。
- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。
3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。
- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。
4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。
- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。
5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。