伺服控制系统(设计)复习过程
- 格式:docx
- 大小:282.43 KB
- 文档页数:21
第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。
在伺服系统中,输出量能够自动、快速、准确地尾随输入量的变化,因此又称之为随动系统或者自动跟踪系统。
机械参数主要包括位移、角度、力、转矩、速度和加速度。
近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及机电创造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步机电、感应电机为伺服机电的新一代交流伺服系统。
目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路创造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性创造系统以及自动化生产线等领域中的应用也迅速发展。
1.1 伺服系统的基本概念1.1.1 伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行住手。
伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵便方便的控制。
1.1.2 伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。
它由检测部份、误差放大部份、部份及被控对象组成。
1.1.3 伺服系统性能的基本要求1 )精度高。
伺服系统的精度是指输出量能复现出输入量的精确程度。
2 )稳定性好。
稳定是指系统在给定输入或者外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。
3 )快速响应。
响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。
4)调速范围宽。
调速范围是指生产机械要求机电能提供的最高转速和最低转速之比。
5 )低速大转矩。
在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。
伺服控制技术复习题答案一、选择题1. 伺服控制系统的主要功能是什么?A. 精确控制B. 稳定输出C. 节能降耗D. 以上都是2. 伺服电机的控制方式通常分为哪两种?A. 开环控制和闭环控制B. 手动控制和自动控制C. 线性控制和非线性控制D. 模拟控制和数字控制3. 下列哪个不是伺服驱动器的主要组成部分?A. 功率放大器B. 编码器C. 传感器D. 电机4. 伺服控制系统的PID调节参数中,P代表什么?A. 比例B. 积分C. 微分D. 比例积分微分5. 伺服电机的转速与什么参数成正比?A. 电压B. 电流C. 频率D. 负载二、填空题6. 伺服控制系统的闭环控制也称为________控制。
7. 伺服电机的转矩与________成正比。
8. 伺服控制系统的动态性能指标包括响应速度、________和稳定性。
9. 伺服电机的编码器通常安装在________上。
10. 伺服控制系统的PID调节中,I参数的增加可以增强系统的________。
三、简答题11. 简述伺服控制系统的基本组成。
12. 伺服控制系统与普通电机控制系统相比有哪些优势?13. 伺服电机的工作原理是什么?14. 伺服控制系统在工业自动化中的应用有哪些?15. 描述PID调节在伺服控制系统中的作用。
四、计算题16. 假设一个伺服电机的额定转速为3000转/分钟,额定电压为220V,额定电流为2A。
如果电机的实际工作电压为200V,实际电流为1.5A,请计算其实际转速。
五、论述题17. 论述伺服控制系统在现代制造业中的重要性及其发展趋势。
六、案例分析题18. 某工厂的自动化生产线需要精确控制工件的加工位置,分析伺服控制系统在此场景下的应用,并提出可能的解决方案。
七、实验题19. 设计一个简单的伺服控制系统实验,以验证PID参数对系统性能的影响。
八、思考题20. 思考伺服控制系统在未来可能面临的挑战和机遇。
【结束语】通过上述题目的复习,我们可以对伺服控制技术有一个全面而深入的了解。
机电⼀体化复习题(附答案)机电⼀体化复习题⼀、名词解释1机电⼀体化2伺服控制3闭环控制系统4逆变器5SPWM6单⽚机7I/O接⼝8I/O通道9串⾏通信10直接存储器存取(DMA)⼆、判断题:1在计算机接⼝技术中I/O通道就是I/O接⼝。
(×)2滚珠丝杆不能⾃锁。
(√)3⽆论采⽤何种控制⽅案,系统的控制精度总是⾼于检测装置的精度。
(×)4异步通信是以字符为传输信息单位。
(√)5同步通信常⽤于并⾏通信。
(×)6⽆条件I/O⽅式常⽤于中断控制中。
(×)7从影响螺旋传动的因素看,判断下述观点的正确或错误(1)影响传动精度的主要是螺距误差、中径误差、⽛型半⾓误差(√)(2)螺杆轴向窜动误差是影响传动精度的因素(√)(3)螺杆轴线⽅向与移动件的运动⽅向不平⾏⽽形成的误差是影响传动精度的因素(√)(4)温度误差是影响传动精度的因素(√)三、单项选择题1.步进电动机,⼜称电脉冲马达,是通过(B)决定转⾓位移的⼀种伺服电动机。
A脉冲的宽度B脉冲的数量C脉冲的相位D脉冲的占空⽐2.对于交流感应电动机,其转差率s的范围为(B)。
A.1B.0C.-1D.-13.PWM指的是(C)。
A.机器⼈B.计算机集成系统C.脉宽调制D.可编程控制器4.PD称为(B)控制算法。
A.⽐例B.⽐例微分C.⽐例积分D.⽐例积分微分5.在数控系统中,复杂连续轨迹通常采⽤(A)⽅法实现。
A.插补B.切割C.画线D.⾃动四、填空题1.在计算机和外部交换信息中,按数据传输⽅式可分为:串⾏通信和并⾏通信。
2.微机控制系统中的输⼊与输出通道⼀般包括模拟量输⼊通道模拟量输出通道、数字量输⼊通道数字量输出通道四种通道。
3.在伺服系统中,在满⾜系统⼯作要求的情况下,⾸先应保证系统的稳定性和精度并尽量⾼伺服系统的响应速度。
4.⼀般来说,伺服系统的执⾏元件主要分为电磁式液压式⽓压式和其它等四⼤类型。
5.在SPWM变频调速系统中,通常载波是等腰三⾓波,⽽调制波是正弦波6.异步交流电动机变频调速:a)基频(额定频率)以下的恒磁通变频调速,属于恒转矩调速⽅式。
工业机器人系统操作员理论复习题10(带答案)一、单选题(第1题~第70题。
每题1.0分,满分70.0分。
)1.一般机器人操作机中,决定姿态的机构是()。
A、端拾器B、基座C、手臂D、手腕[正确答案]:C2.机器人的精度主要依存于()控制算法误差与分辨率系统误差机器人在()模式下,使能器无效。
A、自动B、手动C、调试D、停止[正确答案]:A3.在焊接过程中,机器人系统发生撞枪故障,不可能发生的故障是()。
A、工件组装发生偏差;B、焊枪的TCP 不准确;C、原点发生偏移;D、控制电压不符合。
[正确答案]:C4.()型机器人通过沿三个互相垂直的轴线的移动来实现机器人手部空间位置的改变。
A、直角坐标B、圆柱坐标C、极坐标D、关节[正确答案]:A5.集体主义道德原则的底线是( )。
A、在职业活动中首先维护国家利益和集体利益;B、不追求个人利益;C、随时都可以牺牲个人利益;D、不侵犯国家利益和集体利益。
[正确答案]:D6.关于道德和法律,正确的观点是( )。
A、道德规范比法律规范缺乏严肃性和严谨性;B、道德的作用没有法律大,但二者在范围上有重合之处;C、道德和法律发生作用的方式、手段不同;D、道徳规范是感性的,法律规范是理性的。
[正确答案]:C7.服务群众的落脚点是( ) 。
A、热心公益B、方便群众C、扶困帮贫D、见义勇为[正确答案]:B8.人们形象地把国家利益、集体利益、个人利益之间的关系比喻为"大河有水小河满,小河无水大河干”。
这表明( )。
A、三者之间的关系是完全和谐的,不会产生矛盾;B、三者之间的关系是相互渗透的,且同等重要;C、三者之间的关系密切、相互影响;D、没有个人利益,就不会有国家利益和集体利益。
[正确答案]:C9.接到严重违反电气安全工作规程制度的命令时,应该()执行。
A、考虑B、部分C、拒绝D、立刻[正确答案]:C10.发那科机器人外部急停接线应接在TBOP20输入接口的()。
伺服控制系统课程设计一、教学目标本节课的教学目标是使学生掌握伺服控制系统的基本原理、组成和应用,能够分析简单的伺服控制系统,并具备初步的设计和调试能力。
具体目标如下:1.知识目标:(1)了解伺服控制系统的定义、分类和基本原理;(2)掌握伺服控制系统的组成及其作用;(3)熟悉伺服控制系统的应用领域。
2.技能目标:(1)能够分析简单的伺服控制系统;(2)具备伺服控制系统的设计和调试能力;(3)学会使用相关仪器仪表和软件进行伺服控制系统的分析和设计。
3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对自动化领域的兴趣和责任感;(3)提高学生解决实际问题的能力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.伺服控制系统的定义、分类和基本原理;2.伺服控制系统的组成及其作用;3.伺服控制系统的应用领域;4.伺服控制系统的设计和调试方法;5.相关仪器仪表和软件的使用。
三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:讲解伺服控制系统的基本原理、组成和应用;2.讨论法:引导学生讨论伺服控制系统的设计和调试方法;3.案例分析法:分析具体的伺服控制系统实例,加深学生对知识的理解;4.实验法:让学生动手进行伺服控制系统的设计和调试,提高实际操作能力。
四、教学资源为了支持本节课的教学内容和教学方法,将准备以下教学资源:1.教材:伺服控制系统相关教材;2.参考书:介绍伺服控制系统的相关书籍;3.多媒体资料:课件、视频、图片等;4.实验设备:伺服控制系统实验装置;5.软件:伺服控制系统分析和设计软件。
五、教学评估为了全面、客观地评估学生的学习成果,将采用以下评估方式:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2.作业:布置与课程内容相关的作业,检查学生对知识的理解和应用能力;3.考试:定期进行考试,检验学生对课程知识的掌握程度;4.实验报告:评估学生在实验过程中的操作能力和分析问题的能力;5.小组项目:评估学生在团队合作中的表现以及对知识的综合运用能力。
伺服系统设计步骤及方法伺服系统是指一种能够控制运动精度和位置的系统,常见于工业自动化、机器人、汽车等领域。
伺服系统设计的主要目标是提高系统的稳定性、响应速度和控制精度。
在设计伺服系统时,需要按照一定的步骤和方法进行,以确保系统能够满足要求。
下面是伺服系统设计的一般步骤及方法:1.定义系统需求:首先确定伺服系统的工作环境、运动要求和性能指标。
例如,确定系统需要在何种速度、加速度和精度下运动,以及要控制的负载和环境条件等。
2.选择伺服驱动器和电机:根据系统的需求,选择合适的伺服驱动器和电机。
此步骤需要考虑到系统的负载特性、控制精度、电源电压和电流等。
通常,选择驱动器时需要考虑其速度和定位控制的能力,选择电机时需要考虑其功率、转矩和惯性等。
3.确定控制方式:根据系统需求,确定使用的控制方式,包括位置控制、速度控制和力控制等。
对于不同的应用场景,选择合适的控制方式可以提高系统的控制效果和稳定性。
4.设计控制算法:根据系统需求和控制方式,设计控制算法。
常用的控制算法包括PID控制、滑模控制和模糊控制等。
控制算法的目标是根据系统的输入和输出,以最优的方式控制电机的速度和位置。
5.选择传感器和反馈装置:为了实现对伺服系统的准确控制,通常需要选择合适的传感器和反馈装置,用于测量和反馈系统的位置、速度和加速度信息。
常用的传感器包括编码器、光电开关和位移传感器等。
6.确定反馈控制回路:根据系统需求和传感器的信息,确定系统的反馈控制回路。
反馈控制回路可以根据测量值对系统进行修正和调整,以实现更精确的控制。
同时,反馈控制还可以稳定系统的工作状态,并减小由于负载变化和环境干扰引起的系统波动。
7.运动规划和轨迹生成:根据系统的运动需求和控制算法,进行运动规划和轨迹生成。
运动规划是指通过规划器生成一条供伺服驱动器执行的运动轨迹。
轨迹生成是指将运动规划生成的轨迹转化为伺服驱动器可以执行的轨迹。
8.系统调试和优化:完成系统的硬件搭建和软件编程后,进行系统调试和优化工作。
《伺服控制系统课程设计》指导书⾃动化与电⼦⼯程学院⼆零⼀⼋年⼗⽉⼀、伺服控制系统课程设计的意义、⽬标和程序 (3)⼆、伺服控制系统课程设计内容及要求 (5)三、考核⽅式和报告要求 (11)⼀、伺服控制系统课程设计的意义、⽬标和程序(⼀)伺服控制系统程设计的意义伺服控制系统课程设计是⾃动化专业⼈才培养计划的重要组成部分,是实现培养⽬标的重要教学环节,是⼈才培养质量的重要体现。
通过伺服控制系统课程设计,可以培养考⽣⽤所学基础课及专业课知识和相关技能,解决具体的⼯程问题的综合能⼒。
本次课程设计要求考⽣在指导教师的指导下,独⽴地完成伺服控制系统的设计和仿真,解决与之相关的问题,熟悉伺服控制系统中控制器设计与整定、电机建模和仿真和其他检测装置的选型以及⼯程实践中常⽤的设计⽅法,具有实践性、综合性强的显著特点。
因⽽对培养考⽣的综合素质、增强⼯程意识和创新能⼒具有⾮常重要的作⽤。
伺服控制系统课程设计是考⽣在课程学习结束后的实践性教学环节;是学习、深化、拓宽、综合所学知识的重要过程;是考⽣学习、研究与实践成果的全⾯总结;是考⽣综合素质与⼯程实践能⼒培养效果的全⾯检验;也是⾯向⼯程教育认证⼯作的重要评价内容。
(⼆)课程设计的⽬标课程设计基本教学⽬标是培养考⽣综合运⽤所学知识和技能,分析与解决⼯程实际问题,在实践中实现知识与能⼒的深化与升华,同时培养考⽣严肃认真的科学态度和严谨求实的⼯作作风。
使考⽣通过综合课程设计在具备⼯程师素质⽅⾯更快地得到提⾼。
对本次课程设计有以下⼏⽅⾯的要求:1.主要任务本次任务在教师指导下,独⽴完成给定的设计任务,考⽣在完成任务后应编写提交课程设计报告。
2.专业知识考⽣应在课程设计⼯作中,综合运⽤各种学科的理论知识与技能,分析和解决⼯程实际问题。
通过学习、研究和实践,使理论深化、知识拓宽、专业技能提⾼。
3.⼯作能⼒考⽣应学会依据课程设计课题任务进⾏资料搜集、调查研究、⽅案论证、掌握有关⼯程设计程序、⽅法和技术规范。
PLC如何控制伺服电机(伺服系统设计实例)PLC(可编程逻辑控制器)通常用于控制伺服电机的运动,伺服电机通过PLC的输出信号来控制其位置、速度和加速度等参数。
本文将以一个伺服系统的设计实例来说明PLC如何控制伺服电机。
假设我们需要设计一个简单的伺服系统,实现一个沿直线轨道移动的小车。
伺服系统由PLC、伺服电机、编码器和开关等设备组成。
步骤1:设计控制电路首先,我们需要设计一个控制电路,包括PLC、伺服电机和编码器之间的连接。
PLC通常具有数字输出端口,可用于输出控制信号来驱动伺服电机,同时也需要设置一个数字输入端口来接收编码器的反馈信号。
步骤2:连接电路将PLC的数字输出端口与伺服电机的控制输入端口连接起来。
通常,伺服电机的控制输入端口包括位置命令、速度命令和加速度命令等信号。
确保正确连接这些信号,以便PLC可以向伺服电机发送正确的控制指令。
步骤3:编程PLC使用PLC编程软件,根据系统的需求编写控制程序。
通常,需要编写的程序包括接收编码器反馈信号、计算位置误差、生成控制指令以及输出控制信号等。
步骤4:设置伺服电机参数伺服电机通常具有各种参数设置,如最大速度、加速度和减速度等。
在PLC程序中,需要设置这些参数,以确保伺服电机的正常工作。
这些参数通常可以通过与伺服电机连接的调试软件进行设置。
步骤5:运行系统完成PLC程序和伺服电机参数的设置后,可以通过PLC进行系统测试和调试。
运行系统并观察小车的运动是否符合设计要求。
如果需要调整运动轨迹或控制参数,可以修改PLC程序和伺服电机的参数设置。
通过以上步骤,我们可以实现一个简单的伺服系统,通过PLC控制伺服电机的运动。
当PLC接收到编码器的反馈信号时,它会计算出位置误差,并生成相应的控制信号发送给伺服电机。
伺服电机根据接收到的指令,调整自身的位置、速度和加速度等参数,实现沿直线轨道移动的小车。
需要注意的是,PLC控制伺服电机还可以实现更复杂的运动控制,如直线插补、圆弧插补等。
机的交流伺服电机转速控制系统设计机器的交流伺服电机转速控制系统设计是一个复杂而关键的过程。
这个过程涉及到多个组件和步骤,包括传感器选择、控制器设计、反馈回路等。
在本文中,我们将详细介绍和讨论这些方面,并给出一种基于PID控制器的转速控制系统设计示例。
1.传感器选择在设计交流伺服电机转速控制系统时,选择合适的传感器对于准确地测量电机转速非常重要。
最常用的传感器是霍尔传感器和光电编码器。
霍尔传感器使用磁场检测旋转,而光电编码器使用光电开关检测旋转。
根据具体需求选择最合适的传感器。
2.控制器设计在交流伺服电机转速控制系统中,PID控制器是最常用的控制器类型。
PID控制器由比例(P)、积分(I)和微分(D)三个部分组成。
比例部分通过将误差乘以一个比例常数来控制输出;积分部分通过将误差的累积值乘以一个积分常数来消除静态误差;微分部分通过将误差的变化率乘以一个微分常数来预测未来的误差。
通过调整PID控制器的参数,可以实现较好的转速控制性能。
3.反馈回路在交流伺服电机转速控制系统中,反馈回路是必不可少的。
反馈回路通过将实际测量的转速与期望的转速进行比较,从而产生误差信号。
这个误差信号被送入PID控制器,控制器将根据误差的大小和变化率输出相应的控制信号。
这个控制信号被送入电机驱动器,从而控制电机的转速。
4.精确度和稳定性在交流伺服电机转速控制系统设计中,精确度和稳定性是非常重要的指标。
精确度指的是控制系统实际转速与期望转速的偏差;稳定性指的是控制系统的输出是否在可接受的范围内波动。
通过合理选择传感器、设计合适的控制器和优化反馈回路,可以提高系统的精确度和稳定性。
5.鲁棒性和抗干扰性在实际应用中,交流伺服电机转速控制系统经常面临各种各样的干扰和外界扰动。
为了提高系统的鲁棒性和抗干扰性,可以采用一系列方法,比如滤波技术、模型预测控制等。
综上所述,交流伺服电机转速控制系统设计是一个综合考虑多个因素的复杂过程。
通过合理选择传感器、设计合适的控制器、优化反馈回路以及提高系统的精确度、稳定性、鲁棒性和抗干扰性,可以实现高性能的转速控制。
综合练习(一)一、名词解释(每小题4分,共20分)1.机电一体化:从系统的观点出发,将机械技术、微电子技术、信息技术、控制技术等在系统工程的基础上有机地加以综合,实现整个机械系统最佳化而建立起来的一门新的科学技术。
2•传感器:是一种以一定的精确度把被测量转换为与之有确定对应关系的,便于应用的某种物理量的测量装置。
3•伺服控制系统:一种能够跟踪输入的指令信号进行动作,从而获得精确的位置、速度及动力输出的自动控制系统。
4.可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。
二、填空题(每小题1分,共20分)2•伺服系统中,通常采用负载角加速度最大原则选择总传动比,以提高伺服系统的响应速_______ 度。
3•机身结构设计中,肋板的布置形式可分为纵向肋板、横向肋板和斜置肋板三种。
4.某光栅的条纹密度是50条/mm,光栅条纹间的夹角0 =0.001孤度,则莫尔条纹的宽度是_20mm_。
5.柔性制造系统可分为四个系统,分别为加工系统、物料系统、能量系统和信息系统。
6.从电路上隔离干扰的三种常用方法是:光电隔离,变压器隔离,继电器隔离。
7 .工作接地分为_一点接地、多点接地。
&某4极交流感应电机,电源频率为50Hz,转速为1470r/min,则转差率为__0.02_。
三、选择题(每小题2分,共20分)1.STD总线是一个通用工业控制的多少位微型机总线?( B )A. 4 位B. 8 位C. 16位D. 32位2.加速度传感器的基本力学模型是(A )A.阻尼一质量系统B.弹簧一质量系统C.弹簧一阻尼系统D.忙熊系誑3.齿轮传动的总等效惯量与传动级数(C )A.有关B.无关C.在一定级数内有关D.圧一细数内无关4.A/D转换接口属于(B )。
A.人机接口B佥测通道C.控制通道D系统间通道5.伺服控制系统一般包括控制器、被控对象、执行环节、比较环节和( D )等个五部分。
A换向结构B转换电路C存储电路D检测环节6.受控变量是机械运动的一种反馈控制系统称(B )A.顺序控制系统B.伺服系统C数控机床D工业机器人7.滚珠丝杠螺母副结构类型有两类:外循环插管式和(B )A.内循环插管式B外循环反向器式C内、外双循环D内循环反向器式&直流测速发电机输出的是与转速(C )A.成正比的交流电压B.成反比的交流电压C成正比的直流电压 D.成反比的直流电压9 .具有某种智能功能的工业机器人属于(B )。
伺服控制方案伺服控制是一种通过控制系统对伺服电机进行精确控制的技术。
它广泛应用于工业机械、机器人、自动化设备等领域。
伺服控制方案的设计和实施对于提高设备的运动控制精度和稳定性至关重要。
本文将介绍伺服控制方案的基本原理以及常见的设计方法。
一、伺服控制方案的基本原理伺服控制是通过反馈控制的方式实现的。
控制系统首先需要获取被控对象的准确位置或速度信息,以便对其进行实时调整。
这一信息通常通过编码器或传感器来获取。
控制系统将反馈的位置或速度信号与设定值进行比较,然后根据比较结果来控制伺服电机的输出,以使被控对象达到设定值并保持稳定。
二、伺服控制方案的设计方法1. 确定系统需求:在设计伺服控制方案之前,需要明确系统的运动需求,包括位置精度、速度要求等。
这些需求将直接影响到伺服电机的选型和控制参数的设置。
2. 选型与参数设置:根据系统需求选择合适的伺服电机,并根据实际情况设置伺服控制器的参数,如增益、速度限制等。
参数的设置需要结合实际测试和调整,以保证系统的稳定性和控制精度。
3. 编码器或传感器的选择:选择合适的编码器或传感器来获取被控对象的准确位置或速度信息。
常见的编码器类型包括光电编码器、磁编码器等。
传感器的选择需要考虑到被控对象的特点和工作环境。
4. 控制算法的选择:根据实际情况选择合适的控制算法,如PID控制、模糊控制等。
控制算法的选择应综合考虑系统的动态响应、稳定性以及抗干扰能力。
5. 系统建模与仿真:使用系统建模软件对伺服控制系统进行建模和仿真,以评估控制方案的性能。
通过仿真可以提前检测和调整可能存在的问题,减少实际实施中的风险。
6. 系统实施与调试:在实施伺服控制方案之前,需要根据设计结果进行系统布线和接线,然后进行系统调试和优化。
调试过程中需要根据实际情况进行参数调整,以保证系统的准确性和稳定性。
三、伺服控制方案的应用领域伺服控制方案广泛应用于工业机械、机器人、自动化设备等领域。
具体应用包括:1. 机床控制:伺服控制方案可以用于实现机床的精密定位和运动控制,提高加工精度和生产效率。
伺服系统组成、概述与控制原理(难得好⽂)伺服系统既可以是开环控制⽅式,也可以是闭环控制⽅式。
⼀、伺服系统简述伺服系统(servomechanism)指经由闭环控制⽅式达到对⼀个机械系统的位置、速度和加速度的控制。
⼀个伺服系统的构成包括被控对象、执⾏器和控制器(负载、伺服电动机和功率放⼤器、控制器和反馈装置)。
1. 执⾏器的功能在于提供被控对象的动⼒,其构成主要包括伺服电动机和功率放⼤器,伺服电动机包括反馈装置如光电编码器、旋转编码器或光栅等(位置传感器)。
2. 控制器的功能在于提供整个伺服系统的闭环控制如转矩控制、速度控制、位置控制等,伺服驱动器通常包括控制器和功率放⼤器。
3. 反馈装置除了位置传感器,可能还需要电压、电流和速度传感器。
下图为⼀般⼯业⽤伺服系统的组成框图,其中红⾊为伺服驱动器组成部分,黄⾊为伺服电机组成部分。
“伺服”——词源于希腊语“奴⾪”的意思。
⼈们想把“伺服机构”当成⼀个得⼼应⼿的驯服⼯具,服从控制信号的要求⽽动作:在讯号来到之前,转⼦静⽌不动;讯号来到之后,转⼦⽴即转动;当讯号消失,转⼦能即时⾃⾏停转。
由于它的“伺服”性能,因此⽽得名——伺服系统。
⼆、常⽤参数1、伺服电机铭牌参数1. 法兰尺⼨2. 电机极对数3. 电机额定输出功率4. 电源电压规格:单相/三相5. 电机惯量:分为⼤、中、⼩惯量,指的是转⼦本⾝的惯量,从响应⾓度来讲,电机的转⼦惯量应⼩为好;从负载⾓度来看,电机的转⾃惯量越⼤越好6. 电机出轴类型:键槽、扁平轴、光轴、减速机适配…7. 电机动⼒线定义:U: RED V:BLACK W: WHITE8. 额定转速9. 编码器线数:2500/1250/1000/17B/20B法兰是轴与轴之间相互连接的零件,⽤于管端之间的连接。
2、伺服驱动器铭牌参数1. 额定输出功率2. 电源电压规格3. 编码器线数3、伺服系统的性能指标1. 检测误差:包括给定位置传感器和反馈位置传感器的误差,传感器本⾝固有,⽆法克服;2. 系统误差:系统类型决定了系统误差。
可编程控制器实训形考任务实验报告伺服电机控制系统的设计与实现可编程控制器实训:伺服电机控制系统的设计与实现一、实验目标本实验的目标是设计并实现一个基于可编程控制器的伺服电机控制系统。
通过本实验,我们将学习如何使用可编程控制器(PLC)来控制伺服电机,实现精确的位置控制和速度控制。
二、实验原理伺服电机控制系统主要由伺服电机、伺服驱动器和可编程控制器三部分组成。
伺服电机是一种能够实现精确控制的电机,其转速、转向和位置都可以通过输入的信号进行控制。
伺服驱动器则是用来接收来自可编程控制器的控制信号,并将这些信号转换为伺服电机的运动。
而可编程控制器则是整个控制系统的核心,负责处理各种输入信号,并生成控制信号来驱动伺服电机。
在本实验中,我们将使用PLC来接收外部输入信号,并根据预设的程序生成控制信号,通过伺服驱动器来驱动伺服电机。
同时,我们还将使用PLC 的通信功能,实现与上位机的数据交换,以监控和控制伺服电机的运动。
三、实验步骤1. 硬件搭建:根据实验原理,搭建伺服电机控制系统所需的硬件设备,包括伺服电机、伺服驱动器、可编程控制器及相关连线。
2. 编程环境设置:根据所使用的PLC型号,安装相应的编程软件,并设置好通信参数,以便于与PLC进行通信。
3. 程序设计:根据实验要求,编写控制程序。
程序应包括输入信号的处理、控制算法的实现、输出信号的生成等部分。
4. 系统调试:在完成程序设计后,对系统进行调试。
首先检查硬件连接是否正常,然后上传程序到PLC中进行测试。
通过调整程序中的参数,使系统达到预期的控制效果。
5. 数据监控与处理:利用上位机软件,实现对伺服电机运动状态的数据监控和记录。
同时,对采集到的数据进行处理和分析,以评估控制系统的性能。
6. 实验总结:在完成实验后,整理实验数据和结果,分析实验过程中遇到的问题及解决方案,总结实验经验教训。
四、实验结果与分析通过本次实验,我们成功地实现了基于可编程控制器的伺服电机控制系统。
1.伺服系统的定义、概念;伺服系统的基本要求;主要特点,伺服系统分类(按照控制理论,按照反馈方式)它们各有什么特点?;位置速度检测元件(名称)莫尔条纹的特性3种效应。
定义:在自动控制系统中,使输出量能够以一定准确度跟随输入量的变化而变化的系统称为随动系统,亦称为伺服系统。
要求:①稳定性好②精度高③快速响应并无超调④低速大转矩和调速范围宽主要特点:①精确的检测装置②有多种反馈比较原理与方法③高性能伺服电动机④宽调速范围的速度调节系统按控制理论分类:①开环伺服系统(信息流是单向的,即进给脉冲发出去后,实际移动值不再反馈回来)②闭环伺服系统(若各种参数匹配不当,将会引起系统振荡,造成不稳定,影响定位精度,而且系统复杂和成本高)③半闭环伺服系统(不能补偿位置闭环系统外的传动装置的传动误差,却可以获得稳定的控制特性。
介于开环与闭环之间,精度没有闭环高,调试却比闭环方便,因而得到广泛应用。
)按反馈方式分类:①脉冲、数字比较伺服系统(结构简单,容易实现,整机工作稳定,在一般数控伺服系统中应用十分普遍)②相位比较伺服系统(适用于感应式检测元件的工作状态,可得到满意的精度。
相位比较伺服系统的载波频率高,响应快,抗干扰性强,因而很适于用做连续控制的伺服系统)③幅值比较伺服系统(幅值大小与机械位移量成正比)④全数字伺服系统(高速度、高精度、大功率)速度检测:①异步(交流)测速发电机②直流测速发电机③光电测速盘位置检测:①感应同步器②光栅莫尔条纹特性的三种效应:①莫尔条纹的移动与栅距成比例②平均效应③放大效应2.晶闸管的伏安特性曲线,以及导通条件和关断条件,维持电流,擎住电流;全控器件写出三种名称(IGBT,GTO,MOSFET)优缺点;导通条件:晶闸管的阳极和控制极同时加正向电压时晶闸管才能导通,这是晶闸管导通必须同时具备的两个条件。
关断条件:在晶闸管导通之后,其控制极就失去控制作用。
欲使晶闸管恢复阻断状态,必须把阳极正向电压降低到一定值(或断开,或反向)。
第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。
在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。
机械参数主要包括位移、角度、力、转矩、速度和加速度。
近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。
目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。
1.1伺服系统的基本概念1.1.1伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。
伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。
1.1.2伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。
它由检测部分、误差放大部分、部分及被控对象组成。
1.1.3伺服系统性能的基本要求1)精度高。
伺服系统的精度是指输出量能复现出输入量的精确程度。
2)稳定性好。
稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。
3)快速响应。
响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。
4)调速范围宽。
调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。
5)低速大转矩。
在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。
6)能够频繁的启动、制动以及正反转切换。
1.1.4 伺服系统的种类伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置伺服、速度伺服和加速度伺服系统等。
电器伺服系统根据电气信号可分为直流伺服系统和交流伺服系统两大类。
交流伺服系统又有感应电机伺服系统和永磁同步电机伺服系统两种。
1.2 伺服系统的发展过程伺服系统的发展经历了由液压到电气的过程,电器伺服系统的发展则与伺服电机的不同发展阶段具有紧密的联系,伺服电机至今已有50多年的发展历史,经历了三个主要发展阶段。
第一发展阶段(20世纪60年代以前):此阶段是以步进电动机驱动的液压伺服马达或以功率步进电动机直接驱动为中心的时代,伺服系统的位置控制多为开环控制。
这一时期是液压伺服系统系统的全盛期。
液压伺服系统能够传递巨大的转矩,控制简单,可靠性高,在整个速度范围内保持恒定的转矩输出,主要应用在重型设备和一些关键场合,比如机场设备。
但它也存在一些缺点,例如发热大、效率低、易污染环境、不易维修等。
第二个发展阶段(20世纪60至70年代):这一阶段是直流伺服电机的诞生和全胜发展时代,由于直流电机具有优良的调速性能,很多高性能驱动装置采用了直流电机,伺服系统的位置控制也由开环控制系统发展成为闭环系统。
但是,直流伺服电机存在机械结构复杂、维护工作量大等缺点,在运行过程中转子容易发热,影响了与其连接的其他机械设备的精度,难以应用到高速及大容量的场合,换向器成为直流伺服驱动技术发展的瓶颈。
由于人们通过材料和工艺的改进来尽量提高直流伺服的生命力,因此直流伺服电机仍将在相当长的时间内得到应用,只是市场份额预计会持续下降。
第三发展阶段(20世纪80年代至今):这一阶段是以机电一体化时代作为时代背景的。
由于伺服电机结构及永磁材料、半导体功率器件技术、控制技术的突破性进展,出现了无刷直流伺服电机(方波驱动)、交流伺服电机(正弦波驱动)、矢量控制的感应电机和开关磁阻电机等新型电机。
尤其是80年代以来,矢量控制技术的不断成熟,极大地推动了交流伺服驱动技术的发展,是交流伺服驱动系统的性能可以与直流伺服系统媲美。
伺服驱动装置经历了模拟式——数字模拟混合式——全数字化的发展。
伺服系统控制器的实现方式在数字控制中也在由硬件方式向着软件方式发展;在软件方式中也是从伺服系统的外环向内环、进而向接近电动机环路的更深层发展。
交流伺服电机克服了直流伺服电机存在的电刷、换向器等机械部件所带来的各种缺点,过载能力强和转动惯量低体现出了交流伺服系统的优越性。
交流伺服系统采用以微处理器为基础的系统芯片和智能化功率器件,很好的克服了伺服系统中模型参数变化和非线性等不确定因素,提高了系统的鲁棒性和容错性,成功实现了高精度伺服控制。
特别是控制理论的新发展及智能控制的兴起和不断成熟,加之计算机技术、微电子技术的迅猛发展,使基于智能控制理论的先进控制策略和基于传统控制理论的传统控制策略完美结合,为交流伺服系统的实际应用奠定了坚实的基础。
1.3元件选择1.3.1功率变换器交流伺服系统功率变换器的主要功能是根据控制电路的指令,将电源单元提供的直流电能转变为伺服电机电枢绕组中的三相交流电流,以产生所需要的电磁转矩。
功率变换器主要包括控制电路、驱动电路、功率变换主电路等。
功率变换主电路主要由整流电路、滤波电路和逆变电路三部分组成。
为了保证逆变电路的功率开关器件能够安全、可靠地工作,对于高压、大功率的交流伺服系统,有时需要有压抑电压、电流尖峰的“缓冲电路”。
另外,对于频繁运行于快速正反转状态的伺服系统,还需要有消耗多余再生能量的“制动电路”。
控制电路主要由运算电路、PWM生成电路、检测信号处理电路、输入输出电路、保护电路等构成,其主要作用是完成对功率变换主电路的控制和实现各种保护功能等。
驱动电路的作用是根据控制信号对功率半导体开关进行驱动,并为器件提供保护,主要包括开关器件的前级驱动电路和辅助开关电源电路等。
1.3.2传感器在伺服系统中,需要对伺服电机的绕组电流及转子速度、位置进行检测,以构成电流环、速度环和位置环,因此需要相应的传感器及其信号变换电路。
电流检测通常采用电阻隔离检测或霍尔电流传感器。
直流伺服电机只需一个电流环,而交流伺服电机(两相交流伺服电机除外)则需要两个或三个。
其构成方法也有两种:一种是交流电流直接闭环;另一种是把三相交流变换为旋转正交双轴上的矢量之后再闭环,这就需要把电流传感器的输出信号进行坐标变换的接口电路。
速度检测可采用无刷测速发电机、增量式光电编码器、磁编码器或无刷旋转变压器。
位置检测通常采用绝对式光电编码器或无刷旋转变压器,也可采用增量式光电编码器进行位置检测。
由于无刷旋转变压器具有既能进行转速检测又能进行绝对位置检测的优点,且抗机械冲击性能好,可在恶劣环境下工作,在交流伺服系统中的应用日趋广泛。
1.3.3控制器在交流电机伺服系统中,控制器的设计直接影响着伺服电机的运行状态,从而在很大程度上决定了整个系统的性能。
交流电机伺服系统通常有两类,一类是速度伺服系统;另一类为位置伺服系统。
前者的伺服控制器主要包括电流(转矩)控制器和速度控制器,后者还要增加位置控制器。
其中电流(转矩)控制器是关键的环节,因为无论是速度控制还是位置控制,最终都将转换为对电机的电流(转矩)控制。
电流环的响应速度要远远大于速度环和位置环。
为了保证电机定子电流相应的快速性,电流控制器的实现不应太复杂,这就要求其设计方案必须恰当,使其有效的发挥作用。
对于速度和位置控制,由于其时间常数较大,因此可借助计算机技术实现许多复杂的基于现代控制理论的控制策略,从而提高伺服系统的性能。
1.电流控制器电流环由电流控制器和逆变器组成,其作用是使电机绕组电流实时、准确地跟踪电流指令信号。
为了能够快速、准确地控制伺服电机的电磁转矩,在交流伺服系统中,需要分别对永磁同步电机(或感应电机)的d、q轴电流进行控制。
2.速度控制器速度环的作用是保证电机的转速与速度指令值一致,消除负载转矩扰动等因素对电机转速的影响。
速度指令与反馈的电机实际转速相比较,其差值通过速度控制器直接产生Q轴指令电流,并进一步用d轴电流指令共同作用,控制电机加速、减速或匀速旋转,使电机的实际转速与指令值保持一致。
速度控制器通常采用的是PI控制方式。
3.位置控制器位置环的作用是产生电机的速度指令并使电机准确定位和跟踪。
通过比较设定的目标位置与电机的世纪位置,利用其偏差通过位置控制器来产生电机的速度指令当电机启动后在大偏差区域,产生最大速度指令,使电机加速运行后以最大速度恒速运行;在小偏差区域,产生逐次递减的速度指令,使电机减速运行直至最终定位。
第二章喷绘机原理2.1喷绘机原理单元介绍2.1.1熔断器熔断器是根据电流超过规定值一定时间后,以其自身产生的热量使熔体熔化,从而使电路断开的原理制成的一种电流保护器。
熔断器作为短路和过流保护是应用最普遍的保护器件之一,广泛应用于低压配电系统和控制系统及用电设备中。
熔断器是一种过电流保护电器。
熔断器主要由熔体和熔管两个部分及外加填料等组成。
使用时,将熔断器串联于被保护电路中,当被保护电路的电流超过规定值,并经过一定时间后,由熔体自身产生的热量熔断熔体,使电路断开,起到保护的作用。
2.1.2 运动控制卡运动控制卡是一种上位控制单元,可以控制伺服电机,是基于PC总线,利用高性能微处理器(如DSP)及大规模可编程器件实现多个伺服电机的多轴协调控制的一种高性能的步进/伺服电机运动控制卡包括脉冲输出、脉冲计数、数字输入、数字输出、D/A输出等功能,它可以发出连续的、高频率的脉冲串,通过改变发出脉冲的频率来控制电机的速度,改变发出脉冲的数量来控制电机的位置,它的脉冲输出模式包括脉冲/方向、脉冲/脉冲方式。
脉冲计数可用于编码器的位置反馈,提供机器准确的位置,纠正传动过程中产生的误差。
数字输入/输出点可用于语限位、原点开关等。
产品广泛应用于工业自动化控制领域中需要精确定位、定长的位置控制系统和基于PC的NC控制系统。
具体就是将实现运动控制的底层软件和硬件集成在一起,使其具有伺服电机控制所需的各种速度、位置控制功能。
这些功能能通过计算机方便地调用。
运动控制卡不仅要发送脉冲给电机驱动器,同时接受伺服电机编码器反馈的脉冲数,还接受光栅尺反馈信号,进而控制伺服电机的转速。
伺服驱动器既要与运动控制卡有数据线连接,其本身还要连接插座电源。
如果你的运动控制卡时比较好的卡,伺服刷新率可以达到要求,可以把编码器反馈直接接到运动控制卡,形成一个整体的闭环。
若对对精度有很高的要求可以用双闭环,运动控制卡就是根据要求x-y平台运行的位置,控制电机运动到准确的位置。