九年级下人教版数学精品教案:29.3 课题学习 制作立体模型
- 格式:doc
- 大小:217.00 KB
- 文档页数:4
人教版九年级数学下册:29.3《课题学习制作立体模型》教学设计3一. 教材分析《人教版九年级数学下册》第29.3课题学习“制作立体模型”是学生在学习了立体几何的基础知识之后,进一步实践和运用立体几何知识的一个环节。
本节课通过制作立体模型,让学生更好地理解立体几何的性质和特点,提高学生的空间想象能力和动手能力,培养学生对数学的兴趣和探究精神。
二. 学情分析九年级的学生已经学习了立体几何的基础知识,对立体图形的性质和特点有一定的了解。
但是,由于立体几何的抽象性,部分学生可能仍然存在理解上的困难。
此外,学生的动手能力参差不齐,需要老师在教学中进行针对性的引导和指导。
三. 教学目标1.让学生通过制作立体模型,更好地理解立体几何的性质和特点。
2.提高学生的空间想象能力和动手能力。
3.培养学生对数学的兴趣和探究精神。
四. 教学重难点1.重点:制作立体模型,理解立体几何的性质和特点。
2.难点:如何指导学生进行立体模型的制作,提高学生的空间想象能力和动手能力。
五. 教学方法1.实践教学法:通过让学生动手制作立体模型,提高学生的空间想象能力和动手能力。
2.问题驱动法:通过设置问题,引导学生思考和探究,激发学生的学习兴趣和探究精神。
3.小组合作学习法:通过小组合作制作立体模型,培养学生的团队合作能力和沟通能力。
六. 教学准备1.教具准备:立体模型模板、剪刀、胶水、直尺、铅笔等。
2.教学素材:立体模型的制作步骤图、相关的问题和案例。
3.教室环境:安排一个宽敞的教室,以便学生进行立体模型的制作和实践。
七. 教学过程1.导入(5分钟)利用课件展示一些有趣的立体模型,引起学生的兴趣,然后提出问题:“你们知道这些立体模型是如何制作出来的吗?”引导学生思考和讨论。
2.呈现(10分钟)呈现立体模型的制作步骤图,让学生对立体模型的制作过程有一个整体的认识。
同时,给出一些相关的问题,让学生在观看的过程中进行思考。
3.操练(10分钟)学生分组进行立体模型的制作,老师巡回指导。
第二十九章投影与视图29.3 课题学习制作立体模型【知识与技能】经历由视图转化为立体图形的过程,体会平面图形与立体图形之间的联系.【过程与方法】1.通过自主探索立体图形的制作过程,培养学生的动手操作能力和空间想象能力.2.通过模型制作,体会由平面图形转化为立体图形的过程和乐趣,激发学生学习数学的兴趣.【情感态度与价值观】1.通过参与动手实践,培养学生合作探究精神和与他人合作的能力.2.通过由平面图形到立体图形的动手操作,培养学生的创新精神和创造发明的意识.经历由平面图形制作立体图形的探究过程.学生实现理论和实践的结合,经历由平面图形制作立体图形的过程.多媒体课件.导入一:完成下列练习:1.某几何体的三视图如下图,那么这个几何体可能是()A.长方体B.圆柱C.圆锥D.球2.如图是一个立体图形的三视图,则这个立体图形的名称为.3.一张桌子上摆放着若干个碟子,从三个方向上看,三种视图如下图,则这张桌子上共有个碟子.【师生活动】学生独立完成后,小组内交流答案,教师对学生的回答进行点评.导入二:[过渡语]前面我们学习了“由物到图”和“由图到物”,我们知道由三视图可以想象三视图所表示的立体图形的形状,那么请你思考:如何检验你根据三视图想象出的立体图形是否正确呢?【师生活动】学生思考回答,教师导入新课.[过渡语]由视图转化为立体图形,我们可以通过动手实践,制作成模型,本节课我们就一起动手,根据三视图,制作与其相对应的立体图形.[设计意图]通过练习,复习巩固上节课的由三视图到立体图形的转化,为本节课的学习做好铺垫,回顾前两节的“由物到图”和“由图到物”知识,提出由三视图制作对应的立体图形模型的新问题,学生很自然地由旧知识走向新知识.活动一:以硬纸板为主要材料,分别做出下面的两组三视图(如图)表示的立体模型.思路一教师引导分析:【思考】(1)观察三视图,你能想象出对应的立体图形是什么吗?(2)由想象的立体图形的形状画出相应的三视图,与上图比较,是否一致?(3)你能用准备的硬纸板做出该立体图形吗?尝试完成.【师生活动】学生独立思考后,小组合作交流,共同完成图(1)对应的立体图形的制作,然后独立完成图(2)对应的立体图形的制作,教师巡视过程中帮助有困难的学生,对学生的结果点评后,展示课前制作好的模型样品.思路二自主学习、合作探究.教师提示:由三视图可以想象对应的立体图形,动手操作把想象的图形制作出来.【师生活动】学生独立思考后,小组合作交流三视图对应的立体图形,共同完成两个图形对应的立体图形的制作,教师巡视过程中帮助有困难的学生,对学生的结果点评后,展示课前制作好的模型样品.【追问】你能总结根据三视图制作立体模型的一般步骤吗?【师生活动】学生思考回答,教师点评,师生共同归纳结论.【结论】由三视图制作立体模型的一般步骤:(1)根据三视图想象出对应的立体图形.(2)测量三视图中的线段长度,确定立体图形的长、宽、高.(3)根据“长对正,高平齐,宽相等”用硬纸板或萝卜制作出立体图形.[设计意图]学生只有想象出立体图形的形状,才能正确制作出模型,所以学生以独立思考与合作学习的方式完成制作过程,提高学生空间想象能力及动手操作能力.活动二:按照下面给出的两组三视图(如图),用马铃薯(或萝卜)做出相应的实物模型.【师生活动】学生独立完成(1),师生共同完成(2),教师巡视过程中帮助有困难的学生,学生展示成果,教师进行点评.[设计意图]类比活动一操作过程,通过动手操作,体会三视图与实物模型的关系,加深理解投影规律、三视图中尺寸与实物长、宽、高之间的关系,进一步培养学生的空间观念.活动三:下面每一组平面图形(如图)都由四个等边三角形组成.(1)其中哪些可以折叠成三棱锥?把上面的图形描在纸上,剪下来,叠一叠,验证你的结论.(2)画出由上面图形能折叠成的三棱锥的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的.(3)如果上图中小三角形的边长为1,那么对应的三棱锥的表面积是多少?【师生活动】学生独立思考、操作完成,小组内交流成果,教师巡视过程中帮助有困难的学生,展示学生的结果,进行点评.[设计意图]由平面图形折叠成立体图形,再根据立体图形画出它的三视图,让学生更深一步体会平面图形与立体图形之间的互相转化,提高学生的空间想象能力和动手操作能力,同时体会将实际问题转化为数学问题解决的过程,提高分析问题与解决问题的能力.[知识拓展]由三视图制作立体模型时遵循的原则为“长对正,高平齐,宽相等”.由三视图制作立体模型的一般步骤:(1)根据三视图想象出对应的立体图形.(2)测量三视图中的线段长度,确定立体图形的长、宽、高.(3)根据“长对正,高平齐,宽相等”用硬纸板或萝卜制作出立体模型.29.3课题学习制作立体模型活动一活动二活动三课后作业【基础巩固】1.如图是一个正方体的表面展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦2.如图,下列四个选项中,不是正方体表面展开图的是()3.把图中的三棱柱展开,所得到的展开图是()4.如图,贤贤同学用手工纸制作了一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适.以下剪裁示意图中,正确的是()5.如图是一个几何体的三视图,则这个几何体的侧面积是()A.π cm2B.2π cm2C.6π cm2D.3π cm26.下列四张正方形硬纸片剪去阴影部分后,如果沿虚线折叠,那么可以围成一个封闭的长方体包装盒的是()7.如图(1)是边长为1的六个小正方形围成的图形,它可以围成如图(2)的正方体,则图(1)中小正方形顶点A,B在围成的正方体上的距离是.8.如图是一个正六棱柱的主视图和左视图,则图中的a=.9.图中的展开图各是什么几何体的展开图?10.如图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题.(1)如果面A在多面体的底部,那么哪一面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面C,面D在后面,那么哪一面会在上面?【能力提升】11.如图,这是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是cm3.12.如图是某种型号的正六角螺母毛坯的三视图,求它的表面积.【拓展探究】13.一个几何体的三视图如图,它的俯视图为菱形,请写出该几何体的形状,并根据图中数据计算它的侧面积.【答案与解析】1.D解析:一个正方体的展开图共有六个面,根据正方体展开图的特点,知“我”与“中”相对,“的”与“国”相对,“你”与“梦”相对.故选D.2.C解析:选项A,B,D中图形折叠后都可以围成正方体;而C中图形不能围成正方体.故选C.3.B解析:把图中的三棱柱展开,所得到的展开图是B.故选B.4.A解析:圆锥压扁后为扇形,圆台压扁后为扇形的一部分.故选A.5.A解析:∵底面半径为1,高为3,∴圆锥母线长为,∴侧面积为πrl=π(cm2).故选A.6.C解析:A.剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B.剪去阴影部分后,无法组成长方体,故此选项不合题意;C.剪去阴影部分后,能组成长方体,故此选项符合题意;D.剪去阴影部分后,无法组成长方体,故此选项不合题意.故选C.7.1解析:A,B间的距离等于小正方形的边长,故AB=1.8.解析:由正六棱柱的主视图和左视图,可得到底面正六边形的对角线长是4,则边长为2,如下图,作AD⊥BC于D.在△ABC中,AB=AC=2,∠BAC=120°,∴在直角三角形ABD中,∠ABD=30°,AD=1,∴BD==.故填.9.解:(1)四棱锥. (2)圆锥. (3)圆柱. (4)六棱柱.10.解:(1)面F会在上面. (2)面C或面E会在上面. (3)面A或面F会在上面.11.18解析:观察其三视图知该长方体的长为3,宽为2,高为3,故其体积为3×3×2=18.12.解:侧面积为6×3×2=36(cm2),底面可以看成由2个等腰梯形组成的,它们的高是=(cm),所以两个底面积是2×2×=12(cm2),表面积为(12+36)cm2.13.解:该几何体的形状是四棱柱,由三视图知棱柱底面菱形的对角线长分别为 4 cm,3 cm.根据菱形的对角线互相垂直平分,得菱形的边长为 cm,所以该几何体的侧面积为×8×4=80(cm2).精品文档精心整理回顾前两节所学的“由物画图”和“由图画物”知识,为本节课的学习做好铺垫,观察想象是动手制作立体图形的关键,在教学过程中,给了学生足够的思考空间,采用独立完成与合作学习的方式,让学生很顺利地完成学习任务,并得到共同提高的机会,学生通过动手操作,体会三视图与实物模型的关系,培养学生空间观念,提高动手能力,教师通过展示学生的作品,让学生体验成功的快乐,增强学生学习数学的信心.本节课的重点是由三视图想象出立体图形,根据三视图的数据及想象的立体图形,动手制作模型,让学生体验成功的快乐,由于学生空间想象能力和动手操作能力较差,在根据三视图制作模型时,学生用时较多,造成后边的教学设计没有完成,在以后教学时可以让学生课前预习,节约课上时间.。
教学设计29.3 课题学习制作立体模型学习目标:1. 通过根据三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程。
2.体会三视图表示立体图形的作用。
3.进一步感受立体图形与平面图形之间的联系。
学习重点:根据简单物体的三视图制作原实物图形,能根据平面展开图制作原实物图。
学习难点:根据三视图制作立体图。
教学用具:1.教具准备:多媒体教学课件、制作完的模型样品。
2.学具准备:刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜)等。
一、教学导入【课前热身】1、如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
2、一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。
3、某几何体的三种视图如下图所示,那么这个几何体可能是()。
(A)长方体(B)圆柱(C)圆锥(D)球(课前主持人主持,并抽一小组展示,最后小组评价)老师引出本节课课题:制作立体模型;并出示学习目标二、教学过程【第一学程】学习任务:根据三视图制作立体模型。
问题1 你能想象做成的图形的样子吗?以硬纸板为主要原材料,分别作出下面的两组视图所表示的立体模型。
图1 图2学法指导:第一步:自学要求:学生根据自己想象的立体模型,利用学具独立动手制作。
第二步:互学要求(1)有序交流。
组长主持,组内交流,及时指导。
(2)汇总意见。
组内总结解题方法。
(3)展学准备。
组长分工,做好展讲准备;要求3,4号展示较为容易的,2号较难的,组长做最后总结。
第三步:展学方式:抽一小组做展讲制作过程要求:普通话,声音洪亮,语言流畅,分工合理,解题方法得当(10分)第四步:小组评价:各小组认真倾听,积极补充、质疑提问,对展示小组进行评价。
问题2 你按照下面给出的两组视图做出相应的实物模型吗?按照下面给出的两组视图,用马铃薯(或萝卜)做出相应的实物模型学法指导:第一步:自学要求:学生独立思考,用小刀将马铃薯(或萝卜)做出相应的实物模型。
九年级数学下29.3课题学习--制作立体模型学案(人教版)29.3课题学习制作立体模型学案一、导学1.课题导入问题:怎样由视图转化为立体图形?这节课我们通过动手实践来体会这个过程.2.学习目标(1)体验平面图形向立体图形转化的过程.(2)体会用三视图表示立体图形的作用.(3)进一步感受平面图形与立体图形之间的关系.3.学习重、难点重点:根据三视图制作立体模型.难点:具体操作.4.自学指导(1)自学内容:教材P105~P106.(2)自学时间:30分钟.(3)自学方法:准备刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯等参与活动.(4)课题活动参考提纲:①以硬纸板为主要材料,分别做出下面的两组三视图所表示的立体模型.图1图2②按照下面给出的两组三视图,用马铃薯做出相应的实物模型.图3图4③下面每组平面图形都是由四个等边三角形组成.a.其中哪些可以折叠成多面体,把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;b.画出由上面图形能折叠成的多面体的三视图,并指出图中是怎样体现“长对正,高平齐,宽相等”的;c.如果上图中小三角形的边长都是1,那么对应的多面体的表面积是多少?(cm2)④下面的图形由一个扇形和一个圆组成.a.把上面的图形描在纸上,剪下来,围成一个圆锥.b.画出由上面图形围成的圆锥的三视图.c.如果上图中扇形的半径为13cm,圆的半径为5cm,那么对应的圆锥的体积是多少?×π×52×=100π(cm3).⑤结合具体实例,写一篇介绍三视图、展开图的应用的短文.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:观察学生具体操作中的情况.(2)差异指导:根据学情进行个别指导或分类指导.2.生助生:小组内相互交流、研讨、总结、归纳.四、强化1.由三视图想象实物形状.2.由展开图折叠立体图形,再制作模型.五、评价1.学生学习的自我评价:这节课你有哪些收获?掌握了哪些解题技能和方法?2.教师对学生的评价:(1)表现性评价:点评学生小组合作、交流、探讨的情况,学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课的核心是学生动手实践,通过动手完成立体模型的制作过程,体验平面图形如何向立体图形转化和用三视图表示立体图形的作用,进一步感受平面图形与立体图形之间的联系.明白知识来源于实践、观察是得到知识的重要途径的道理.通过创设问题情境,让学生主动参与,激发学生的学习热情和兴趣,激活学生的思维.评价作业一、基础巩固(70分)1.(10分)某几何体的三视图如图所示,则这个几何体是(A)2.(10分)下列平面展开图是由5个大小相同的正方形组成的,其中沿正方形的边不能折成无盖小方盒的是(B)ABCD3.(10分)如图,在长方形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y与x的函数式是.4.(20分)如图是某几何体的平面展开图,求图中小圆的半径.解:5.(20分)某长方体包装盒的展开图如图所示.如果包装盒的表面积为146cm2,求这个包装盒的体积.解:设高为xcm.∴14×(13-2x)+×x×2=146.解得x=2.长:13-2×2=9(cm),宽:-2=5(cm).体积:2×9×5=90(cm3).二、综合应用(20分)6.(20分)如图是一个上下底密封的纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积.(结果可保留根号)解:2×6××××sin60°+6×12×5=(360+75)(cm2).三、拓展延伸(10分)7.(10分)如图,长方体长为4cm,宽为2cm,高为5cm.若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q点,求蚂蚁爬行的最短路径长. 解:作出这个长方体的侧面展开图,则最短路径如图PQ.最短路径长==13(cm).。
初中数学人教版九年级下册同步教学设计29-3 课题学习《制作立体模型》一. 教材分析《制作立体模型》是人教版九年级下册数学的一个重要课题,这部分内容主要让学生了解和掌握立体模型的制作方法,培养学生的动手操作能力和空间想象能力。
通过本节课的学习,学生将能够理解和掌握立方体、圆柱体、圆锥体等常见几何体的制作方法,并能运用所学知识解决实际问题。
二. 学情分析九年级的学生已经掌握了初步的几何知识,对立方体、圆柱体、圆锥体等几何体有了一定的了解。
但是,对于如何将这些几何体制作出来,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生通过动手操作,加深对几何体的理解和记忆。
三. 教学目标1.知识与技能目标:学生能够理解和掌握常见几何体的制作方法,提高空间想象能力。
2.过程与方法目标:通过动手操作,培养学生的动手能力和团队协作能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的创新精神和实践能力。
四. 教学重难点1.教学重点:常见几何体的制作方法。
2.教学难点:如何引导学生理解和掌握几何体的制作过程,提高空间想象能力。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究和解决问题。
2.采用分组合作的学习方式,培养学生的团队协作能力。
3.利用多媒体辅助教学,直观展示几何体的制作过程。
六. 教学准备1.准备相关的教学材料,如几何体模型、剪刀、胶水等。
2.提前让学生准备立方体、圆柱体、圆锥体等几何体的图纸。
七. 教学过程1.导入(5分钟)教师通过展示各种立体模型,引发学生的兴趣,然后提出问题:“你们知道这些立体模型是如何制作出来的吗?”引导学生思考和探究。
2.呈现(10分钟)教师分别展示立方体、圆柱体、圆锥体等几何体的制作图纸,让学生直观地了解几何体的制作过程。
3.操练(10分钟)学生分组进行制作,教师巡回指导。
在这个环节中,教师要关注学生的操作过程,及时解答学生的疑问,并引导学生注意制作过程中的细节。
人教版九年级下册29.3课题学习制作立体模型一、课程目标本课程主要以九年级下册数学29.3课题学习制作立体模型为主题,通过学习制作立体模型的方法,培养学生的动手能力,提高学生的空间想象力和几何直观理解能力。
同时,通过对三维物体的构建和性质的认识,加深学生对几何概念的理解和运用。
二、教学内容1.立体几何图形的构建和性质2.立体模型的制作方法和步骤3.立体模型的展示和呈现方式三、教学过程1. 学习立体几何图形的构建和性质首先,学生应该了解立体几何图形的基本构成要素,包括点、线、面和体。
通过多种例子的讲解和练习,加深对立体几何图形的理解。
同时,通过图形性质的分析和推理,引导学生探索立体几何图形的特点和规律。
2. 制作立体模型的方法和步骤其次,学生应该了解立体模型制作的基础知识和技巧。
通过简单的实物制作,让学生了解模型制作的基本流程和注意事项。
同时,借助计算机辅助设计软件,让学生体验不同模型制作方式的特点和优势。
3. 立体模型的展示和呈现方式最后,学生应该了解立体模型的展示和呈现方式,包括照片、视频等多种方式。
通过多方位的展示方式,让学生了解不同展示方式的特点和优势,培养学生的展示能力和创造力。
四、教学评估本课程采用多种教学方法,结合数学29.3课题学习制作立体模型内容和实际工程实践的要求,注重教学效果和学生能力培养的提高。
通过课堂练习、作业和大作业等评估方式,综合评估学生的学习效果和能力提高情况,进而提高教学水平和效果。
五、总结与反思通过本课程的教学实践,可以发现学生在立体模型设计和展示方面的兴趣和能力得到了有效的提高和发展,在动手能力和创造力的培养方面取得了显著的成效。
同时,也需要进一步完善课程设计和教学方法,提高教学质量和效果,为学生未来的发展打下坚实的基础。
初中数学人教版九年级下册优质教学设计29-3 课题学习《制作立体模型》一. 教材分析人教版初中数学九年级下册第29-3课题学习《制作立体模型》的内容,是在学生学习了立体几何的基本知识之后,通过实践活动,让学生进一步理解和掌握立体几何图形的特征,培养学生的动手操作能力和空间想象能力。
本节课的内容与现实生活紧密相连,有助于激发学生的学习兴趣,提高学生解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了立体几何的基本知识,具备了一定的空间想象能力。
但学生在制作立体模型时,可能会遇到一些困难,如对立体图形的理解和把握,以及动手操作能力等方面。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生提供适当的帮助和指导。
三. 教学目标1.让学生通过制作立体模型,进一步理解和掌握立体几何图形的特征。
2.培养学生的动手操作能力和空间想象能力。
3.激发学生学习数学的兴趣,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:让学生通过制作立体模型,理解和掌握立体几何图形的特征。
2.教学难点:学生在制作立体模型过程中,对立体图形的理解和把握,以及动手操作能力。
五. 教学方法1.情境教学法:通过创设生活情境,让学生理解立体模型的实际意义。
2.实践教学法:让学生亲自动手制作立体模型,提高学生的动手操作能力。
3.小组合作学习法:让学生在小组内共同讨论和完成制作任务,培养学生的团队协作能力。
六. 教学准备1.教师准备:教师需要提前准备相关的立体模型材料和工具,如纸张、剪刀、胶水等。
2.学生准备:学生需要提前了解立体模型的基本知识,准备好制作模型所需的材料。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的立体模型,如建筑物、家具等,引导学生关注立体模型在现实生活中的应用,激发学生的学习兴趣。
同时,教师提出本节课的任务:制作一个简单的立体模型。
2.呈现(10分钟)教师呈现本节课要学习的立体模型,如长方体、正方体等,并通过多媒体展示立体模型的三维图形,让学生直观地感受和理解立体模型的特征。
29.3课题学习制作立体模型
1.能根据简单物体的三视图制作原实物图形;(重点)
2.能根据实物图制作展开图,根据展开图确定实物图.(难点
)
一、情境导入
下面的每一组平面图形都是由四个等边三角形组成的.
(1)指出其中哪些可折叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;
(2)画出由上面图形能折叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;
(3)如果上图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?
二、合作探究
探究点一:根据三视图判断立体模型
【类型一】由三视图得到立体图形
如图,是一个实物在某种状态下的三视图,与它对应的实物图应是(
)
解析:从俯视图可以看出直观图的下面部分为圆台,从左视图和主视图可以看出是一个站立的圆台.只有A满足这两点,故选A.
方法总结:本题考查三视图的识别和判断,熟记一些简单的几何体的三视图是解答本题的关键.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】根据三视图判断实物的组成情况
学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有(
)
A.7盒B.8盒C.9盒D.10盒
解析:观察图形得第一层有4盒,第二层最少有2盒,第三层最少有1盒,所以至少共有7盒.故选A.
方法总结:考查对三视图的掌握程度和灵活运用的能力,同时也考查空间想象能力.
变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型三】综合性问题
如图是一个几何体从三个方向看所得到的形状图.
(1)写出这个几何体的名称;
(2)画出它的一种表面展开图;
(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.
解析:(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为三棱柱;(2)此几何体的表面展开图由三个长方形和两个三角形组成;(3)侧面积由3个长方形组成,它的长和宽分别为3cm和2cm,计算出一个长方形的面积,乘以3即可.
解:(1)正三棱柱;
(2)如图所示:
(3)3×3×2=18(cm2).
答:这个几何体的侧面积为18cm2.
方法总结:本题主要考查由三视图确定几何体和求几何体的侧面积等相关知识,关键是知道棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
探究点二:平面图的展开与折叠
【类型一】根据展开图判断原实物体
如图所示为立体图形的展开图,请写出对应的几何体的名称.
解析:在本题的解答过程中,可以动手进行折纸,也可以根据常见立体图形的平面展开图的特征做出判断.
解:几何体分别为五棱柱、圆柱与圆锥.
方法总结:熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.
变式训练:见《学练优》本课时练习“课后巩固提升”第4题
【类型二】判断几何体的展开图
如图所示的四幅平面图中,是三棱柱的表面展开图的有________(只填序号).
解析:三棱柱的两底展开是三角形,侧面展开是三个矩形,根据题设可知①②③符合题意,故答案为①②③.
方法总结:本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
【类型三】展开与折叠的综合性问题
如图是一个正方体的表面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的数相等.
(1)求x的值;
(2)求正方体的上面和底面的数字之和.
解析:(1)正方体的表面展开图,由相对面之间一定相隔一个正方形可确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字为3和1,然后相加即可.
解:根据正方体的表面展开图中相对面之间一定相隔一个正方形,可得“A”与“-2”是相对面,“3”与“1”是相对面,“x”与“3x-2”是相对面.
(1)∵正方体的左面与右面标注的数字相等,∴x=3x-2,解得x=1;
(2)∵标注了A字母的是正方体的正面,左面与右面标注的数字相等,∴上面和底面上的两个数字为3和1,∴上面和底面上的数字之和为3+1=4.
方法总结:本题主要考查了正方体相对两个面上的数字,注意正方体是空间图形,从相对面入手分析、解答问题.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题
三、板书设计
一、学习目的;
二、工具准备;
三、具体活动;
四、课题拓广.
三视图和平面展开图是以不同方式描绘立体图形的,它们在生产实际中有直接应用.了解这方面的例子,可以丰富实践知识,进一步认识三视图和平面展开图.。