概率论与数理统计:第3章随机变量的数字特征1节
- 格式:ppt
- 大小:1.62 MB
- 文档页数:44
考研数学三概率论与数理统计知识点考研数学三概率论与数理统计知识点我们在进行考研数学的复习时,要了解三概率论与数理统计的知识点有哪些。
店铺为大家精心准备了数学三概率论与数理统计客观题解析,欢迎大家前来阅读。
考研数学概率论与数理统计总结一、第一章随机事件与概率重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式。
难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算。
二、常考题型事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。
事件关系及其运算是本章的重点和难点,概率计算是本章的重点。
注意事件与概率之间的关系。
本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。
近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。
相当一部分考生对本章中的古典概型感到困难。
大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。
考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。
三、注意事项与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。
但与线代一样,概率也常常被忽视,有时甚至被忽略。
一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。
概率这门课如果有难点就应该是"记忆量大"。
在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。
概率论与数理统计教案-随机变量的数字特征教案章节一:随机变量的期望值教学目标:1. 理解期望值的定义及其性质。
2. 学会计算离散随机变量的期望值。
3. 学会计算连续随机变量的期望值。
教学内容:1. 期望值的定义及性质。
2. 离散随机变量的期望值的计算方法。
3. 连续随机变量的期望值的计算方法。
教学方法:1. 采用讲授法,讲解期望值的定义及其性质。
2. 采用案例分析法,分析离散随机变量和连续随机变量的期望值的计算方法。
3. 采用练习法,让学生通过练习巩固期望值的计算方法。
教学评估:1. 课堂练习:计算给定离散随机变量和连续随机变量的期望值。
2. 课后作业:布置相关习题,巩固学生对期望值的理解和计算能力。
教案章节二:随机变量的方差教学目标:1. 理解方差的定义及其性质。
2. 学会计算离散随机变量的方差。
3. 学会计算连续随机变量的方差。
教学内容:1. 方差的定义及其性质。
2. 离散随机变量的方差的计算方法。
3. 连续随机变量的方差的计算方法。
教学方法:1. 采用讲授法,讲解方差的定义及其性质。
2. 采用案例分析法,分析离散随机变量和连续随机变量的方差的计算方法。
3. 采用练习法,让学生通过练习巩固方差的计算方法。
教学评估:1. 课堂练习:计算给定离散随机变量和连续随机变量的方差。
2. 课后作业:布置相关习题,巩固学生对方差的理解和计算能力。
教案章节三:随机变量的标准差教学目标:1. 理解标准差的定义及其性质。
2. 学会计算离散随机变量的标准差。
3. 学会计算连续随机变量的标准差。
教学内容:1. 标准差的定义及其性质。
2. 离散随机变量的标准差的计算方法。
3. 连续随机变量的标准差的计算方法。
教学方法:1. 采用讲授法,讲解标准差的定义及其性质。
2. 采用案例分析法,分析离散随机变量和连续随机变量的标准差的计算方法。
3. 采用练习法,让学生通过练习巩固标准差的计算方法。
教学评估:1. 课堂练习:计算给定离散随机变量和连续随机变量的标准差。
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
考研数学概率论与数理统计知识点终极梳理概率论与数理统计是硕士研究生入学考试(除数二)的一个重要组成部分,从研究必然问题到研究随机问题,不仅大多数初学者感到困难,即使是对于曾学过这门学科的考生也有不少问题,特别是在做习题以及解决实际问题方面遇到的困难会更多一些。
从近几年硕士研究生入学考试数学阅卷结果来看,概率论这一部分得分率普遍较低。
在最后几天,建议大家,加强数学基本计算联系,熟练、严谨、规范非常至关重要。
此外,要注意回顾一遍大纲考点,查漏补缺。
第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维林德伯格定理、棣莫弗拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验。
考研数学一-概率论与数理统计随机变量的数字特征(一)(总分:88.01,做题时间:90分钟)一、选择题(总题数:28,分数:28.00)1.设随机变量X的二阶矩存在,则(A) EX2<EX. (B) EX2≥EX.(C) EX2<(EX)2. (D) EX2≥(EX)2.(分数:1.00)A.B.C.D. √解析:[解析] 由DX=EX2-(EX)2≥0,即知正确选项为(D).选项(A)、(B)对某些随机变量可能成立,对某些随机变量可能不成立.例如X服从参数为λ的泊松分布,则EX=DX=λ,EX2=DX+(EX)2=λ+λ2>λ=EX,选项(B)成立;如果X在(0,1)上服从均匀分布,则,,选项(A)成立.2.设X是随机变量,EX=μ,DX=σ2(σ>0),则对任意常数C,有(A) E(X-C)2=EX2-C2. (B) E(X-C)2=E(X-μ)2.(C) E(X-C)2<E(X-μ)2. (D) E(X-C)2≥E(X-μ)2.(分数:1.00)A.B.C.D. √解析:[解析]E(X-C)2≥E(X-μ)2,故选(D).当然我们也可以通过计算来证明:E(X-X)2=E[(X-μ)+(μ-C)]2=E[(X-μ)2+2(μ-C)(X-μ)+(μ-C)2]=E(X-μ)2+2(μ-C)(EX-μ)+(μ-C)2=E(X-μ)2+(μ-C)2≥E(X-μ)2.3.设随机变量X的期望、方差都存在,则对任意常数C,有(A) E(X-C)2<DX+E2(X-C). (B) E(X-C2)2>DX+E2(X-C).(C) E(X-C)2=DX+E2(X-C). (D) E(X-C)2=DX-E2(X-C).(分数:1.00)A.B.C. √D.解析:[解析] 由于DX=D(X-X)=E(X-C)2-E2(X-C),所以E(X-C)2=DX+E2(X-C),故选(C).4.设X为离散型随机变量,且p i=PX=a i(i=1,2,…),则X的期望EX存在的充分条件是(A) . (B)(C) (D)(分数:1.00)A.B.C.D. √解析:[解析] 由级数收敛的必要条件知,选项(A)或(B)不能选,否则(C)或(D)也成立.又收敛不能保证收敛(即EX存在),因此选项(C)不能选.所以应该选(D).下面我们证明:如果收敛,则收敛.事实上,由于,故已知,所以收敛,EX存在.5.假设X是连续型随机变量,其分布函数为F(x),如果X的期望EX存在,则当x→+∞时,1-F(x)的(A) 低阶无穷小. (B) 高阶无穷小.(C) 同阶但不等价无穷小. (D) 等价无穷小.(分数:1.00)A.B. √C.D.解析:[解析] 由题设,我们只能通过计算来确定正确选项.设X的密度函数为f(x),则EX存在,所以即1-F(x)的高阶无穷小(当x→+∞),故应选(B).6.假设X服从二项分布B(n,p),已知EX=2.4,DX=1.44,则n,p值分别为(A) 4;0.6. (B) 6;0.4. (C) 8;0.3. (D) 12;0.2.(分数:1.00)A.B. √C.D.解析:[解析] 由于X~B(n,p),所以p=0.4.故应选(B).求得n,p,从而确定正确选项.7.已知随机变量X的分布中含有若干个未知参数,如果仅对唯一的参数值才有EX=DX,则X必服从(A) 参数为(μ,σ2)的正态分布. (B) 参数为λ的指数分布.(C) 参数为λ的泊松分布. (D) 参数为a,b的[a,b]区间上的均匀分布.(分数:1.00)A.B. √C.D.解析:[解析] 直接由EX=DX来确定正确选项.如果X~N(μ,σ2),则EX=DXμ=σ2.参数(μ,σ2)不唯一.X~E(λ),则.参数λ唯一.X~P(λ),则EX=DXλ=λ.参数λ不唯一.X~U[a,b].参数a、b不唯一.因此正确选项是(B).8.将一枚硬币重复掷n次,以X和Y分别表示正面向上和反而向上的次数,则X和Y的相关系数等于(A) -1.(B) 0.(D) 1.(分数:1.00)A. √B.C.D.解析:[解析] 由题设知X+Y=n,Y=-X+n,故选择(A).事实上,X与Y的相关系数,cov(X,Y)=cov(X,-X+n)=-cov(X,X)=-DX,DY=D(-X+n)=DX,.所以选(A).9.设随机事件A与B互不相容,0<P(A) <1,0<P(B) <1,记X与Y的相关系数为ρ,则(A) ρ=0. (B) ρ=1. (C) ρ<0. (D) ρ>0.(分数:1.00)A.B.C. √D.解析:[解析] 选项(B)不能选,否则(D)必成立.因此我们的问题转化为确定X、Y相关系数ρ的符号,而它仅取决于cov(X,Y)=EXY-EXEY,由题设知AB=,因此所以 cov(X,Y)=-P(A)P(B)<0,ρ<0,故应选(C).10.设随机变量X与Y不相关且DX=DY≠0,则随机变量X与X+Y的相关系数ρ等于(A) -1. (B) 0.. (D) 1.(分数:1.00)A.B.C. √D.解析:[解析] 由题设cov(X,Y)=0,DX=DY,所以故应选(C).11.已知随机变量X与Y的相关系数为ρ,随机变量ξ=aX+b,η=cY+d(abcd≠0),则ξ与η的相关系数为(A) 0. (B) -p.(C) 当ac>0时为ρ. (D) 当bd>0时为ρ.(分数:1.00)A.B.C. √D.解析:[解析] 已知,所以ξ与η的相关系数为故应选(C).12.设随机变量X与Y的方差相等且不为零,则ξ=X+Y与η=X-Y相关系数为(A) -1. (B) 0.. (D) 1.(分数:1.00)A.B. √C.D.解析:[解析] 已知DX=DY≠0,所以cov(ξ,η)=cov(X+Y,X-Y)=cov(X,Y)-cov(X,Y)+cov(Y,X)-cov(Y,Y)=DX-DY=0,即X与Y相关系数为0,故应选(B).13.假设随机变量X,Y,Z两两不相关,方差相等且不为零,则X+Y与Y+Z的相关系数为(A) -1. (B) 0.. (D) 1.(分数:1.00)A.B.C. √D.解析:[解析] 已知cov(X,Y)=cov(X,Z)=cov(Y,Z)=0,DX=DY=DZ≠0,所以X+Y与Y+Z的相关系数为故应选(C).14.已知二维随机变量(X,Y)的联合密度为f(x,y)且满足条件f(x,y)=f(-x,y) 或 f(x,y)=-f(x,-y),则X与Y相关系数为(A) -1. (B) 0.. (D) 1.(分数:1.00)A.B. √C.D.解析:[解析] 依题意f(x,y)对每个变元都是偶函数,因此x(x,y)或yf(x,y)为奇函数,所以EXY=EXEY=0X与Y XY=0,故应选(B).15.设X,Y为随机变量,现有6个等式①E(X+Y)=EX+EY;②D(X+Y)=DX+DY;③D(X-Y)=DX+DY;④EXY=EX·EY;⑤D(XY)=DX·DY;⑥)cov(X,Y)=0.则上面与“X和Y不相关”等价的等式共有(A) 0个. (B) 2个. (C) 4个. (D) 6个.(分数:1.00)A.B.C. √D.解析:[解析] ①对任意随机变量都成立,②、③、④、⑥是X与Y不相关的充要条件,因此选(X).而⑤式DXY=E(XY)2-(EXY)2=DXDY并不能断言X与Y的相关性.16.假设随机变量X与Y的二阶矩都存在,则随机变量ξ=X+Y与η=X-Y不相关的充分必要条件是(A) EX=EY. (B) EX2=EY2.(C) EX2-E2X=EY2-E2Y. (D) EX2+E2X=EY2+E2Y.(分数:1.00)A.B.C. √D.解析:[解析] ξ与η不相关cov(ξ,η)=0cov(X+Y,X-Y)=DX-DY=0DX=DYEX2-E2X=EY2-E2Y,选择(C).17.已知(X,Y)服从二维正态分布,且EX=μ1,X与Y相关系数为ρ,则X+bY与X-bY,相互独立的充分必要条件是参数b(A) 可以取任意实数. (B) 等于p.(C) 等于σ1/σ2. (D) 等于μ1/μ2.(分数:1.00)__________________________________________________________________________________________ 解析:18.已知(X,Y)服从二维正态分布,且EX=μ1,EY=μ2,DX=DY=σ2,ξ=aX+bY,η=aX-bY(ab≠0),则ξ与η独立的充要条件是(A) a、b为任意实数. (B) a=b-1.(C) a2=62. (D) a=b+1.(分数:1.00)A.B.C. √D.解析:[解析] 由于对任意常数c,d(c、d不全为0),有cξ+dη=c(aX+bY)+d(aX-bY)=a(c+d)X+b(c-d)Y服从一维正态分布,所以(ξ,η)服从二维正态分布.因此ξ与η独立ξ与η不相关cov(ξ,η)=0cov(aX+bY,aX-bY)=a2cov(X,X)+abcov(Y,X)-abcov(X,Y)-b2cov(Y,Y)=a2DX-b2DY=σ2(a2-b2)=0a2=b2.故应选(C).19.设X与Y都是服从正态分布的随机变量,则X与Y不相关是X与Y独立的(A) 充分必要条件. (B) 充分非必要条件.(C) 必要非充分条件. (D) 非必要非充分条件.(分数:1.00)A.B.C. √D.解析:[解析] X与Y都服从正态分布并不意味着(X,Y)服从二维正态分布,因此X与Y不相关仅仅是独立的必要条件而不充分,所以选(C).20.假设(X,Y)服从二维正态分布,且EX=μ1,EY=μ2,DX=DY=σ2,X与Y不相关,则下列四对随机变量中相互独立的是(A) X与X+Y. (B) X与X-Y.(C) X+Y与X-Y. (D) 2X+Y与X-Y.(分数:1.00)A.B.C. √D.解析:[解析] 由题设知各选项中的二个随机变量其联合分布都是二维正态分布,因此它们相互独立等价于不相关.又cov(X,Y)=0,DX=DY=σ2,所以 cov(X,X±Y)=DX=σ2≠0,cov(X+Y,X-Y)=DX-DY=0,cov(2X+Y,X-Y)=2DX-DY=σ≠0.故应选(C).21.已知随机变量X在[-1,1]上服从均匀分布,Y=X3,则X与Y(A) 不相关且相互独立. (B) 不相关且相互不独立.(C) 相关且相互独立. (D) 相关且相互不独立.(分数:1.00)A.B.C.D. √解析:[解析] 由于Y=X3,因此Y与X不独立,但又有某种线性相依的关系,即Y与X相关,所以选择(D).事实上,已知EXY≠EX·EY,因此X与Y相关.下面证明Y=X3与X不独立.X与Y=X3相互独立,y∈R有P{X≤x,Y≤y}=P{X≤x}P{Y≤y},即P{X≤x,X3≤y}=P{X≤x}P{X3≤y}.取,则,故而所以故X与Y=X3不独立.22.假设随机变量X与Y相互独立且有非零的方差,则(A) 3X+1与4Y-2相关. (B) X+Y与X-Y不相关.(C) X+Y与2Y+1相互独立. (D) e X与2Y+1相互独立.(分数:1.00)A.B.C.D. √解析:[解析] 由于X与Y相互独立,由独立性质知e X与2Y+1相互独立,所以选(D).下面我们对各选项逐一加以验证.由于X与Y相互独立,所以cov(X,Y)=0.(A):cov(3X+1,4Y-2)=12cov(X,Y)=0,3X+1与4Y-2不相关,选项(A)不成立.(B):cov(X+Y,X-Y)=cov(X,X)-cov(X,Y)+cov(Y,X)-cov(Y,Y)选项(B)不成立.(C):cov(X+Y,2Y+1)=2cov(X,Y)+2cov(Y,Y)=2DY≠0,X+Y与2Y+1相关,因而不独立,选项(C)不成立.(D):x,y∈R,如果x>0,则=P{e X≤x}P{2Y+1≤y}.如果x≤0,则P{e X≤x}=0.P{e X≤x,2Y+1≤y}=0=P{e X≤x}P{2Y+1≤y},所以e X与2Y+1相互独立,选项(D)成立.23.设X,Y为随机变量,其期望与方差都存在,则下列与PX=Y=1不等价的是,有P|X-Y|≥ε=0.(B) EX=EY,DX=DY.(C) EX=EY,D(Y-X)=0.(D) EX=EY,EX2=EY2,X与Y的相关系数为1.(分数:1.00)A.B. √C.D.解析:[解析] 从四个选项中我们可以看到选项(B)是EX=EY,DX=DY,而这并不意味着X与Y以概率1相等即P{x=Y}=1,所以选(B).下面我们证明其他三个选项都与P{X=Y}=1等价.(A):P{X=Y}=1P{X≠Y}=0.,有{|X-Y|≥ε}{X≠Y}P{|X-Y|≥ε}=0.反之,如果,P{|X-Y|≥ε}=0,则由.选项(A)成立.(C):EX=EY,D(Y-X)=0E(Y-X)=0,D(Y-X)=0P{Y-X=E(Y-X)}=1即P{Y-X=0}=P{Y=X}=1.选项(C)成立.(D):EX=EY,EX2=EY2,X与Y相关系数ρXY=1,EX=EY,EX2=EY2,P{y=aX+b}=1,其中,b=EY-aEX=0.从而{Y=X}=1.反之若ρXY=1,且,EX2=EY2,ρXY=1,所以(D)成立.24.设随机变量X1和X2不相关,且DX1=DX2=σ2≠0,令X=X1+aX2,Y=X1+bX2(ab≠0),如果X与Y不相关,则(A) a与b可以是任意实数. (B) a=b.(C) ab=-1. (D) ab=1.(分数:1.00)A.B.C. √D.解析:[解析] 已知cov(X1,X2)=0且DX1=DX2=σ2≠0,所以X与Y不相关cov(X,Y)=0cov(X1+aX2,Xl+bX2)=DX1+abDX2=σ2(1+ab)=0ab=-1,选(C).25.设X是连续型随机变量且方差存在,则对任意常数C和ε>0,必有(A)(B)(C)(分数:1.00)A.B.C. √D.解析:[解析] 各个选项左式全为P{|X-C|≥ε},因此希望通过计算选出正确选项.设X的密度函数为f(x),则故应选(C).26.设随机变量X的方差DX存在,并且有则一定有(A) DX=2.(B) DX≠2.(C) (D)(分数:1.00)A.B.C.D. √解析:[解析] 由题设P{|X-EX|≥3}≤,可得故应选(D).27.设事件A在每次试验中发生的概率都是p,将此试验独立重复进行n次.X表示n次试验中A发生的次数,Y表示n次试验中A发生的次数,则下面结论不成立的是(A) D(X+Y)=0.(B) D(X-Y)=0.(C) PX=k=PY=n-k(k=0,1,…,n).(D) X~B(n,p),Y~B(n,1-p).(分数:1.00)A.B. √C.D.解析:[解析] 依题意X~B(n,p),Y~B(n,1-p),X+Y=n,所以选项(A)、(C)、(D)都成立,不成立的是(B).事实上,Y=-X+n,又DX=np(1-p),DY=n(1-p)p,所以 D(X-Y)=DX+DY-2cov(X,Y)=2np(1-p)+2np(1-p)=4np(1-p).28.已知试验E1为:每次试验事件A发生的概率都是p(0<p<1),将此试验独立重复进行n次,以X1表示在这n次试验中A发生的次数;试验E2为:第i次试验事件A发生的概率为p i(0<p i<1,i=1,2,…),将此试验独立进行n次,以X2表示在这n次试验中A,则(A) EX1<EX2. (B) EX1=EX2.(C) EX1>EX2. (D) 以上结论都不对.(分数:1.00)A.B. √C.D.解析:[解析] 依题意X1~B(n,p),.对试验E2而言,如果记故应选(B).二、填空题(总题数:17,分数:20.00)29.设随机变量X1,X2,X3相互独立,其中X1服从区间[0,6]上的均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,则D(X1-2X2+3X3)=______.(分数:1.00)填空项1:__________________ (正确答案:46)解析:[解析]D(X1-2X2+3X3)=DX1+4DX2+9DX3=3+4×4+9×3=46.30.设随机变量X和Y独立同服从正态分 N(0,1/2),则D|X-Y|=______.(分数:1.00)填空项1:__________________解析:[解析] 易见,E(X-Y)=0,D(X-Y)=1,故U=X-Y~N(0,1).因此E|U|2=EU2=DU+(EU)2=1.31.设X服从参数为2的指数分布,则E(X+e-X)=______.(分数:1.00)填空项1:__________________解析:[解析] 由指数分布的数学期望知EX=1/2,又于是32.设随机变量X和Y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=______.(分数:1.00)填空项1:__________________ (正确答案:-0.02)解析:[解析] 由题设可知,EX2=0.60,EY2=0.50,EX2EY2=0.30,又EX2Y2=P{X=1,Y=-1}+P{X=1,Y=1}=0.28,于是 cov(X2,Y2)=EX2Y2-EX2EY2=-0.02.33.以X表示接连10次独立重复射击命中目标的次数,已知每次射击命中目标的概率为0.4,则EX2= 1.(分数:1.00)填空项1:__________________ (正确答案:18.4)解析:[解析] 由题设知,10次独立重复射击命中目标的次数X服从参数为(10,0.4)的二项分布.因此,EX=4,DX=2.4.于是EX2=DX+(EX)2=18.4.34.设对某一种商品的需求量X(件)是一随机变量,其概率分布为则期望需求量为______.(分数:1.00)填空项1:__________________解析:[解析] 由数学期望的定义,可知期望需求量为35.假设无线电测距仪无系统误差,其测量的随机误差服从正态分布.已知随机测量的绝对误差以概率0.95不大于20米,则随机测量误差的标准差σ=______.(分数:1.00)填空项1:__________________ (正确答案:10.20)解析:[解析] 由题设条件“无系统误差”知,测量误差X服从正态分布N(0,σ2),所以由可知36.100次独立重复试验成功次数的标准差的最大值等于 1.(分数:1.00)填空项1:__________________ (正确答案:5)解析:[解析] 设每次试验成功的概率为p,则100次独立重复试验成功的次数X服从参数为(100,p)的二项分布,故DX=100p(1-p).易见,当p=0.5时,p(1-p)取最大值.这时DX=100pq=100×0.25=25,因此,标准差的最大值等于5。
第三章 随机变量的数字特征前面讨论了随机变量的分布函数, 从中知道随机变量的分布函数能完整地描述随机变量的统计规律性。
但在许多实际问题中, 人们并不需要去全面考察随机变量的变化情况, 而只要知道它的某些数字特征即可.例如, 在评价某地区粮食产量的水平时, 通常只要知道该地区粮食的平均产量;又如, 在评价一批棉花的质量时, 既要注意纤维的平均长度, 又要注意纤维长度与平均长度之间的偏离程度, 平均长度较大, 偏离程度小, 则质量就较好. 等等实际上, 描述随机变量的平均值和偏离程度的某些数字特征在理论和实践上都具有重要的意义, 它们能更直接、更简洁更清晰和更实用地反映出随机变量的本质.本章将要讨论的随机变量的常用数字特征包括: 数学期望、方差、相关系数、矩。
第一节 随机变量的数学期望内容要点:一、离散型随机变量的数学期望平均值是日常生活中最常用的一个数字特征, 它对评判事物、作出决策等具有重要作用。
定义 设X 是离散型随机变量的概率分布为,2,1,}{===i p x X P i i如果∑∞=1i i i p x 绝对收敛, 则定义X 的数学期望(又称均值)为 .)(1∑∞==i i i p x X E二、连续型随机变量的数学期望定义 设X 是连续型随机变量, 其密度函数为)(x f ,如果⎰∞∞-dx x xf )(绝对收敛, 定义X 的数学期望为 .)()(⎰∞∞-=dx x xf X E三、 随机变量函数的数学期望设X 是一随机变量, )(x g 为一实函数,则)(X g Y =也是一随机变量, 理论上, 虽然可通过X 的分布求出)(X g 的分布, 再按定义求出)(X g 的数学期望)]([X g E . 但这种求法一般比较复杂。
下面不加证明地引入有关计算随机变量函数的数学期望的定理.定理1 设X 是一个随机变量, )(X g Y =,且)(Y E 存在, 则 (1) 若X 为离散型随机变量, 其概率分布为,2,1,}{===i p x X P i i则Y 的数学期望为.)()]([)(1∑∞===i i i p x g X g E Y E(2) 若X 为连续型随机变量, 其概率密度为)(x f , 则Y 的数学期望为.)()()]([)(⎰∞∞-==dx x f x g X g E Y E注: (i)定理的重要性在于:求)]([X g E 时, 不必知道)(X g 的分布, 只需知道X 的分布即可。
新编概率论与数理统计(肖筱南著)课后答案下载新编概率论与数理统计(肖筱南著)特色及评论第一章随机事件及其概率1 随机事件及其运算一、随机现象与随机试验二、样本空间三、随机事件四、随机事件间的关系与运算习题1-12 随机事件的概率一、概率的统计定义二、概率的古典定义习题1-2(1)三、概率的几何定义四、概率的公理化定义与性质习题1-2(2)3 条件概率与全概率公式一、条件概率与乘法公式二、全概率公式与贝叶斯(bayes)公式习题1-34 随机事件的独立性一、事件的相互独立性二、伯努利(bernoulli)概型及二项概率公式习题1-45 综合例题一、基本概念的理解二、几种典型的古典概型问题三、有关概率加法公式的应用四、条件概率和乘法公式五、全概率公式和贝叶斯公式的应用六、独立性的性质与应用七、二项概率公式的应用总习题一第二章随机变量及其分布1 离散型随机变量及其分布律一、随机变量的定义二、离散型随机变量及其分布律三、常见的离散型随机变量的分布习题2-12 随机变量的分布函数一、分布函数的概念二、分布函数的性质习题2-23 连续型随机变量及其概率密度一、连续型随机变量的.概率密度二、连续型随机变量的性质三、离散型随机变量与连续型随机变量的比较习题2-34 几种常见的连续型随机变量的分布一、均匀分布二、指数分布三、正态分布习题2-45 随机变量函数的分布一、离散型情形二、连续型情形习题2-56 二维随机变量及其联合分布函数一、二维随机变量的概念二、联合分布函数的定义及意义三、联合分布函数的性质习题2-67 二维离散型随机变量一、联合分布律二、边缘分布律三、条件分布律习题2-78 二维连续型随机变量一、联合概率密度二、边缘概率密度三、两种重要的二维连续型分布四、条件概率密度习题2-89 随机变量的相互独立性一、随机变量相互独立的定义二、离散型随机变量相互独立的充分必要条件三、连续型随机变量相互独立的充分必要条件四、二维正态变量的两个分量相互独立的充分必要条件习题2-910 两个随机变量的函数的分布一、离散型情形二、连续型情形习题2-1011 综合例题一维部分一、基本概念的理解二、求随机变量概率分布中的未知参数三、求分布律四、求分布函数五、已知常见分布,求相关概率六、随机变量函数的分布二维部分一、基本概念的理解二、二维离散型随机变量三、二维联合分布函数四、二维联合概率密度总习题二第三章随机变量的数字特征1 数学期望一、离散型随机变量的数学期望二、连续型随机变量的数学期望三、随机变量函数的数学期望四、数学期望的性质习题3-12 方差一、方差的定义二、常见分布的方差三、方差的性质习题3-23 协方差与相关系数一、协方差二、相关系数三、相关系数的意义习题3-34 矩与协方差矩阵习题3-45 综合例题一、基本概念的理解二、数学期望和方差的应用三、有关数字特征的计算总习题三第四章大数定律与中心极限定理第五章统计量及其分布第六章参数估计第七章假设检验第八章方差分析与回归分析新编概率论与数理统计(肖筱南著)本书目录《新编概率论与数理统计(第2版)/21世纪高等院校教学规划系列教材》是根据教育部__新颁布的全国高校理工科及经济类“概率论与数理统计课程教学基本要求”并参考“理学、工学、经济学硕士研究生入学考试大纲”进行编写的。
论随机变量与随机变量的数字特征随机变量及其数字特征在概率论与数理统计分析中十分重要,对于各种实际问题的解决也具有重要意义。
本文将深入探讨随机变量、离散型变量与连续型变量的数字特征,包括期望、方差、标准差等。
一、随机变量概述随机变量是指随机试验结果的数量特征,它的取值可用实数表述。
不同随机变量的特点在于随机试验中所涉及的数字特征,在数理统计中也常被称为分布。
随机变量不仅包括离散型变量,也包括连续型变量。
离散型随机变量:随机变量的取值为有限个、可数个或以可数集合为极限的无限个,如正面朝上的硬币抛掷次数、某件产品的次品数量等。
连续型随机变量:随机变量的取值为一个区间内的任意实数值,如某温度范围内某随机位置的温度、某个时间范围内某地区的降雨量等。
二、随机变量数字特征1.期望期望是随机变量的中心度量,用于描述随机变量的平均水平。
设X为某一离散型或连续型随机变量,则其期望记为E(X),其计算公式如下:离散型随机变量:E(X)=Σ(x_i*p_i)连续型随机变量:E(X)=∫x f(x) dx其中,x_i为随机变量X的取值,p_i为相应取值出现的概率,f(x)为连续型随机变量X的概率密度函数。
例如,有一枚公正的硬币,抛掷每面朝上的概率都是1/2,抛掷n次后正面朝上的平均次数为E(X)=np,其中p=1/2。
再例如,有一篮子数十个苹果,其中红苹果占1/5,蓝苹果占2/5,绿苹果占2/5,随机抽取一个苹果,苹果颜色为随机变量X,其期望为E(X)=1/5*1+2/5*2+2/5*3=2.2。
2.方差方差是随机变量X的离散程度的度量,它描述了随机变量与其期望的偏离程度。
设X为某一离散型或连续型随机变量,则其方差记为Var(X),其计算公式如下:离散型随机变量:Var(X)=Σ(x_i-E(X))^2*p_i连续型随机变量:Var(X)=∫(x-E(X))^2*f(x) dx其中,x_i为随机变量X的取值,p_i为相应取值出现的概率,f(x)为连续型随机变量X的概率密度函数。