第一课时 利用空间向量求空间角
- 格式:pptx
- 大小:1.08 MB
- 文档页数:35
《利用向量法求空间角》教案一、教学目标1. 让学生理解空间向量的概念,掌握空间向量的基本运算。
2. 引导学生掌握利用向量法求空间角的方法,培养空间想象能力。
3. 通过对空间角的学习,提高学生解决实际问题的能力。
二、教学内容1. 空间向量的概念及基本运算2. 空间向量夹角的定义及计算方法3. 空间向量垂直的判定与性质4. 利用向量法求空间角的大小5. 应用实例解析三、教学重点与难点1. 教学重点:(1)空间向量的概念及基本运算(2)空间向量夹角的计算方法(3)利用向量法求空间角的大小2. 教学难点:(1)空间向量垂直的判定与性质(2)应用实例的解析四、教学方法1. 采用讲授法,系统地讲解空间向量及空间角的相关概念、性质和计算方法。
2. 利用多媒体课件,展示空间向量的几何形象,增强学生的空间想象力。
3. 结合具体实例,引导学生运用向量法求解空间角的大小,提高解决实际问题的能力。
4. 组织课堂讨论,鼓励学生提问、发表见解,提高学生的参与意识。
五、教学安排1. 第一课时:介绍空间向量的概念及基本运算2. 第二课时:讲解空间向量夹角的定义及计算方法3. 第三课时:讲解空间向量垂直的判定与性质4. 第四课时:讲解利用向量法求空间角的大小5. 第五课时:应用实例解析,巩固所学知识六、教学过程1. 导入:回顾上一节课的内容,通过提问方式检查学生对空间向量的理解和掌握情况。
2. 新课导入:介绍空间向量夹角的定义,解释其在几何中的意义。
3. 课堂讲解:详细讲解空间向量夹角的计算方法,包括夹角余弦值的求法。
4. 例题讲解:挑选典型例题,演示利用向量法求空间向量夹角的过程。
5. 课堂练习:学生独立完成练习题,巩固向量夹角的知识。
六、教学内容1. 空间向量夹角的定义2. 空间向量夹角的计算方法3. 空间向量夹角的应用实例七、教学重点与难点1. 教学重点:(1)空间向量夹角的定义及其计算方法(2)利用向量夹角解决实际问题2. 教学难点:(1)空间向量夹角的计算方法(2)空间向量夹角在实际问题中的应用八、教学方法1. 采用案例教学法,通过具体实例讲解空间向量夹角的含义和应用。
利用向量法求空间角-经典教案教案章节一:向量基础教学目标:1. 理解向量的概念及其表示方法。
2. 掌握向量的运算规则,包括加法、减法、数乘和点乘。
教学内容:1. 向量的定义及表示方法。
2. 向量的运算规则:a) 向量加法:三角形法则和平行四边形法则。
b) 向量减法:向量减去另一个向量等于加上这个向量的相反向量。
c) 数乘:一个实数乘以一个向量,得到一个新的向量,其实数乘以原向量的模,新向量的方向与原向量相同。
d) 点乘:两个向量的点乘,得到一个实数,表示两个向量的夹角的余弦值。
教学活动:1. 通过实际操作,让学生直观地理解向量的概念和表示方法。
2. 通过例题,让学生掌握向量的运算规则。
教案章节二:空间向量教学目标:1. 理解空间向量的概念及其表示方法。
2. 掌握空间向量的运算规则,包括空间向量的加法、减法、数乘和点乘。
教学内容:1. 空间向量的定义及表示方法。
2. 空间向量的运算规则:a) 空间向量加法:三角形法则和平行四边形法则。
b) 空间向量减法:空间向量减去另一个空间向量等于加上这个空间向量的相反空间向量。
c) 空间向量的数乘:一个实数乘以一个空间向量,得到一个新的空间向量,其实数乘以原空间向量的模,新空间向量的方向与原空间向量相同。
d) 空间向量的点乘:两个空间向量的点乘,得到一个实数,表示两个空间向量的夹角的余弦值。
教学活动:1. 通过实际操作,让学生直观地理解空间向量的概念和表示方法。
2. 通过例题,让学生掌握空间向量的运算规则。
教案章节三:向量的投影教学目标:1. 理解向量的投影的概念及其计算方法。
2. 掌握向量的正交投影和斜投影的计算方法。
教学内容:1. 向量的投影的定义及计算方法。
2. 向量的正交投影和斜投影的计算方法:a) 向量的正交投影:将向量投影到垂直于某一平面的向量上,得到的投影向量与投影平面垂直。
b) 向量的斜投影:将向量投影到某一平面上,得到的投影向量与投影平面不垂直。
《利用向量法求空间角》教案一、教学目标:1. 让学生掌握空间向量的基本概念和性质。
2. 培养学生利用向量法求空间角的能力。
3. 提高学生解决实际问题的能力。
二、教学内容:1. 空间向量的基本概念和性质。
2. 空间向量的加法、减法、数乘和数量积。
3. 空间向量的坐标表示和运算。
4. 利用向量法求空间角的方法和步骤。
三、教学重点与难点:1. 教学重点:空间向量的基本概念和性质,向量的加法、减法、数乘和数量积,空间向量的坐标表示和运算,利用向量法求空间角的方法和步骤。
2. 教学难点:空间向量的坐标表示和运算,利用向量法求空间角的方法和步骤。
四、教学方法:1. 采用讲授法,讲解空间向量的基本概念和性质,向量的加法、减法、数乘和数量积,空间向量的坐标表示和运算,利用向量法求空间角的方法和步骤。
2. 采用案例分析法,分析实际问题,引导学生运用向量法求解空间角。
3. 采用互动教学法,鼓励学生提问、讨论,提高学生的参与度和积极性。
五、教学安排:1. 第一课时:讲解空间向量的基本概念和性质。
2. 第二课时:讲解向量的加法、减法、数乘和数量积。
3. 第三课时:讲解空间向量的坐标表示和运算。
4. 第四课时:讲解利用向量法求空间角的方法和步骤,案例分析。
5. 第五课时:课堂练习,巩固所学知识。
六、教学评价:1. 课后作业:布置有关空间向量运算和求空间角的练习题,检验学生对知识的掌握程度。
2. 课堂练习:在课堂上进行实时练习,及时发现并纠正学生的错误。
3. 小组讨论:组织学生进行小组讨论,促进学生之间的互动和学习。
4. 期末考试:设置有关空间向量和空间角的题目,全面评估学生对课程内容的掌握情况。
七、教学资源:1. 教材:选用权威、实用的教材,如《高等数学》、《线性代数》等。
2. 课件:制作精美、清晰的课件,辅助讲解和展示。
3. 教学视频:寻找相关的教学视频,为学生提供多角度、直观的学习资源。
4. 练习题库:整理和筛选一批空间向量和空间角的练习题,供学生课后练习使用。
高中数学 ︵ 向量法求空间角︶培优篇考点1:异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v||u||v|.考点2:直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向高中数学 ︵ 向量法求空间角︶培优篇量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|= u ·n |u ||n |=|u·n||u||n|.考点3:平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.【常用结论总结】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|. 2.二面角的范围是[0,π],两个平面夹角的范围是0,2.【例1】 直三棱柱ABC -A 1B 1C 1如图所示,AB =4,BC=3,AC =5,D 为棱AB 的中点,三棱柱的各顶点在同一球面上,且球的表面积为61π,则异面直线A 1D 和B 1C 所成的角的余弦值为( )高中数学 ︵ 向量法求空间角︶培优篇A .5B .25C .5D .25【例2】 如图,四棱锥P −ABCD 中,底面ABCD 为正方形,△PAD 是正三角形,AB =2,平面PAD ⊥平面ABCD ,则PC 与BD 所成角的余弦值为( )A .14B .4C .13D 【例3】 如图四棱锥P -ABCD 中,底面ABCD 为正方形,各棱长均相等,E 是PB 的中点,则异面直线AE 与PC 所成角的余弦值为()A 6B C .13D .12学霸笔记用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是(0,],即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.高中数学 ︵ 向量法求空间角︶培优篇【对点训练1】 如图,在三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为()AB .13C .4D 【对点训练2】 “曲池”是《九章算术》记载的一种几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,AA ⊥面ABCD ,AA 1=4,底面扇环所对的圆心角为π2,AD 的长度是BC 长度的2倍,CD =1,则异面直线A 1D 1与BC 1所成角的正弦值为()A .3B .13C .3D .4【对点训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC=AB=2,BC =2√2,Q 为A 1B 1的中点,E 为AQ 的中点,F 为BC 1的中点,则异面直线BE 与AF所成角的余弦值为( )A. BC .D高中数学 ︵ 向量法求空间角︶培优篇【例4】 在正方体ABCD −A B C D 中,如图E 、F 分别是BB 1、CD 的中点. (1)求证:平面AD F ⊥平面ADE ; (2)求直线EF 与AD F 所成角的正弦值.【例5】 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,P A ⊥平面ABCD ,P A=AD=2AB=8,点M 在棱PD 上,且PA =PM ⋅PD ,AM ⊥MC.(1)求证:CD ⊥平面P AD ;(2)求BM 与平面ACM 所成角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 学霸笔记利用空间向量求线面角的解题步骤【对点训练4】 如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱BC 、CD 的中点. (1)求证:D 1 F ∥平面A 1EC1;(2)求直线AC 1与平面A 1EC 1所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练5】 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,∠ABC =60°,AB =2,AA 1=2√3,E 为线段DD 1上一点.(1)求证:AC ⊥B 1D ;(2)若平面AB 1E 与平面ABCD 的夹角的余弦值为25,求直线BE与平面AB 1E 所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇【例6】 在如图所示的空间几何体中,△ACD 与△ACB 均是等边三角形,直线ED ⊥平面ACD ,直线EB ⊥平面ABC ,DE ⊥BE . (1)求证:平面ABC ⊥平面ADC ;(2)求平面ACE 与平面BCE 夹角的余弦值.【例7】 如图,三棱锥A −BCD 中,DA =DB =DC ,BD ⊥CD ,∠ADB =∠ADC =60∘,E 为BC 的中点. (1)证明:BC ⊥DA ;(2)点F满足EF⃗=DA ⃗,求二面角D −AB −F 的正弦值.高中数学 ︵ 向量法求空间角︶培优篇学霸笔记利用空间向量求平面与平面夹角的解题步骤【对点训练6】 直三棱柱ABC −A B C 中,AA =AB =AC =2,AA ⊥AB,AC ⊥AB ,D 为A B 的中点,E 为AA 的中点,F 为CD 的中点. (1)求证:EF ∥平面ABC ;(2)求直线BE 与平面CCD所成角的正弦值; (3)求平面A CD 与平面CC D 夹角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练7】 如图,在棱长为2的正方体ABCD −A B C D 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:D 1F ∥平面A EC ;(2)求直线AC 与平面A EC 所成角的正弦值. (3)求二面角A −A C −E 的正弦值.【对点训练8】 如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点. (1)证明:OE ∥平面PAC ;(2)若∠ABO=∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值.。