高中物理正交分解
- 格式:docx
- 大小:13.33 KB
- 文档页数:2
2019-2020年高中物理 3.5正交分解法1 新人教版必修1所谓“正交分解法”就是将受力物体所受外力(限同一平面内的共点力)沿选定的相互垂直的x轴和y轴方向分解,然后分别求出x轴方向、y方向的合力ΣF x、ΣF y,由于ΣF x、ΣF y相互垂直,可方便的求出物体所受外力的合力ΣF(大小和方向一、正交分解法的三个步骤第一步,立正交x、y坐标,这是最重要的一步,x、y坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x与y的方向一定是相互垂直而正交。
第二步,将题目所给定跟要求的各矢量沿x、y方向分解,求出各分量,凡跟x、y轴方向一致的为正;凡与x、y轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。
第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。
这是此法的核心一步。
第四步,根据各x、y轴的分量,求出该矢量的大小,一定表明方向,这是最终的一步。
求物体所受外力的合力或解物体的平衡问题时,常采用正交分解法。
)例1 共点力F1=100N,F2=150N,F3=300N,方向如图1所示,求此三力的合力。
解:三个力沿x,y方向的分力的合力:(负值表示方向沿y轴负方向)由勾股定理得合力大小:ΣF= ==166.4N ∵ΣF x﹥0、ΣF y﹥0 ∴ΣF在第四象限内,设其与x 轴正向夹角为,则:tg===0.6429 ∴=32.7º运用正交分解法解题时,x轴和y轴方向的选取要根据题目给出的条件合理选取,即让受力物体受到的各外力尽可能的与坐标轴重合,这样方便解题。
运用正交分解法解平衡问题时,根据平衡条件F合=0,应有ΣF x=0,ΣF y=0,这是解平衡问题的必要和充分条件,由此方程组可求出两个未知数。
例2 重100N光滑匀质球静止在倾角为37º的斜面和与斜面垂直的挡板间,求斜面和挡板对球的支持力F1,F2。
高一物理正交分解法所谓“正交分解法”就是将受力物体所受外力(限同一平面内的共点力)沿选定的相互垂直的x 轴和y 轴方向分解,然后分别求出x 轴方向、y 方向的合力ΣF x 、ΣF y ,由于ΣF x 、ΣF y 相互垂直,可方便的求出物体所受外力的合力ΣF (大小和方向一、正交分解法的三个步骤第一步,立正交 x 、y 坐标,这是最重要的一步,x 、y 坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x 与y 的方向一定是相互垂直而正交。
第二步,将题目所给定跟要求的各矢量沿x 、y 方向分解,求出各分量,凡跟x 、y 轴方向一致的为正;凡与x 、y 轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。
第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。
这是此法的核心一步。
第四步,根据各x 、y 轴的分量,求出该矢量的大小,一定表明方向,这是最终的一步。
求物体所受外力的合力或解物体的平衡问题时,常采用正交分解法。
) 例1 共点力F 1=100N ,F 2=150N ,F 3=300N ,方向如图1所示,求此三力 的合力。
y53°37°O x 37°解:三个力沿x ,y方向的分力的合力x x x x F F F F 321++=∑:︒+︒-︒=37sin 53sin 37cos 321F F F N N N 6.03008.01508.0100⨯+⨯-⨯=N 140= yy y y F F F F 321++=∑︒-︒+︒=37cos 53cos 37sin 321F F F NN N 8.03006.01506.0100⨯-⨯+⨯=N 90-= (负值表示方向沿y 轴负方向)由勾股定理得合力大小:ΣF=22)()(y x F F ∑+∑ =N 22)90(140-+=166.4N ∵ΣF x ﹥0、ΣF y ﹥0 ∴ΣF 在第四象限内,设其与x 轴正向夹角为α,则: tg α=xy F F ∑∑=NN14090=0.6429 ∴α=32.7º 运用正交分解法解题时,x 轴和y 轴方向的选取要根据题目给出的条件合理选取,即让受力物体受到的各外力尽可能的与坐标轴重合,这样方便解题 。
第一讲正交分解法知识点一:共点力及平衡条件共点力:物体同时受几个力的作用,如果这几个力都作用于物体的同一点或者它们的作用线交于同一点,这几个力叫共点力。
能简化成质点的物体受到的力可视为共点力。
平衡状态:物体保持静止......状态....或匀速直线运动注意:这里的静止需要二个条件,一是物体受到的合外力为零,二是物体的速度为零,仅速度为零时物体不一定处于静止状态,如物体做竖直上抛运动达到最高点时刻,物体速度为零,但物体不是处于静止状态,因为物体受到的合外力不为零。
共点力的平衡:如果物体受到共点力的作用,且处于平衡状态,就叫做共点力的平衡。
1.如图所示,小明用与水平方向成θ角的轻绳拉木箱,沿水平面做匀速直线运动,此时绳中拉力为F,则木箱所受合力大小为()>A 0B FC FcosθD Fsinθ2、如图所示,一质量为m的物体沿倾角为θ的斜面匀速下滑。
下列说法正确的是()A 物体所受合力的方向沿斜面向下B 斜面对物体的支持力等于物体的重力C 物体下滑速度越大,说明物体所受摩擦力越小D 斜面对物体的支持力和摩擦力的合力的方向竖直向上知识点二:共点力的处理方法——正交分解法!正交分解一般步骤:选定研究对象,并作出受力分析建立合适的直角坐标系(尽可能少分解力)将不在坐标轴上的力分解到坐标轴上列出平衡状态下x方向、y方向的方程求解:x方向上:F1x=F2x y方向上:F1y+F2y=G1.质量为m的木块在推力F作用下,在水平地面上做匀速运动(如图所示)。
已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为下列各值的哪一个()A μmgB μ(mg+Fsinθ)-C μ(mg-Fsinθ)D Fcosθ2.物体放在粗糙的水平地面上,物体重50N,受到斜向上方向与水平面成300角的力F作用,F = 50N,物体仍然静止在地面上,如图所示,求:物体受到的摩擦力和地面的支持力分别是多少3.在图中,AB、AC两光滑斜面互相垂直,AC与水平面成30°.如把球O的重力G按照其作用效果分解,则两个分力的大小分别为()A 12G,32G B33G,3G-C23G,22G D22G,32G4.甲、乙两人用绳子拉船,使船沿OO′方向航行,甲用1 000 N的力拉绳子,方向如图所示,要使船沿OO′方向航行,乙的拉力最小值为()A 500 3 NB 500 NC 1 000 ND 400 N练习:1.质量为m的物体在恒力F作用下,F与水平方向之间的夹角为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则物体受摩擦力大小为多少&2.直角劈形木块(截面如图所示)的质量M=2kg,用外力F顶靠在竖直墙上。
高一物理正交分解例题及解析
以下是一个高一物理正交分解的例题及解析:
例题:一个质量为m的物体在水平恒力F的作用下,沿着与水平方向成α角的直板上表面向上匀速运动。
物体与直板间的动摩擦因数为μ,求物体受到的摩擦力。
解析:物体受到的摩擦力由静摩擦力和滑动摩擦力两部分组成。
1. 静摩擦力:物体在直板上表面向上匀速运动时,直板对物体的支持力与物体所受的重力平衡,则物体受到的静摩擦力为:
f_静= mg
2. 滑动摩擦力:由于物体与直板间存在滑动摩擦力,物体受到的滑动摩擦力为:
f_滑= μ(mgcosα+ Fsinα)
因此,物体受到的摩擦力为:
f = f_静+ f_滑= m
g + μ(mgcosα+ Fsinα)
答案:物体受到的摩擦力为mg + μ(mgcosα+ Fsinα)。
由勾股定理得合力大小:ΣF=22)()(y x F F ∑+∑ =N22)90(140-+=166.4N∵ΣF x ﹥0、ΣF y ﹥0 ∴ΣF 在第四象限内,设其与x 轴正向夹角为α,则: tg α=x yF F ∑∑=NN14090=0.6429 ∴α=32.7º运用正交分解法解题时,x 轴和y 轴方向的选取要根据题目给出的条件合理选取,即让受力物体受到的各外力尽可能的与坐标轴重合,这样方便解题 。
运用正交分解法解平衡问题时,根据平衡条件F 合=0,应有ΣF x =0,ΣF y =0,这是解平衡问题的必要和充分条件,由此方程组可求出两个未知数。
例2 重100N 光滑匀质球静止在倾角为37º的斜面和与斜面垂直的挡板间, 求斜面和挡板对球的支持力F 1, F 2。
yF 1 xF 2G37°图 3解:选定如图3所示的坐标系,重球受力如图3所示。
由于球静止,所 以有:⎩⎨⎧=︒-=︒-037sin 037cos 21G F G F∴N N G F 808.010037cos 1=⨯=︒= N N G F 606.010037sin 2=⨯=︒=1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和40o ,求绳AO 和BO 对物体的拉力的大小。
2.如图所示,重力为500N的人通过跨过定滑轮的轻绳牵引重200N的物体,当绳与水平面成6 0o角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
3. (8分)如图6所示,θ=370,sin370=0.6,cos370=0.8。
箱子重G=200N,箱子与地面的动摩擦因数μ=0.30。
要匀速拉动箱子,拉力F为多大?4.(8分)如图,位于水平地面上的质量为M的小木块,在大小为F、方向与水平方向成a角的拉力作用下沿地面作匀速直线运动。
求:(1)地面对物体的支持力?(2)木块与地面之间的动摩擦因数?5.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直放置的档板,在档板和斜面之间放一个重力G=20N的光滑球,把球的重力沿垂直于斜面和垂直于档板的方向分解为力F1和F2,求这两个分力F1和F2的大小。
专题1合成法正交分解法【知能整合】一、合力的求法1、若物体受到两个力的作用而做加速(减速)运动,则采用合成法求合力。
2、若物体受到三个或三个以上的力的作用而做加速(减速)运动,则采用正交分解法求合力。
即将力沿x 、y 两个正交方向分解,得到牛顿第二定律的分量式:x x F ma =,y y F ma =。
应用时要选好正方向并明确各力的方向.....和加速度方向.....,并在受力图上标出。
二、加速度方向的判定1、从运动学的角度分析:根据物体的运动性质可判断加速度方向。
如匀加速(匀减速)直线运动的加速度方向与速度方向相同(相反)。
注意加速度方向与速度方向的区别。
2、从动力学的角度分析:根据物体的受力情况可判断加速度的方向。
分析物体受力情况并判断其合力方向,加速度方向应与合力的方向相同。
三、应用牛顿第二定律的解题步骤1、明确研究对象;2、正确进行受力分析,并明确加速度方向;3、对物体受到的力进行等效处理(合成或正交分解);4、根据牛顿第二定律列方程求解结果。
【典例剖析】【例1】(合成法)如图所示,小车沿倾角为θ的斜面做匀加速直线运动,小车支架上有一单摆,在运动过程中,摆线为水平状态,则小车运动的加速度大小为()A .g sin θB .g tan θC .g /sin θD .g /tan θ【例2】(正交分解法——分解力)质量为m 的三角形木楔A 置于倾角为θ的固定斜面上,它与斜面间的动摩擦因数为μ,一水平力F 作用在木楔A 的竖直平面上,在力F 的推动下,木楔A 沿斜面以恒定的加速度a 向上滑动,则F 的大小为()A .θθμθcos )]cos (sin [++g a mB .θμθθsin cos)sin (+-g a m C .θμθθμθsin cos )]cos (sin [-++g a m D .θμθθμθsin cos )]cos (sin [+++g a m 【例3】(正交分解法——分解加速度)如图所示,电梯与水平面的夹角为300,当电梯加速向上运动时,人对梯面的压力是其重力的65,求人对梯面的摩擦力是其重力的多少倍?a 300【例4】(正交分解法解动态问题)如图所示,光滑水平面上放置一斜面体A ,在其粗糙斜面上静止一物块B .从某时刻开始,一个从零逐渐增大的水平向左的力F 作用在A 上,使A 和B 一起向左做变加速直线运动.则在B 与A 发生相对运动之前的一段时间内()A .B 对A 的压力和摩擦力均逐渐增大B .B 对A 的压力和摩擦力均逐渐减小C .B 对A 的压力逐渐增大,B 对A 的摩擦力逐渐减小D .B 对A 的压力逐渐减小,B 对A 的摩擦力逐渐增大【例5】(多解)如图,将质量m =0.1kg 的圆环套在固定的水平直杆上。
高中物理正交分解讲解及解题方法步骤
高中物理正交分解是一种常用的解题方法,主要用于解决涉及两个互相垂直方向的物理问题。
下面我将详细讲解正交分解的原理、应用和解题步骤。
一、正交分解的原理
正交分解是将一个物理量沿着两个互相垂直的方向进行分解的方法。
在物理学中,很多物理量都可以用正交分解的方法进行求解,如力、速度、加速度等。
正交分解的原理基于矢量的分解和合成。
矢量是既有大小又有方向的量,可以沿任意方向进行分解和合成。
在正交分解中,我们将一个矢量沿两个互相垂直的方向进行分解,得到两个互相垂直的分量。
这两个分量是独立的,它们的大小和方向都可以单独求解。
二、正交分解的应用
1.力的正交分解
力的正交分解是解决力学问题的常用方法。
在解决涉及两个互相垂直方向的力的问题时,我们可以将力沿这两个方向进行分解,得到两个互相垂直的分力。
然后分别对这两个分力进行分析和求解,最后合成得到总力。
2.速度和加速度的正交分解
在解决涉及速度和加速度的问题时,我们也可以使用正交分解的方法。
将速度或加速度沿两个互相垂直的方向进行分解,得到两个互相垂直的分速度或分加速度。
然后分别对这两个分速度或分加速度进行分析和求解,最后合成得到总速度或总加速度。
三、正交分解的解题步骤
1.确定需要分解的物理量。
2.确定两个互相垂直的方向。
3.将物理量沿这两个方向进行分解,得到两个互相垂直的分量。
4.分别对这两个分量进行分析和求解。
5.最后将两个分量合成得到总物理量。
四、例题解析
例题:一个物体在水平方向上受到两个力的作用,这两个力的大小分别为F1=10N和F2=20N,方向互相垂直。
求这个物体的合力大小和方向。
解题步骤:
1.确定需要分解的物理量:合力。
2.确定两个互相垂直的方向:水平方向和竖直方向。
3.将合力沿这两个方向进行分解,得到两个互相垂直的分力:水平分力和竖
直分力。
4.分别对这两个分力进行分析和求解:水平分力为F1=10N,竖直分力为
F2=20N。
5.最后将两个分力合成得到总合力:F=√(F1²+F2²)=√(10²+20²)=√500N,方
向为与水平方向成arctan(2)的夹角斜向上。
综上所述,正交分解是解决涉及两个互相垂直方向的物理问题的重要方法。
通过将物理量沿两个互相垂直的方向进行分解,我们可以将复杂的问题简化为两个简单的问题,从而更容易求解。
同时,正交分解也是矢量运算的基础,对于理解矢量的性质和运算方法具有重要意义。