用空间向量求点到面的距离 PPT
- 格式:ppt
- 大小:344.50 KB
- 文档页数:119
用空间向量研究距离问题课程标准学习目标1.能用向量方法解决点到直线、点到平面、相互平行的直线、相互平行的平面的距离问题.2.体会向量方法在研究几何问题中的作用 1.借助直线的方向向量和平面的法向量,能计算点到直线的距离、点到平面的距离,并知道两条平行直线之间的距离、直线与平面平行时两者间的距离、两个平行平面之间的距离. 2.能分析和解决一些立体几何中的距离问题,体会向量方法与综合几何方法的共性和差异,体会直线的方法向量和平面的法向量的作用,感悟向量是研究几何问题的有效工具知识点 用空间向量研究距离问题 1.点到直线的距离如图1-4-18,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设AP ⃗⃗⃗⃗⃗ =a ,则向量AP ⃗⃗⃗⃗⃗ 在直线l 上的投影向量AQ ⃗⃗⃗⃗⃗ =(a ·u )u.在Rt △APQ 中,由勾股定理,得PQ= = .图1-4-182.点到平面的距离如图1-4-19,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP⃗⃗⃗⃗⃗ 在直线l 上的投影向量QP ⃗⃗⃗⃗⃗ 的长度.因此PQ=AP ⃗⃗⃗⃗⃗ ·n|n |= = . 图1-4-19【诊断分析】 判断正误.(请在括号中打“√”或“×”)(1)平面α外一点A 到平面α的距离,就是点A 与平面α内一点B 所成向量AB⃗⃗⃗⃗⃗ 的长度.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.()(3)若平面α∥平面β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.()3.解决立体几何中问题的步骤用空间向量解决立体几何问题的“三步曲”可以概括为“一化二算三译”六字诀.“一化”就是把立体几何问题转化为向量问题;“二算”就是通过向量运算,研究点、线、面之间的位置关系以及它们之间的距离问题;“三译”就是把向量的运算结果“翻译”成相应的几何意义.探究点一点到直线的距离例1 如图1-4-20,在空间直角坐标系中有长方体ABCD-A'B'C'D',AB=1,BC=2,AA'=3,求点B到直线A'C的距离.图1-4-20变式1 [2020·潍坊高二期末] 已知A(0,0,2),B(1,0,2),C(0,2,0),则点A到直线BC的距离为()B.1A.2√23C.√2D.2√2变式2 已知正方体ABCD-A1B1C1D1中,E,F分别是C1C,D1A1的中点,求点A到直线EF的距离.[素养小结]用向量法求点到直线的距离的一般步骤:(1)建立空间直角坐标系;(2)求直线的方向向量;(3)计算所求点与直线上某一点所构成的向量在直线上的投影向量的长度;(4)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.探究点二点到平面的距离例2 如图1-4-21,已知正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,求点A到平面EFG的距离.图1-4-21变式如图1-4-22所示,在四棱锥P-ABCD中,四边形ABCD为正方形,PD⊥平面ABCD,PD=DA=2,F,E分别为AD,PC的中点.(1)求证:DE∥平面PFB;(2)求点E到平面PFB的距离.图1-4-22[素养小结]用向量法求点到平面的距离的步骤:(1)建系:建立恰当的空间直角坐标系;(2)求点的坐标:写出(求出)相关点的坐标;(3)求向量:求出相关向量的坐标;(4)利用公式即可求得点到平面的距离.探究点三线面距和面面距例3 如图1-4-23所示,在直棱柱ABCD-A1B1C1D1中,底面为直角梯形,AB∥CD且∠ADC=90°,AD=1,CD=√3,BC=2,AA1=2,E是CC1的中点,求直线A1B1到平面ABE的距离.图1-4-23变式如图1-4-24,在棱长为1的正方体ABCD-A1B1C1D1中,求平面A1BC1与平面ACD1的距离.图1-4-24[素养小结](1)求线面距离可以转化为求直线上任意一点到平面的距离,利用求点到平面的距离的方法求解即可.(2)求两个平行平面间的距离可以转化为求点到平面的距离,利用求点到平面的距离的方法求解即可.拓展如图1-4-25,四棱锥P-ABCD的底面是边长为1的正方形,PD⊥平面ABCD,且PD=1,E,F 分别为AB,BC的中点.求:图1-4-25(1)点D到平面PEF的距离;(2)直线AC到平面PEF的距离.1.已知正方体ABCD-A1B1C1D1的棱长为2,点E是A1B1的中点,则点A到直线BE的距离为()A.6√55B.4√55C.2√55D.√552.在三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=PB=PC=1,则点P到平面ABC的距离是()A.√66B.√63C.√36D.√333.若正方体ABCD-A1B1C1D1的棱长为3,则点B到平面ACD1的距离为()A.√3B.√33C.3√22D.324.如图1-4-26,在长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点F,G分别是AB,CC1的中点,则点D1到直线GF的距离为.图1-4-265.在长方体ABCD-A 1B 1C 1D 1中,AA 1=1,AD=DC=√3,Q 是线段A 1C 1上一点,且C 1Q=13C 1A 1,则点Q 到平面A 1DC 的距离为 .用空间向量研究距离问题参考答案【课前预习】知识点1.√|AP ⃗⃗⃗⃗⃗ |2-|AQ ⃗⃗⃗⃗⃗ |2 √a 2-(a ·u )22.|AP ⃗⃗⃗⃗⃗ ·n |n |||AP ⃗⃗⃗⃗⃗ ·n ||n |诊断分析 (1)× (2)√ (3)√ 【课中探究】探究点一例1 解:因为AB=1,BC=2,AA'=3, 所以A'(0,0,3),C (1,2,0),B (1,0,0), 所以直线A'C 的方向向量A'C ⃗⃗⃗⃗⃗⃗ =(1,2,-3). 又BC ⃗⃗⃗⃗⃗ =(0,2,0),所以BC ⃗⃗⃗⃗⃗ 在A 'C ⃗⃗⃗⃗⃗⃗ 上的投影向量的长度为|BC ⃗⃗⃗⃗⃗ ·A 'C ⃗⃗⃗⃗⃗⃗||A 'C ⃗⃗⃗⃗⃗⃗|=√14,所以点B 到直线A'C 的距离d=√|BC ⃗⃗⃗⃗⃗ |2-(|BC ⃗⃗⃗⃗⃗ ·A 'C ⃗⃗⃗⃗⃗⃗ ||A 'C ⃗⃗⃗⃗⃗⃗|) 2=√4-1614=2√357. 变式1 A [解析] ∵A (0,0,2),B (1,0,2),C (0,2,0),AB ⃗⃗⃗⃗⃗ =(1,0,0),BC ⃗⃗⃗⃗⃗ =(-1,2,-2),∴点A 到直线BC 的距离d=|AB ⃗⃗⃗⃗⃗ |√1-(cos <AB ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ >)2=1×√1-(-11×3)2=2√23.故选A .变式2 解:连接AF ,以D 为原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,如图所示,设DA=2,则A (2,0,0),E (0,2,1),F (1,0,2),则EF ⃗⃗⃗⃗⃗ =(1,-2,1),FA ⃗⃗⃗⃗⃗ =(1,0,-2). |EF⃗⃗⃗⃗⃗ |=√12+(-2)2+12=√6,FA ⃗⃗⃗⃗⃗ ·EF⃗⃗⃗⃗⃗ =1×1+0×(-2)+(-2)×1=-1, FA ⃗⃗⃗⃗⃗ 在EF ⃗⃗⃗⃗⃗ 上的投影向量的长度为|FA ⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ ||EF ⃗⃗⃗⃗⃗|=√6, 所以点A 到直线EF 的距离d=√|FA |2-(√6) 2=√296=√1746. 探究点二例2 解:以D 为坐标原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0), 所以AG ⃗⃗⃗⃗⃗ =(0,1,0),GE ⃗⃗⃗⃗⃗ =(-2,1,1),GF ⃗⃗⃗⃗⃗ =(-1,-1,2). 设n=(x ,y ,z )是平面EFG 的法向量, 点A 到平面EFG 的距离为d ,则{n ·GE⃗⃗⃗⃗⃗ =0,n ·GF⃗⃗⃗⃗⃗ =0,所以{-2x +y +z =0,-x -y +2z =0,取z=1,得n=(1,1,1),所以d=|AG ⃗⃗⃗⃗⃗ ·n ||n |=√3=√33,即点A 到平面EFG 的距离为√33.变式 解:(1)证明:以D 为原点,建立如图所示的空间直角坐标系,则P (0,0,2),F (1,0,0),B (2,2,0),E (0,1,1), 所以FP⃗⃗⃗⃗⃗ =(-1,0,2),FB ⃗⃗⃗⃗⃗ =(1,2,0),DE ⃗⃗⃗⃗⃗ =(0,1,1), 所以DE ⃗⃗⃗⃗⃗ =12FP ⃗⃗⃗⃗⃗ +12FB ⃗⃗⃗⃗⃗ ,又因为DE ⊄平面PFB , 所以DE ∥平面PFB. (2)因为DE ∥平面PFB ,所以点E 到平面PFB 的距离等于点D 到平面PFB 的距离. 设平面PFB 的法向量为n=(x ,y ,z ), 则{n ·FB ⃗⃗⃗⃗⃗ =0,n ·FP ⃗⃗⃗⃗⃗ =0,即{x +2y =0,-x +2z =0,取x=2,得n=(2,-1,1). 因为FD ⃗⃗⃗⃗⃗ =(-1,0,0),所以点D 到平面PFB 的距离d=|FD ⃗⃗⃗⃗⃗ ·n ||n |=√6=√63,所以点E 到平面PFB 的距离为√63.探究点三例3 解:如图,以D 为坐标原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则A 1(1,0,2),A (1,0,0),E (0,√3,1),C (0,√3,0). 过点C 作AB 的垂线交AB 于点F ,易得BF=√3, ∴B (1,2√3,0),∴AB ⃗⃗⃗⃗⃗ =(0,2√3,0),BE ⃗⃗⃗⃗⃗ =(-1,-√3,1). 设平面ABE 的法向量为n=(x ,y ,z ), 则{n ·AB⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{2√3y =0,-x -√3y +z =0,取x=1,得n=(1,0,1).∵AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),∴点A 1到平面ABE 的距离d=|AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ·n ||n |=√2=√2.∵直线A 1B 1到平面ABE 的距离等于点A 1到平面ABE 的距离, ∴直线A 1B 1到平面ABE 的距离为√2.变式 解:如图,建立空间直角坐标系,AC ⃗⃗⃗⃗⃗ =(-1,1,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),设平面ACD 1的法向量为n=(x ,y ,z ),由n ⊥AC ⃗⃗⃗⃗⃗ ,n ⊥AD 1⃗⃗⃗⃗⃗⃗⃗ 得{-x +y =0,-x +z =0,取x=1,得n=(1,1,1),所以平面ACD 1的一个法向量为n=(1,1,1),因为AB ⃗⃗⃗⃗⃗ =(0,1,0),所以点B 到平面ACD 1的距离d=|AB ⃗⃗⃗⃗⃗ ·n ||n |=√3=√33. 因为平面A 1BC 1与平面ACD 1的距离等于点B 到平面ACD 1的距离, 所以平面A 1BC 1与平面ACD 1的距离为√33.拓展 解:(1)连接DE.∵PD ⊥平面ABCD ,∴PD ⊥AD ,PD ⊥CD ,又AD ⊥CD , ∴可建立如图所示的空间直角坐标系,则P (0,0,1),A (1,0,0),C (0,1,0),E 1,12,0,F 12,1,0,∴PE ⃗⃗⃗⃗⃗ =1,12,-1,EF ⃗⃗⃗⃗⃗ =-12,12,0. 设平面PEF 的法向量为n=(x ,y ,z ), 则{n ·EF ⃗⃗⃗⃗⃗ =0,n ·PE ⃗⃗⃗⃗⃗ =0,即{-12x +12y =0,x +12y -z =0,取x=1,则平面PEF 的一个法向量为n=1,1,32.易知DE⃗⃗⃗⃗⃗ =1,12,0,设D 到平面PEF 的距离为d , 则d=|DE ⃗⃗⃗⃗⃗⃗ ·n ||n |=|1+12|√172=3√1717, 故点D 到平面PEF 的距离为3√1717.(2)由(1)知,平面PEF 的一个法向量为n=1,1,32.∵EF ⃗⃗⃗⃗⃗ =-12,12,0,AC ⃗⃗⃗⃗⃗ =(-1,1,0), ∴AC ⃗⃗⃗⃗⃗ =2EF ⃗⃗⃗⃗⃗ ,∴AC ⃗⃗⃗⃗⃗ ∥EF⃗⃗⃗⃗⃗ . ∵AC ,EF 不共线,∴AC ∥EF ,又∵AC ⊄平面PEF ,EF ⊂平面PEF ,∴AC ∥平面PEF. 易得AE ⃗⃗⃗⃗⃗ =0,12,0,设直线AC 到平面PEF 的距离为h , 则h=|AE ⃗⃗⃗⃗⃗ ·n ||n |=12√172=√1717, 故直线AC 到平面PEF 的距离为√1717. 【课堂评价】1.B [解析] 如图,以B 为原点,分别以BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ ,BB 1⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则BA ⃗⃗⃗⃗⃗ =(0,2,0),BE ⃗⃗⃗⃗⃗ =(0,1,2),设∠ABE=θ,则cos θ=|BA ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗||BA ⃗⃗⃗⃗⃗ ||BE ⃗⃗⃗⃗⃗ |=2×√5=√55,则sin θ=√1-cos 2θ=2√55,故点A 到直线BE 的距离d=|AB⃗⃗⃗⃗⃗ |sin θ=2×2√55=4√55. 2.D [解析] 以P 为原点,分别以PA ,PB ,PC 所在的直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (1,0,0),B (0,1,0),C (0,0,1),则PA⃗⃗⃗⃗⃗ =(1,0,0),AB ⃗⃗⃗⃗⃗ =(-1,1,0),AC ⃗⃗⃗⃗⃗ =(-1,0,1),易得平面ABC 的一个法向量为n=(1,1,1),则P 到平面ABC 的距离d=|PA ⃗⃗⃗⃗⃗ ·n ||n |=√33.3.A [解析] 如图,以D 为原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则B (3,3,0),A (3,0,0),C (0,3,0),D 1(0,0,3),所以AC ⃗⃗⃗⃗⃗ =(-3,3,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-3,0,3),AB ⃗⃗⃗⃗⃗ =(0,3,0).设平面ACD 1的法向量为n=(x ,y ,z ),则{n ·AC ⃗⃗⃗⃗⃗ =-3x +3y =0,n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =-3x +3z =0,取x=1,得n=(1,1,1),∴点B 到平面ACD 1的距离d=|AB ⃗⃗⃗⃗⃗ ·n ||n |=√3=√3.故选A . 4.√423 [解析] 连接GD 1.以D 为坐标原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则D 1(0,0,2),F (1,1,0),G (0,2,1),所以GF ⃗⃗⃗⃗⃗ =(1,-1,-1),GD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-2,1),所以GF ⃗⃗⃗⃗⃗ ·GD 1⃗⃗⃗⃗⃗⃗⃗⃗ |GF ⃗⃗⃗⃗⃗ |=2-1√3=1√3,|GD 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√5,所以点D 1到直线GF 的距离为√5-13=√423. 5.√33 [解析] 连接DQ ,建立如图所示的空间直角坐标系,则D (0,0,1),C (0,√3,1),A 1(√3,0,0),C 1(0,√3,0),由C 1Q=13C 1A 1,得Q √33,2√33,0,∴DC ⃗⃗⃗⃗⃗ =(0,√3,0),DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√3,0,-1),DQ ⃗⃗⃗⃗⃗⃗ =√33,2√33,-1.设平面A 1DC 的法向量为n=(x ,y ,z ),由{n ·DC ⃗⃗⃗⃗⃗ =0,n ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{√3y =0,√3x -z =0,可取n=(1,0,√3),∴点Q 到平面A 1DC 的距离d=|DQ ⃗⃗⃗⃗⃗⃗ ·n ||n |=√33.。