伺服系统设计的结构组成、设计要求、步骤和方法!
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
电子信息与电气工程系课程设计报告设计题目:直流伺服电机控制系统设计系别:电子信息与电气工程系年级专业:学号:学生姓名:2006级自动化专业《计算机控制技术》课程设计任务书摘要随着集成电路技术的飞速发展,微控制器在伺服控制系统普遍应用,这种数字伺服系统的性能可以大大超过模拟伺服系统。
数字伺服系统可以实现高精度的位置控制、速度跟踪,可以随意地改变控制方式。
单片机和DSP在伺服电机控制中得到了广泛地应用,用单片机作为控制器的数字伺服控制系统,有体积小、可靠性高、经济性好等明显优点。
本设计研究的直流伺服电机控制系统即以单片机作为核心部件,主要是单片机为控制核心通过软硬件结合的方式对直流伺服电机转速实现开环控制。
对于伺服电机的闭环控制,采用PID控制,利用MATLAB软件对单位阶跃输入响应的PID 校正动态模拟仿真,研究PID控制作用以及PID各参数值对控制系统的影响,通过试凑法得到最佳PID参数。
同时能更深度地掌握在自动控制领域应用极为广泛的MATLAB软件。
关键词:单片机直流伺服电机 PID MATLAB目录1.引言 ...................................................... 错误!未定义书签。
2.单片机控制系统硬件组成.................................... 错误!未定义书签。
微控制器................................................ 错误!未定义书签。
DAC0808转换器.......................................... 错误!未定义书签。
运算放大器............................................... 错误!未定义书签。
按键输入和显示模块....................................... 错误!未定义书签。
伺服系统培训课程设计一、课程目标知识目标:1. 学生能理解伺服系统的基本概念,掌握其工作原理和组成结构。
2. 学生能掌握伺服系统中关键参数的计算方法,如转速、扭矩、精度等。
3. 学生了解不同类型伺服系统的特点及其适用场合。
技能目标:1. 学生能运用所学知识分析和解决实际伺服系统应用中的问题。
2. 学生具备设计简单伺服系统的能力,能根据需求选择合适的组件并进行调试。
3. 学生能熟练使用相关工具和设备进行伺服系统的安装、调试和维护。
情感态度价值观目标:1. 培养学生关注工程技术发展的意识,激发对伺服系统及其应用的兴趣。
2. 培养学生严谨、细致、负责的工作态度,增强团队协作和沟通能力。
3. 培养学生具备安全意识,遵循相关操作规程,确保伺服系统应用的安全可靠。
本课程针对高年级学生,结合学科特点,注重理论与实践相结合,以实际应用为导向。
课程目标旨在使学生掌握伺服系统的基础知识,具备实际操作和问题解决能力,同时培养良好的职业素养和安全意识。
通过课程学习,为学生未来在自动化、机器人等相关领域的发展奠定基础。
二、教学内容1. 伺服系统概述:介绍伺服系统的基本概念、发展历程、应用领域及发展趋势。
- 教材章节:第一章 伺服系统概述- 内容列举:伺服系统的定义、分类、工作原理。
2. 伺服系统组成与原理:分析伺服系统的组成结构,讲解各部分功能及相互关系。
- 教材章节:第二章 伺服系统的组成与原理- 内容列举:驱动器、执行器、反馈元件、控制器等组成部分及其工作原理。
3. 伺服系统关键参数计算:学习伺服系统中转速、扭矩、精度等关键参数的计算方法。
- 教材章节:第三章 伺服系统关键参数计算- 内容列举:转速与扭矩的计算、精度分析、系统稳定性分析。
4. 伺服系统类型及特点:介绍不同类型伺服系统的特点、优缺点及适用场合。
- 教材章节:第四章 伺服系统类型及特点- 内容列举:步进伺服系统、交流伺服系统、直流伺服系统等。
5. 伺服系统应用与案例分析:分析伺服系统在实际应用中的案例,提高学生的问题解决能力。
伺服驱动器的硬件设计永磁同步电机伺服驱动器的硬件由控制部分和功率部分组成,控制电路以ARM为控制核心,包括编码器接口电路、外围接口电路等等。
控制电路实现以下功能:获得相关指令信号和反馈信号,运行矢量控制算法,生成用于控功率模块的PWM信号。
功率电路包括整流电路、逆变电路、能耗制动电路、电流采样电路、功率模块及其驱动电路、辅助电源等,用以实现能量的交流-直流-交流形式变换,驱动电机实现对电机力矩、速度、位置的精确控制。
一、编码器接口电路本系统针对采用增量式编码器的伺服电机设计,增量式编码器共有六对差分输出信号:A+-、B+-、Z+-、U+-、V+-、W+-,如下图所示6对差分信号的处理电路,其中选用了芯片AM26C32芯片。
器接口电路首先由AM26C32解差分,然后再由后经过RC低通滤波电路进行整形,得到3.3V电平的单端信号。
最后得到的Y_A-、Y_B-、Y_Z-输出到XMC4500,以获得电机的位置和速度信息,Y_U-、Y_V-、Y_W-输出给单片机以获得伺服电机的初始相角信息。
二、主回路设计本系统主要是采用交-直-交电压型逆变的器的形式,主要有不控整流电路滤波电容、电流检测电路、只能功率模块(IPM)及电流采样电路。
主回路的结构框图如下:(一)整流电路设计本系统采用的是电容滤波的单相不可控整流电路,这部分电路由输入保护电路、整流桥如下图所示:主回路侧有220V交流进来先接一个2A断路器,以防止过电流,起到保护作用。
然后安规电容增加3个安全电容来抑制EMI传导干扰。
交流电源输入分为3个端子:火线(L)/零线(N)/地线(G)。
在火线和地线之间以及在零线和地线之间并接的电容,一般统称为Y电容。
这两个Y电容连接的位置比较关键,必须需要符合相关安全标准,以防引起电子设备漏电或机壳带电,容易危及人身安全及生命。
它们都属于安全电容,从而要求电容值不能偏大,而耐压必须较高,Y电容的取值为4700PF。
在火线和零线抑制之间并联的电容,一般称之为X 电容。
设计三环结构的伺服系统报告伺服系统是一种高精度、高性能的控制系统,广泛应用于工业自动化、机械加工、机器人等领域。
三环结构的伺服系统是指由位置环、速度环和电流环组成的控制结构,通过多级闭环控制实现对电机的精准控制。
本报告将对三环结构的伺服系统进行详细设计和分析。
一、设计目标和要求1.实现电机的准确位置控制,使其能够按照指定的轨迹运动。
2.实现电机的精确速度控制,使其能够按照指定的速度运动。
3.实现电机的电流控制,保证电机的正常运行并防止过载。
二、系统设计1.位置环设计位置环是伺服系统中最外层的环节,其目标是实现电机的位置控制。
位置环的输入为期望位置和实际位置,输出为速度指令。
设计位置环时需要考虑系统的响应速度和稳定性,可以采用PID控制器进行设计。
2.速度环设计速度环是伺服系统中的第二层环节,其目标是实现电机的速度控制。
速度环的输入为位置环的输出速度指令和实际速度,输出为电流指令。
设计速度环时需要考虑系统的响应速度和抗干扰能力,可以采用PI控制器进行设计。
3.电流环设计电流环是伺服系统中的最内层环节,其目标是实现电机的电流控制。
电流环的输入为速度环的输出电流指令和实际电流,输出为电机输入的电压。
设计电流环时需要考虑系统的稳定性和响应速度,可以采用PI控制器进行设计。
4.控制器设计根据位置环、速度环和电流环的设计,可以将三个环节串联起来形成整个伺服系统的控制器。
控制器的输入为期望位置和实际位置,输出为电机的输入电压。
可以采用串级控制的方法,将三个环节按照先后顺序串联起来。
三、系统分析1.响应特性通过对伺服系统进行分析和仿真,可以得到系统的响应特性。
可以通过改变控制器的参数来调整系统的响应速度和稳定性,使其满足设计要求。
2.稳定性分析通过对伺服系统进行稳定性分析,可以得到系统的稳定域和稳定裕度。
可以通过改变控制器的参数来保证系统的稳定性,避免产生震荡和不稳定的现象。
3.鲁棒性分析通过对伺服系统进行鲁棒性分析,可以得到系统对参数变化和扰动的抗干扰能力。
伺服系统设计步骤及方法伺服系统是指一种能够控制运动精度和位置的系统,常见于工业自动化、机器人、汽车等领域。
伺服系统设计的主要目标是提高系统的稳定性、响应速度和控制精度。
在设计伺服系统时,需要按照一定的步骤和方法进行,以确保系统能够满足要求。
下面是伺服系统设计的一般步骤及方法:1.定义系统需求:首先确定伺服系统的工作环境、运动要求和性能指标。
例如,确定系统需要在何种速度、加速度和精度下运动,以及要控制的负载和环境条件等。
2.选择伺服驱动器和电机:根据系统的需求,选择合适的伺服驱动器和电机。
此步骤需要考虑到系统的负载特性、控制精度、电源电压和电流等。
通常,选择驱动器时需要考虑其速度和定位控制的能力,选择电机时需要考虑其功率、转矩和惯性等。
3.确定控制方式:根据系统需求,确定使用的控制方式,包括位置控制、速度控制和力控制等。
对于不同的应用场景,选择合适的控制方式可以提高系统的控制效果和稳定性。
4.设计控制算法:根据系统需求和控制方式,设计控制算法。
常用的控制算法包括PID控制、滑模控制和模糊控制等。
控制算法的目标是根据系统的输入和输出,以最优的方式控制电机的速度和位置。
5.选择传感器和反馈装置:为了实现对伺服系统的准确控制,通常需要选择合适的传感器和反馈装置,用于测量和反馈系统的位置、速度和加速度信息。
常用的传感器包括编码器、光电开关和位移传感器等。
6.确定反馈控制回路:根据系统需求和传感器的信息,确定系统的反馈控制回路。
反馈控制回路可以根据测量值对系统进行修正和调整,以实现更精确的控制。
同时,反馈控制还可以稳定系统的工作状态,并减小由于负载变化和环境干扰引起的系统波动。
7.运动规划和轨迹生成:根据系统的运动需求和控制算法,进行运动规划和轨迹生成。
运动规划是指通过规划器生成一条供伺服驱动器执行的运动轨迹。
轨迹生成是指将运动规划生成的轨迹转化为伺服驱动器可以执行的轨迹。
8.系统调试和优化:完成系统的硬件搭建和软件编程后,进行系统调试和优化工作。
电液伺服系统的优化设计与控制研究概述电液伺服系统是一种将电力与液压技术相结合的控制系统,能够实现高精度、快速响应的运动控制。
在工业自动化、航空航天等领域有广泛的应用。
本文将围绕电液伺服系统的优化设计与控制展开研究,深入探讨相关技术和方法。
一、电液伺服系统的组成与工作原理电液伺服系统由电气控制部分和液压执行部分组成。
电气控制部分包括传感器、控制器、电动机等,液压执行部分包括液压阀、液压缸等。
电液伺服系统的工作原理是通过电气信号控制液压系统的动作,实现位置、速度、力矩等的精确控制。
二、电液伺服系统的优化设计电液伺服系统的优化设计是提高系统性能、减少能耗和延长使用寿命的重要环节。
主要包括以下几个方面的工作:1. 参数优化:通过对系统参数的合理设计和选择,提高系统的控制性能。
包括选取合适的电动机、液压阀、液压缸等,并确定其参数值,以满足系统的需求。
2. 结构优化:通过对系统结构的调整和优化,减少系统的复杂性和能耗。
可以采用流量分配器、减压阀等组件来改善系统的性能。
同时,还需要考虑系统的可维护性和可靠性。
3. 控制算法优化:选用合适的控制算法,优化系统的响应速度、稳定性和精度。
常用的控制算法包括比例控制、积分控制、PID控制等。
还可以采用模型预测控制、自适应控制等高级控制方法,提高系统的性能。
三、电液伺服系统的控制研究电液伺服系统的控制是其研究的核心内容。
在实际应用中,为了满足不同的控制需求,需要研究和开发相应的控制方法和技术。
以下是几个常见的控制研究方向:1. 位置控制:电液伺服系统可以实现高精度的位置控制。
可以通过采用编码器等传感器,将位置信号反馈给控制器进行闭环控制。
同时,还可以采用滤波器、补偿器等技术,减少位置误差和振荡现象。
2. 力矩控制:对于需要精确控制力矩的应用场景,如机械臂、液压切割等,通过采用力传感器等设备,可以实现对力矩的精确控制。
需要研究合适的力矩控制算法和技术,提高系统的控制精度。
数控机床的电气控制系统设计在设计数控机床电气控制系统时,首先要明确设计目标。
通常情况下,设计目标包括以下几个方面:高精度:提高数控机床的加工精度是首要任务。
电气控制系统作为机床的核心部分,对于提高机床精度起着至关重要的作用。
高效率:通过优化电气控制系统,提高机床的加工效率,从而缩短加工周期,提高产能。
易维护:考虑到后期维护和保养的问题,设计方案应使得电气控制系统易于更换和维修。
数控机床电气控制系统的组成部分主要包括以下几部分:主电路:包括电源、电动机、导轨等硬件设施,为整个系统提供动力。
控制电路:包括各种传感器、控制器、执行器等,用于监测和控制主电路的工作状态。
传感器:用于实时监测机床的工作状态,将信号反馈给控制电路。
操作显示屏:用于显示机床的工作状态和加工信息,同时也支持人工输入操作。
数控机床电气控制系统的设计步骤和方法如下:根据设计目标确定系统的基本架构,包括主电路和控制电路的布局。
根据设计要求选择合适的传感器和执行器,并布置在系统中。
依据系统的工作原理和性能要求,设计控制算法和程序,实现高精度和高效率的加工。
考虑到安全性,进行线路的优化和安全防护措施的设计。
数控机床电气控制系统的优化措施可以从以下几个方面进行:采用先进的控制算法:采用现代控制理论和方法,如模糊控制、神经网络控制等,以提高系统的动态性能和稳态精度。
提升智能化程度:通过引入人工智能和机器学习等技术,实现系统的自主决策和优化调整,提高生产效率。
增强抗干扰能力:针对恶劣工作环境和电磁干扰等问题,采取有效的电磁兼容设计和滤波抗干扰措施,以保证系统的稳定运行。
模块化和标准化设计:实现模块化设计和标准化元器件,便于系统的维护和升级,降低成本。
某汽车制造企业采用数控机床进行零部件的加工。
为了提高生产效率和降低成本,该企业决定对数控机床电气控制系统进行升级改造。
经过调研和分析,设计师团队采用了先进的模块化设计方案,使得系统更易于维护和扩展。
数控液压伺服系统设计与应用为提高液压系统控制精度,采用数控液压伺服控制取代传统的电液伺服控制。
介绍数控液压伺服系统的组成,重点介绍数控液压伺服阀的结构和工作原理,并介绍该系统的应用领域。
该系统采用PLC控制步进电机,不仅能够满足数控液压系统的快速性和可靠性要求,而且大大降低成本。
国内在液压精密控制领域,采用传统的电液伺服控制系统,但是其结构复杂、传动环节多、不能由电脉冲信号直接控制。
对于近现代液压伺服控制需考虑:(1)环境和任务复杂,普遍存在较大程度的参数变化和外负载干扰;(2)非线性的影响,特别是阀控动力机构流量非线性的影响;(3)有高的频宽要求及静动态精度的要求,须优化系统的性能;(4)微机控制与数字化及离散化带来的问题;(5)如何通过“软件伺服”达到简化系统及部件的结构。
发达国家已应用数字控制,即数控液压伺服系统来取代电液伺服控制系统。
作者经几年的努力,设计并研制成功自己的数控液压伺服系统,超越传统的电液伺服控制系统,大大提高控制精度。
现对该系统作简要介绍。
1 数控液压伺服系统的组成系统由数控装置、数控伺服阀、数控液压缸或液马达、液压泵站4大部分组成。
系统框图如图1所示。
数控装置包括控制器,驱动器和步进电机。
之所以采用步进电机,是由于计算机技术的飞速发展,使步进电机的性能在快速性和可靠性方面能够满足数控液压系统的要求,而其价格低廉,又由于数控液压系统结构的改进,所需电机功率较小,不需采用宽调速伺服电机等大功率伺服电机系统,大大降低成本。
液压缸、液马达和液压泵站是液压行业的老产品,只要按数控液压伺服系统的要求选取精度较高的即可应用。
伺服控制元件是液压伺服系统中最重要、最基本的组成部分,它起着信号转换、功率放大及反馈等控制作用心,所以整个数控液压伺服系统的关键部件就是数控伺服阀,它将电脉冲控制的步进电机的角位移精确地转换为液压缸的直线位移(或液马达的角位移),即只要有了合格的数控伺服阀,就能获得不同的数控液压伺服系统。
伺服系统组成、概述与控制原理(难得好⽂)伺服系统既可以是开环控制⽅式,也可以是闭环控制⽅式。
⼀、伺服系统简述伺服系统(servomechanism)指经由闭环控制⽅式达到对⼀个机械系统的位置、速度和加速度的控制。
⼀个伺服系统的构成包括被控对象、执⾏器和控制器(负载、伺服电动机和功率放⼤器、控制器和反馈装置)。
1. 执⾏器的功能在于提供被控对象的动⼒,其构成主要包括伺服电动机和功率放⼤器,伺服电动机包括反馈装置如光电编码器、旋转编码器或光栅等(位置传感器)。
2. 控制器的功能在于提供整个伺服系统的闭环控制如转矩控制、速度控制、位置控制等,伺服驱动器通常包括控制器和功率放⼤器。
3. 反馈装置除了位置传感器,可能还需要电压、电流和速度传感器。
下图为⼀般⼯业⽤伺服系统的组成框图,其中红⾊为伺服驱动器组成部分,黄⾊为伺服电机组成部分。
“伺服”——词源于希腊语“奴⾪”的意思。
⼈们想把“伺服机构”当成⼀个得⼼应⼿的驯服⼯具,服从控制信号的要求⽽动作:在讯号来到之前,转⼦静⽌不动;讯号来到之后,转⼦⽴即转动;当讯号消失,转⼦能即时⾃⾏停转。
由于它的“伺服”性能,因此⽽得名——伺服系统。
⼆、常⽤参数1、伺服电机铭牌参数1. 法兰尺⼨2. 电机极对数3. 电机额定输出功率4. 电源电压规格:单相/三相5. 电机惯量:分为⼤、中、⼩惯量,指的是转⼦本⾝的惯量,从响应⾓度来讲,电机的转⼦惯量应⼩为好;从负载⾓度来看,电机的转⾃惯量越⼤越好6. 电机出轴类型:键槽、扁平轴、光轴、减速机适配…7. 电机动⼒线定义:U: RED V:BLACK W: WHITE8. 额定转速9. 编码器线数:2500/1250/1000/17B/20B法兰是轴与轴之间相互连接的零件,⽤于管端之间的连接。
2、伺服驱动器铭牌参数1. 额定输出功率2. 电源电压规格3. 编码器线数3、伺服系统的性能指标1. 检测误差:包括给定位置传感器和反馈位置传感器的误差,传感器本⾝固有,⽆法克服;2. 系统误差:系统类型决定了系统误差。
伺服系统设计的结构组成、设计要求、步骤
和方法!
伺服系统是机电一体化系统,应采用机电一体化方法进行设计。
伺服系统设计,没有一成不变的答案,也没有统一的方法来得到答案。
不同要求的伺服系统,可采用不同的方法来设计,因而得到结构不同的伺服系统。
即使同样要求的伺服系统,不同的设计者也可能采用不同的设计方法,因而得到不同的设计方案。
伺服系统结构上的复杂性,决定了其设计过程的复杂性。
实际伺服系统的设计是很难一次成功的,往往都要经过多次反复修改和调试才能获得满意的结果。
下面仅对伺服系统设计的一般步骤和方法作一简单介绍。
伺服系统的结构组成
从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。
1、比较环节
比较环节是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信号的环节,通常由专门的电路或计算机来实现。
2、控制器
控制器通常是计算机或PID控制电路,其主要任务是对比较元件输出的偏差信号进行变换处理,以控制执行元件按要求动作。
3、执行环节
执行环节的作用是按控制信号的要求,将输入的各种形式的能量转化成机械能,驱动被控对象工作。
机电一体化系统中的执行元件一般指各种电机或液压、气动伺服机构等。
4、被控对象
5、检测环节
检测环节是指能够对输出进行测量并转换成比较环节所需要的量纲的装置,一般包括传感器和转换电路。
伺服系统设计要求
1.稳定性
伺服系统的稳定性指在系统上的扰动信号消失后,系统能够恢复到原来的稳定状态下运行,或者在输入的指令信号作用下,能够达到的新的稳定运行状态的能力。
稳定性要求是一项最基本的要求,是保证伺服系统能够正常运行的最基本条件。
2、精度
伺服系统的精度是指其输出量复现输入指令信号的精确程度。
系统中各个元件的误差都会影响到系统的精度,如传感器的灵敏度和精度、伺服放大器的零点漂移和死区误差、机械装置中的反向间隙和传动误差、各元器件的非线性因素等。
反映在伺服系统_上就会表现出动态误差、稳态误差和静态误差,伺服系统应在比较经济的条件下达到给定的精度。
3、快速响应性
快速响应性是指系统输出量快速跟随输入指令信号变化的能力,它主要取决于系统的阻尼比和固有频率可以提高快速响应性,但对系统的稳定性和最大超调量有不利影响,因此系统设计时应该对两者进行优化,使系统的输出响应速度尽可能快。
4、灵敏度
系统各元件的参数变化等都会影响系统的性能,系统对这些变化的灵敏度要小,即系统的性能应不受参数变化的影响。
具体措施为:对于开环系统,应严格挑选各元件;对于闭环系统,对输出通道中元件的挑选标准可适当放宽,对反馈通道的各元件必须严格挑选,以改善系统的灵敏度。
伺服系统设计步骤及方法
1、设计要求分析,系统方案设计
首先对伺服系统的设计要求进行分析,明确其应用场合和目的、基本性能指标及其它性能指标,然后根据现有技术条件拟定几种技术方案,经过评价、对比,选定一种比较合理的方案。
方案设计应包括下述一些内容:控制方式选择;执行元件选择;传感器及其检测装置选择;机械传动及执行机构选择等。
方案设计是系统设计的第一步,各构成环节的选择只是初步的,还要在详细设计阶段进一步修改确定。
2、系统性能分析
方案设计出来后,尽管各具体结构参数还没有确定,也应先根据基本结构形式对其基本性能进行初步分析。
首先画出系统方框图,列出系统近似传递函数,并对传递函数及方框图进行化简(一般应简化成二阶以下系统),然后在此基础上对系统稳定性、精度及快速响应性进行初步分析,其中最主要的是稳定性分析,如不能满足设计要求,应考虑修改方案或增加校正环节。
3、执行元件及传感器的选择
方案设计只是对执行元件及传感器进行了初步选型,这一步应根据具体速度、负载及精度要求来具体确定执行元件及传感器的参数和型号。
4、机械系统设计
机械系统设计包括机械传动机构及执行机构的具体结构及参数的设计,设计中应注意消除各种传动间隙,尽量提高系统刚度、减小惯量及摩擦,尤其在设计执行机构的导轨时要防止会产生“爬行”现象。
5、控制系统设计
控制系统没计包括信号处理及放大电路、校正装置、伺服电动机驱动电路等的详细设计,如果采用计算机数字控制,还应包括接口电路及控制器算法软件的设计。
控制系统设计中应注意各环节参数的选择及与机械系统参数的匹配,以使系统具有足够的稳定裕度和快速响应性,并满足精度要求。
6、系统性能复查
所有结构参数确定之后,可重新列出系统精确的传递函数,但实际的伺服系统一般都是高阶系统,因而还应进行适当化简,才可进行性能复查。
经过复查如发现性能不够理想,则可调整控制系统的参数或修改算法,甚至重新设计,直到满意为止。
7、系统测试实验
上述设计与分析都还处于理论阶段,实际系统的性能,还需通过测试实验来确定。
测试实验可在模型实验系统上进行,也可在试制的样机上进行。
通过测试实验,往往还会发现一些问题,必须采取措施加以解决。
8、系统设计定案
经过上述7个步骤及其中多次反复而得到满意的结果后,可以将设计方案确定下来,然后整理设计图样及设计计算说明书等技术文件,准备投入正式生产。