轴套类零件
- 格式:doc
- 大小:994.50 KB
- 文档页数:17
1,轴套类零件这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。
为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。
在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。
由此注出图中所示的Ф14 、Ф11(见A-A断面)等。
这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。
而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。
如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。
2.盘盖类零件这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。
在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。
如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。
在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。
3.叉架类零件这类零件一般有拨叉、连杆、支座等零件。
由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。
对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。
踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。
在标注叉架类零件的尺寸时,通常选用安装基面或零件的对称面作为尺寸基准。
尺寸标注方法参见图。
4.箱体类零件一般来说,这类零件的形状、结构比前面三类零件复杂,而且加工位置的变化更多。
轴套类零件的认识报告单姓名杨亮工号123B05 组别B组课程名称轴套类零件编程加工与检测任务编号撰写目的熟悉轴套类零件的加工过程一、轴类零件的认识二、套类零件的认识三、轴套类零件的刀具、量具的准备四、轴套类零件夹具的准备五、轴套类零件的工艺分析六、加工中遇到的问题七、小结教师评语:一、轴类零件的认识1、轴类零件的的特点和功用特点:常见的轴类零件的基本形式是阶梯的回转体,其长度大于直径,主体由多段不同的直径的回转体组成。
轴上一般有轴颈、轴肩、键槽、螺纹、挡圈槽、销孔、内孔、螺纹子等,以及中心孔、退刀槽、倒角、圆角等机械加工工艺结构。
功用:轴类零件主要用于支承传动零部件,传递扭矩和承受载荷以及保证在轴上零件的回转精度等。
2、轴类零件的分类根据承受载荷的不同,轴类零件可分为心轴(只承受弯矩)、传动轴(传递转矩)、转动轴(既传递转矩又承受弯矩)。
根据轴线形状的不同,轴类零件可分为直轴、曲轴和挠性钢丝轴。
直轴又可分为光轴和曲轴。
3、轴类的尺寸精度轴用轴承支承,与轴承配合的轴段称为轴颈。
轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,通常有以下几项:(一)尺寸精度起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较高(IT5~IT7)。
装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。
(二)几何形状精度轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的圆度、圆柱度等,一般应将其公差限制在尺寸公差范围内。
对精度要求较高的内外圆表面,应在图纸上标注其允许偏差。
(三)相互位置精度轴类零件的位置精度要求主要是由轴在机械中的位置和功用决定的。
通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。
普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为0.01~0.03mm ,高精度轴(如主轴)通常为0.001~0.005mm 。
轴套类零件常用的表达方法
轴套类零件常用的表达方法主要包括:
1.视图选择:选择适当的视图,如主视图、俯视图、侧视
图等,以完整、清晰地表达轴套的结构和形状。
2.剖面图:对于轴套上具有孔、槽等特征的部分,可以采
用剖面图来表达其内部结构和形状。
3.局部视图:对于轴套上的局部细节或不规则形状,可以
采用局部视图来表达。
4.放大视图:对于轴套上的某些细小特征或难以表达的部
分,可以采用放大视图来表达。
5.简化画法:可以采用一些简化的画法,如省略不重要的
轮廓线、合并相似的形状等,以简化绘图并突出重要的部分。
通过这些表达方法,可以全面、准确地表达轴套类零件的结构和形状,方便制造和使用。
1.轴套类零件这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。
为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。
在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。
由此注出图中所示的Ф14 、Ф11(见A-A断面)等。
这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。
而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。
如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。
2.盘盖类零件这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。
在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。
如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。
在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。
3.叉架类零件这类零件一般有拨叉、连杆、支座等零件。
由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。
对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。
踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。
在标注叉架类零件的尺寸时,通常选用安装基面或零件的对称面作为尺寸基准。
尺寸标注方法参见图。
4.箱体类零件一般来说,这类零件的形状、结构比前面三类零件复杂,而且加工位置的变化更多。
典型零件尺寸标注举例根据零件的形状和结构特点,通常将零件分成四大类:轴、套类零件;叉架类零件;盘类零件;箱体类零件。
1.轴套类零件的尺寸标注轴套类零件的表达方法,前面已经讨论过,以加工位置原则确定主视图的位置,轴线水平放置,用断面图来表达键槽的形状,螺纹规定画法加上螺纹的标注等。
这类零件的一般以轴线作为径向尺寸基准(就是常说的高度和宽度方向的尺寸基准)如图1中的φ28k7、φ34、φ35k6、φ45、φ35k6、φ34、和φ25k6等。
图1 轴类零件:径向尺寸基准以及径向尺寸的标注长度方向的基准一般选择重要的端面、接触面等,如图2所示,以右端面作为长度方向的基准,从这里标注引出32、95和400的尺寸。
图2轴类零件:长度方向尺寸基准以及长度方向尺寸的标注如图3所示为某企业零件:轴的零件图。
是一张具备完整的尺寸标注、形位公差要求及其他技术要求说明的零件图。
视图表达方式合理。
图3 轴的零件图2.盘类零件尺寸标注举例这类零件主要有手轮、带轮、端盖等。
它们主要也是在车床上进行加工的。
前面已经讨论过,主视图按加工位置原则,轴线水平放置。
盘盖类零件和轴类零件一样,以轴线作为径向尺寸基准,长度方向的尺寸基准常选用重要的端面或接触面,径向和长度方向的尺寸标注,如图4所示。
图4 盘类零件图:径向、长度方向尺寸基准及其尺寸标注完整的盘类零件图,包括视图表达,尺寸标注、尺寸公差标注、形位公差标注、表面粗糙度标注以及其他技术要求说明,如图5所示。
图5 盘类零件图3.叉架类零件的尺寸标注这类零件结构形状复杂、常有倾斜、弯曲的结构。
常用铸造和锻压的方法制成毛坯,然后进行切削加工。
叉架类零件因为结构复杂,各加工面往往需在不同的机床上加工,所以主视图选择工作位置原则,主视图投射方向选择最能反映其形状特征的方向。
叉架类零件在标注尺寸时,常选用轴线、安装面或零件的对称面作为尺寸基准。
如图6所示:拨叉零件主视图右端面为长度方向的主要尺寸基准,左视图中的中心线为零件宽度方向的尺寸基准,底部空心圆柱体的轴心线为高度方向的尺寸基准。
轴套类零件的数控车削加工程序的编制随着机器制造技术不断的发展,数控机床作为一种精密加工设备,已经被广泛应用于各种大型工程和小型批量生产的加工领域。
轴套作为一种重要的机器零件,具有着多种功能和应用场景。
因此,轴套类零件的数控车削加工程序编制是数控机床加工领域的重要内容之一。
本文将从轴套零件的加工特点、数控车削加工程序的编制、加工过程中的注意事项等方面进行介绍。
一、轴套加工特点轴套是一种内外圆筒形零件,具有多种连接方式,广泛应用于机械传动和精密仪器制造等领域。
在加工过程中,轴套的加工难度主要体现在以下方面:1、工件材料的硬度和组织结构不同,难以确保在加工过程中工件的切削性能稳定。
2、零件表面的加工精度要求高,尤其是轴套的平行度、圆度等尺寸参数。
3、加工过程中需要对不同位置、不同方向的表面进行切削,这需要使用复杂的夹具和刀具。
二、数控车削加工程序的编制流程1、零件数据导入:首先需要将轴套零件的CAD图纸导入数控机床中,以确定加工过程中的切削路径和机床运动轨迹。
2、工件夹持:根据轴套零件的几何尺寸和加工要求,设计适合的夹持装置,并将工件固定在刀架或工作台上。
3、工件配合公差的确定:根据轴套的设计要求,确定加工后的尺寸精度和表面质量。
例如,根据加工精度要求,决定加工余量;根据加工方法和材料等因素,确定刀具半径。
4、加工参数设置:根据加工要求和工件材料的物理特性,设置合适的切削参数。
例如,切削速度、切削深度、进给量等。
5、路径规划:根据零件的几何形状和加工要求,利用数控编程工具生成切削路径。
例如,根据轴套的内外圆形状,生成粗加工路径和精加工路径。
6、程序调试:数控车床加工过程中,需要进行程序的调试和优化,以使切削路径更加优化,使得零件加工精度更高、表面更光滑。
三、加工注意事项1、夹持装置的设计需要避免系统的漂移和振动,以确保加工精度的稳定性。
2、确定合适的刀具、切削速度和进给量,调整切削参数,避免切削过热,影响零件加工精度。
复制地址更多1.轴套类零件这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。
为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。
在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。
由此注出图中所示的Ф14 、Ф11(见A-A断面)等。
这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。
而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。
如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。
2.盘盖类零件这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。
在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。
如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。
在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。
3.叉架类零件这类零件一般有拨叉、连杆、支座等零件。
由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。
对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。
踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。
在标注叉架类零件的尺寸时,通常选用安装基面或零件的对称面作为尺寸基准。
尺寸标注方法参见图。
4.箱体类零件一般来说,这类零件的形状、结构比前面三类零件复杂,而且加工位置的变化更多。
机械设计中尺寸标注类知识1.轴套类零件这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。
为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。
在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。
由此注出图中所示的Ф14 、Ф11(见A-A断面)等。
这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。
而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。
如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。
2.盘盖类零件这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。
在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。
如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。
在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。
3.叉架类零件这类零件一般有拨叉、连杆、支座等零件。
由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。
对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。
踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。
在标注叉架类零件的尺寸时,通常选用安装基面或零件的对称面作为尺寸基准。
尺寸标注方法参见图。
轴套类零件数控车加工工艺分析与编程随着现代机械制造技术的发展,数控车床已经成为制造高精密零件的主要工具。
轴套类零件是数控车床常见的加工对象,其制造过程需要严格的工艺和精细的编程。
本文着重分析轴套类零件数控车加工的具体工艺和编程方法,为制造轴套类零件提高制造效率和品质。
1. 材料选择轴套类零件加工的第一步是材料选择。
通常情况下,轴套类零件的材料都是较为精密的钢材或铜材,要求硬度高、抗腐蚀、耐磨损等,因此在选材时需要考虑到这些特点,为加工后产品的性能奠定坚实的基础。
2. 工艺分析轴套类零件是环状的,一般需要分几道工序来完成加工。
其中二至三个工序的多刀具切削、形位公差控制等难点工序,也是整个加工工艺中最重要的环节,必须采用精细、高效的工艺方法来完成。
(1) 初次车削工序在轴套零件的初次车削工序中,主要是为了去除原材料的外形缺陷和表面氧化层等,并为下一步的精加工作铺平道路,以达到更高的加工精度。
这个过程通常是采用一般的刀具进行粗加工,加工精度相对较低,粗糙度会达到Ra3.2左右,而且用到一般的砂轮和刀具等工具,较容易磨损而导致加工质量不稳定。
(2) 精加工工序轴套零件的精加工工序是整个加工过程中最为关键的一个环节,它需要高精度的NC数控作业,并且需要采用多刀具切削方法,分别完成不同部位的加工过程。
这个过程中,要注意控制加工过程中的温度和压力,以避免材料变形和产生表面缺陷的情况。
(3) 铣削工序铣削工序是为了使轴套的端面变得挺直,达到零件装配要求,这种工艺是难点工序。
由于铣床加工的其它工件的对称性要求并不高,因此通常采用单刀具直接切削的方式,但轴套类零件不同,要求其端面与轴套中轴线的位置误差越小越好,所以铣削工序的精度和对称性要求都较高。
3. 编程方法针对轴套类零件的NC数控编程,主要分为以下几个步骤:(1) 图纸识别,确定加工过程中的零件形状、尺寸、切削工具和要用的刀具等,并将其编入指令系统。
(2) 编程语言输入,通常采用G代码或M代码等数控语言编写。
轴套类零件的用途有轴套是一种可用作机械部件连接的零件,主要用于传递和支撑机械装置中的旋转动力。
它具有降低摩擦、减少磨损和延长机械零件寿命等功能。
轴套广泛应用于各种机械设备和工具中,例如汽车、农机、工程机械、纺织机械、风力发电机组等等。
在这些设备和工具中,轴套的作用主要有以下几个方面:1. 保持旋转部件的位置和方向稳定。
轴套可使机械装置中的旋转轴正确地定位,确保旋转轴与其它零件(如轴承、齿轮等)之间的对中性。
它能够保持旋转部件的准确位置,避免由于摩擦和振动而导致位置偏差。
2. 降低摩擦和磨损。
轴套通常由耐磨材料制成,具有良好的低摩擦性能,能够在旋转运动中减少摩擦和磨损。
当轴承和轴之间存在较大的径向间隙时,轴套起到填充和减小间隙的作用,能够有效地降低轴承和轴的磨损。
3. 传递旋转动力。
在机械装置中,轴套作为旋转轴与其它部件之间的连接部件,能够传递来自电机或动力源的旋转动力,并将动力传递给终端装置或工具。
轴套具有良好的承载能力,能够承受较大的轴向和径向载荷,确保旋转部件正常运转。
4. 减少冲击和振动。
轴套在机械装置中起到缓冲和减震作用。
它具有良好的吸振性能,能够吸收旋转运动中产生的冲击和振动,防止传递给其它部件造成损坏和故障。
轴套的存在可以有效地延长机械零件的使用寿命,并提高装备的可靠性和稳定性。
5. 调整间隙和补偿误差。
在机械装置中,轴套可用作调整部件,用于调整和补偿轴承和轴之间的间隙和误差。
通过更换不同厚度或尺寸的轴套,可以实现轴向和径向间隙的调整,确保机械零件的配合良好,提高设备的精度和可靠性。
总之,轴套是一种重要的机械连接零件,具有降低摩擦和磨损、保持位置稳定、传递动力、减少振动和补偿误差等多种功能。
它在各种机械设备和工具中的应用非常广泛,对于提高设备的性能和寿命具有重要作用。
.轴套类零件这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。
为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。
在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。
由此注出图中所示的Ф14 、Ф11(见A-A 断面)等。
这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。
而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。
如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。
2.盘盖类零件这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。
在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。
如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。
在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。
3.叉架类零件这类零件一般有拨叉、连杆、支座等零件。
由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。
对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。
踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。
在标注叉架类零件的尺寸时,通常选用安装基面或零件的对称面作为尺寸基准。
尺寸标注方法参见图。
4.箱体类零件一般来说,这类零件的形状、结构比前面三类零件复杂,而且加工位置的变化更多。
这类零件一般有阀体、泵体、减速器箱体等零件。
在选择主视图时,主要考虑工作位置和形状特征。
选用其它视图时,应根据实际情况采用适当的剖视、断面、局部视图和斜视图等多种辅助视图,以清晰地表达零件的内外结构。
在标注尺寸方面,通常选用设计上要求的轴线、重要的安装面、接触面(或加工面)、箱体某些主要结构的对称面(宽度、长度)等作为尺寸基准。
对于箱体上需要切削加工的部分,应尽可能按便于加工和检验的要求来标注尺寸。
5.零件常见结构的尺寸注法常见孔的尺寸注法(盲孔、螺纹孔、沉孔、锪平孔);倒角的尺寸注法。
盲孔螺纹孔沉孔锪平孔倒角1.介绍表面粗糙度的概念及主要评定参数1)表面粗糙度的概念零件表面上具有较小间距的峰谷所组成的微观几何形状特性,称为表面粗糙度。
这主要是在加工零件时,由于刀具在零件表面上留下的刀痕及切削分裂时表面金属的塑性变形所形成的。
零件表面粗糙度是也是评定零件表面质量的一项技术指标,它对零件的配合性质、工作精度、耐磨性、抗腐蚀性、密封性、外观等都有影响。
在保证机器性能的前提下,为获得相应的零件表面粗糙度,应根据零件的作用,选用恰当的加工方法,尽量降低生产成本。
一般来说,凡零件上有配合要求或有相对运动的表面,表面粗糙度参数值要小。
2)表面粗糙度的代号、符号及其标注 GB/T 131-1993规定了表面粗糙度代号及其注法。
图样上表示零件表面粗糙度的符号见下表。
3)表面粗糙度的主要评定参数零件表面粗糙度的评定参数有:1)) 轮廓算术平均偏差(Ra)--在取样长度内,轮廓偏距绝对值的算术平均值。
Ra的数值及取样长度l见表。
2))轮廓最大高度(Rz)--在取样长度内,轮廓峰顶线与轮廓峰底线的距离。
使用时优先选用Ra参数。
2.表面粗糙度的标注要求4) 表面粗糙度的代号标注示例表面粗糙度高度参数Ra、Rz、Ry在代号中用数值标注时,除参数代号Ra可省略外,其余在参数值前需标注出相应的参数代号Rz或Ry,标注示例见表。
表面粗糙度的标注表面粗糙度中数字及符号的方向5) 表面粗糙度代(符号)在图样上的标注方法1)) 表面粗糙度代(符)号一般应注在可见轮廓线、尺寸界线或它们的延长线上,符号的尖端必须从材料外指向表面。
2)) 表面粗糙度代号中数字及符号的方向必须按规定标注。
3.表面粗糙度的标注示例在同一图样上,每一表面一般只标注一次代(符)号,并尽可能地靠近有关的尺寸线。
当空间狭小或不便标注时可以引出标注。
当零件所有表面具有相同的表面粗糙度要求时,可统一标注在图样的右上角,当零件的大部分表面具有相同的表面粗糙度要求时,对其中使用最多的一种代(符)号可以同时注在图样的右上角,并加注"其余"两字。
凡统一标注的表面粗糙度代(符)号及说明文字,其高度均应该是图样标注的1.4倍。
零件上连续表面、重复要素(如孔、齿、槽等)的表面和用细实线连接不连续的同一表面,其表面粗糙度代(符)号只注一次。
同一表面上有不同的表面粗糙度要求时,应用细实线画出其分界线,并注出相应的表面粗糙度代号和尺寸。
齿轮、螺纹等工作表面没有画出齿(牙)形时,其表面粗糙度代(符)号注法见图。
中心孔的工作表面,键槽的工作表面,倒角,圆角的表面粗糙度代号可以简化标注。
需要将零件局部热处理或局部镀(涂)覆时,应用粗点画线画出其范围并标注出相应尺寸,也可将其要求注写在表面粗糙度符号长边的横线上。
2.标准公差和基本偏差为便于生产,实现零件的互换性及满足不同的使用要求,国家标准《极限与配合》规定了公差带由标准公差和基本偏差两个要素组成。
标准公差确定公差带的大小,而基本偏差确定公差带的位置。
1)标准公差(IT)标准公差的数值由基本尺寸和公差等级来决定。
其中公差等级是确定尺寸精确程度的标记。
标准公差分为20级,即IT01,IT0,IT1,…,IT18。
其尺寸精确程度从IT01到IT18依次降低。
标准公差的具体数值见有关标准。
2)基本偏差基本偏差是指在标准的极限与配合中,确定公差带相对零线位置的上偏差或下偏差,一般指靠近零线的那个偏差。
当公差带在零线的上方时,基本偏差为下偏差;反之,则为上偏差。
基本偏差共有28个,代号用拉丁字母表示,大写为孔,小写为轴。
从基本偏差系列图中可以看出:孔的基本偏差A~H和轴的基本偏差k ~zc为下偏差;,孔的基本偏差K~ZC和轴的基本偏差a~h为上偏差,JS和js 的公差带对称分布于零线两边、孔和轴的上、下偏差分别都是+IT/2、-IT/2。
基本偏差系列图只表示公差带的位置,不表示公差的大小,因此,公差带一端是开口,开口的另一端由标准公差限定。
基本偏差和标准公差,根据尺寸公差的定义有以下的计算式:ES=EI+IT 或 EI=ES-IT ei=es-IT或 es=ei+IT孔和轴的公差带代号用基本偏差代号与公差带等级代号组成。
配合基本尺寸相同的、相互结合的孔和轴公差带之间的关系,称为配合。
根据使用要求的不同,孔和轴之间的配合有松有紧,因而国标规定配合种类:1)间隙配合孔与轴装配时,有间隙(包括最小间隙等于零)的配合。
孔的公差带在轴的公差带之上。
2)过渡配合孔与轴装配时,可能有间隙或过盈的配合。
孔的公差带与轴的公差带互相交叠。
3)过盈配合孔与轴装配时有过盈(包括最小过盈等于零)的配合。
孔的公差带在轴的公差带之下。
基准制:在制造配合的零件时,使其中一种零件作为基准件,它的基本偏差一定,通过改变另一种非基准件的基本偏差来获得各种不同性质配合的制度称为基准制。
根据生产实际的需要,国家标准规定了两种基准制。
1)基孔制(如左下图所示)基孔制--是指基本偏差为一定的孔的公差带与不同基本偏差的轴的公差带形成各种配合的一种制度。
见左下图。
基孔制的孔称为基准孔,其基本偏差代号为H,其下偏差为零。
2)基轴制(如右下图所示)基轴制--是指基本偏差为一定的轴的公差带与不同基本偏差的孔的公差带形成各种配合的一种制度。
见右下图。
基轴制的轴称为基准轴,其基本偏差代号为h,其上偏差为零。
配合代号配合代号由孔和轴的公差带代号组成,写成分数形式,分子为孔的公差带代号,分母为轴的公差带代号。
凡是分子中含H的为基孔制配合,凡是分母中含h的为基轴制配合。
例如φ25H7/g6的含义是指该配合的基本尺寸为φ25、基孔制的间隙配合,基准孔的公差带为H7,(基本偏差为H公差等级为7级),轴的公差带为g6(基本偏差为g,公差等级为6级)。
例如φ25N7/h6 的含义是指该配合的基本尺寸为φ25、基轴制过渡配合,基准轴的公差带为h6,(基本偏差为h,公差等级为6级),孔的公差带为N7(基本偏差为N,公差等级为7级)。
公差与配合在图样上的标注1)在装配图上标注公差与配合,采用组合式注法。
2)在零件图上的标注方法有三种形式。
4.形位公差零件加工后,不仅存在尺寸误差,而且会产生几何形状及相互位置的误差。
圆柱体,即使在尺寸合格时,也有可能出现一端大,另一端小或中间细两端粗等情况,其截面也有可能不圆,这属于形状方面的误差。
阶梯轴,加工后可能出现各轴段不同轴线的情况,这属于位置方面的误差。
所以,形状公差是指实际形状对理想形状的允许变动量。
位置公差是指实际位置对理想位置的允许变动量。
两者简称形位公差。
形位公差项目符号1) 形状和位置公差的代号国家标准GB/T 1182-1996规定用代号来标注形状和位置公差。
在实际生产中,当无法用代号标注形位公差时,允许在技术要求中用文字说明。
形位公差代号包括:形位公差各项目的符号,形位公差框格及指引线,形位公差数值和其他有关符号,以及基准代号等。
框格内字体的高度h与图样中的尺寸数字等高。
2) 形位公差标注示例一根气门阀杆,在图中所标注的形位公差附近添加的文字,只是为了给读者作说明而重复写上的,在实际的图样中不需要重复注写。
1.零件上的铸造结构1) 铸造圆角当零件的毛坯为铸件时,因铸造工艺的要求,铸件各表面相交的转角处都应做成圆角。
铸造圆角可防止铸件浇铸时转角处的落砂现象及避免金属冷却时产生缩孔和裂纹。
铸造圆角的大小一般取R=3~5mm,可在技术要求中统一注明。
2) 起模斜度用铸造的方法制造零件毛坯时,为了便于在砂型中取出模样,一般沿模样拔模方向作成约1∶20的斜度,叫做拔模斜度。
因此在铸件上也有相应的拔模斜度,这种斜度在图上可以不予标注,也不一定画出,如下图所示;必要时,可以在技术要求中用文字说明。
3) 铸件厚度当铸件的壁厚不均匀一致时,铸件在浇铸后,因各处金属冷却速度不同,将产生裂纹和缩孔现象。
因此,铸件的壁厚应尽量均匀,见上图;当必须采用不同壁厚连接时,应采用逐渐过渡的方式,见上图。
铸件的壁厚尺寸一般采用直接注出。
2.零件上的机械加工结构1)退刀槽和砂轮越程槽在零件切削加工时,为了便于退出刀具及保证装配时相关零件的接触面靠紧,在被加工表面台阶处应预先加工出退刀槽或砂轮越程槽。