29.3 课题学习 制作立体模型
- 格式:ppt
- 大小:2.01 MB
- 文档页数:24
29.3 课题学习制作立体模型学习目标1.体验平面图形向立体图形转化的过程.2.体会用三视图表示立体图形的作用.3.进一步感受平面图形与立体图形之间的关系.【重点】根据三视图制作立体模型.【难点】具体操作.学习过程(1)自学内容:教材P105~P106.(2)自学时间:30分钟.(3)自学方法:准备刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯等参与活动.(4)课题活动参考提纲:①以硬纸板为主要材料,分别做出下面的两组三视图所表示的立体模型.图1 图2②按照下面给出的两组三视图,用马铃薯做出相应的实物模型.图3 图4③下面每组平面图形都是由四个等边三角形组成.a.其中哪些可以折叠成三棱锥,把上面的图形描在纸上,剪下来,叠一叠,验证你的结论;b.画出由上面图形能折叠成的三棱锥的三视图,并指出图中是怎样体现“长对正,高平齐,宽相等”的;c.如果上图中小三角形的边长都是1,那么对应的三棱锥的表面积是多少?④下面的图形由一个扇形和一个圆组成.a.把上面的图形描在纸上,剪下来,围成一个圆锥.b.画出由上面图形围成的圆锥的三视图.c.如果上图中扇形的半径为13 cm,圆的半径为5 cm,那么对应的圆锥的体积是多少?⑤结合具体实例,写一篇介绍三视图、展开图的应用的短文.学习检测1.某几何体的三视图如图所示,则这个几何体是()2.下列平面展开图是由5个大小相同的正方形组成的,其中沿正方形的边不能折成无盖小方盒的是()A B C D3.如图,在长方形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y与x的4.某长方体包装盒的展开图如图所示.如果包装盒的表面积为146 cm2,求这个包装盒的体积.5.如图所示的是一个上下底密封的纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积.(结果可保留根号)参考答案与提示学习检测1.A2.B解:设高为x cm. 4.解得x=2.体积:2×9×5=90(cm3).。
《课题学习制作立体模型》作业设计方案(第一课时)初中数学课程《课题学习制作立体模型》作业设计方案(第一课时)一、作业目标通过本次课题学习制作立体模型的作业设计,旨在使学生掌握基本的立体几何知识,包括立体图形的认识、立体图形的性质和立体图形的制作方法等,同时培养学生的空间想象能力、动手操作能力和创新思维。
二、作业内容本次作业内容主要围绕制作立体模型展开,具体包括以下内容:1. 了解立体模型的基本概念和分类,掌握常见立体图形的名称和基本特征。
2. 学会使用尺规作图工具,绘制出所需立体图形的三视图(主视图、俯视图、左视图)。
3. 根据所绘制的三视图,选择合适的材料(如纸板、塑料板等)进行立体模型的制作。
要求模型结构稳定,各部分比例协调,符合三视图所表达的信息。
4. 在制作过程中,学生需注意安全,正确使用工具,保持桌面整洁。
5. 完成制作后,学生需对所制作的立体模型进行自我评价和反思,总结制作过程中的经验和教训。
三、作业要求1. 学生需在规定时间内独立完成作业,不得抄袭他人作品。
2. 绘制三视图时,要求线条清晰、比例准确,能够准确表达出立体图形的形状和大小。
3. 在制作立体模型时,要注重细节,确保模型结构稳定,各部分比例协调。
4. 作品需保持整洁,不得有乱涂乱画、污损等现象。
5. 作品完成后,需附上简要的制作说明或心得体会,以便教师了解学生的制作过程和思考。
四、作业评价1. 教师根据学生的作业完成情况、三视图的绘制质量、立体模型的制作质量等方面进行评价。
2. 评价标准包括:是否按时完成作业、三视图绘制是否准确、立体模型制作是否符合要求、作品是否有创新点等。
3. 评价方式可采用学生自评、互评和教师评价相结合的方式,以全面了解学生的作业情况。
4. 对于优秀作品,教师可进行表彰和展示,以激励学生积极参与课题学习。
五、作业反馈1. 教师根据评价结果,及时向学生反馈作业情况,指出存在的问题和不足。
2. 对于未达到要求的学生,教师需提供具体的指导和建议,帮助学生改进和提高。
课题:29.3 课题学习制作立体模型一.教学目标1. 知识与技能目标(1)实际动手中进一步加深对投影和视图知识的认识;(2)加强在实践活动中手脑结合的能力;(3)体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系.2. 过程与方法目标(1)通过创设情境,让学生自主探索立体图形的制作过程;(2)通过自主探索,合作研究讨论,使学生加深投影和视图的认识;(3)模型制作,体会由平面图形转化为立体图形的过程与乐趣.3. 情感、态度价值观目标(1)通过创设问题情境,使学生感受平面图形与立体图形的关系;(2)通过参与数学实践,培养合作探索精神和尊重理解他人想法的学习品质;(3)通过动手实践活动,培养学生的创新意识与创造发明的意识;二.教学重点和难点:重点:让学生亲自经历规律的发现、深入、研究、应用的过程;难点:学生通过手工制作,实现理论与实践的结合;在探索解决实际问题的过程中,科学的研究态度. 三.教学方法和手段:创设情境、合作制作、讨论交流四.教学用具:1.教具准备:多媒体教学课件、制作完的模型样品2.学具准备:刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜)等五.教学设计:教学环节教师活动学生活动设计意图一.创设情境,提出任务师:情境1.以硬纸板为主要原材料,分别作出下面的两组视图所表示的立体模型图1图2情境2 按照下面给出的两组视图,用马铃薯(或萝卜)做出相应的实物模型师:下面的每组平面图形,都是由四个等边三角形学生动手制作想象做成的图形的样子也是一种乐趣学生动手制作实际动手制作立体物品有利于学生空间想象力的建立.开始的想象会有一定难度,但二、创设情境,研究问题三、动手试验组成的.(1)指出其中哪些可以叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;(2)画出由上面图形能叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;(3)如果上图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?是在随着立体模型的建立,学生空间的想象力可以得到极大的丰富.四.课堂小结,反思收获 1. 数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的.很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密.2. 感性认识需要上升为理性认识,理论指导下的实践会更明确有效3. 从技能上说,认识平面图形与立体图形的联系,有助于根据需要实现它们之间的相互转化,即学会画三视图和由三视图得出立体图形.从能力上说,认识平面图形与立体图形的联系,对于培养空间想象能力上非常重要的.八.课后熟悉,反思整理六.板书设计:制作立体图形七.设计说明:1.该教案突出了学生动手实践的特点;2.在实践的基础上感悟平面图形向立体图形的转化;中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.不等式5+2x <1的解集在数轴上表示正确的是( ). A . B .C .D .【答案】C【解析】先解不等式得到x <-1,根据数轴表示数的方法得到解集在-1的左边. 【详解】5+1x <1, 移项得1x <-4, 系数化为1得x <-1. 故选C . 【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.2.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .4【答案】B【解析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B=∠DAC ,∠ACB=∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC=8,得DC=4,代入可得AC=42故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 3.下列长度的三条线段能组成三角形的是 A .2,3,5 B .7,4,2 C .3,4,8 D .3,3,4【答案】D【解析】试题解析:A .∵3+2=5,∴2,3,5不能组成三角形,故A 错误;B .∵4+2<7,∴7,4,2不能组成三角形,故B 错误;C .∵4+3<8,∴3,4,8不能组成三角形,故C 错误;D .∵3+3>4,∴3,3,4能组成三角形,故D 正确; 故选D .4.若△ABC ∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( ) A .30° B .50°C .40°D .70°【答案】A【解析】利用三角形内角和求∠B ,然后根据相似三角形的性质求解. 【详解】解:根据三角形内角和定理可得:∠B=30°, 根据相似三角形的性质可得:∠B′=∠B=30°. 故选:A. 【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.5.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A .8×1012 B .8×1013C .8×1014D .0.8×1013【答案】B【解析】80万亿用科学记数法表示为8×1. 故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.6.如图,等边△ABC 的边长为1cm ,D 、E 分别AB 、AC 是上的点,将△ADE 沿直线DE 折叠,点A 落在点A′处,且点A′在△ABC 外部,则阴影部分的周长为( )cmA .1B .2C .3D .4【答案】C【解析】由题意得到DA′=DA ,EA′=EA ,经分析判断得到阴影部分的周长等于△ABC 的周长即可解决问题.【详解】如图,由题意得: DA′=DA,EA′=EA ,∴阴影部分的周长=DA′+EA′+DB +CE +BG +GF +CF =(DA +BD)+(BG +GF +CF)+(AE +CE) =AB +BC +AC =1+1+1=3(cm) 故选C. 【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.8.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除. 【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限, 故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2ba>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B . 故选C .9.81的算术平方根是( ) A .9 B .±9C .±3D .3【答案】D【解析】根据算术平方根的定义求解. 【详解】∵81=9, 又∵(±1)2=9, ∴9的平方根是±1, ∴9的算术平方根是1. 即81的算术平方根是1. 故选:D . 【点睛】考核知识点:算术平方根.理解定义是关键.10.如图,点M 是正方形ABCD 边CD 上一点,连接MM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A.13B.13C .23D.13【答案】B【解析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解. 【详解】∵四边形ABCD 为正方形, ∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F , ∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°, ∴∠ABF =∠EAD , 在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ), ∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1, ∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF中,BE =∴cos BF EBF BE ∠===故选B . 【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 二、填空题(本题包括8个小题)11.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___. 【答案】30°【解析】试题解析:∵关于x 的方程22sin 0x x α-+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°; 故答案为30°.12.如图,在边长为1正方形ABCD 中,点P 是边AD 上的动点,将△PAB 沿直线BP 翻折,点A 的对应点为点Q ,连接BQ 、DQ .则当BQ+DQ 的值最小时,tan ∠ABP =_____.【答案】2﹣1【解析】连接DB ,若Q 点落在BD 上,此时和最短,且为2,设AP =x ,则PD =1﹣x ,PQ =x .解直角三角形得到AP =2﹣1,根据三角函数的定义即可得到结论. 【详解】如图:连接DB ,若Q 点落在BD 2 设AP =x ,则PD =1﹣x ,PQ =x . ∵∠PDQ =45°,∴PD 2,即1﹣x 2 ∴x 21, ∴AP 21,∴tan ∠ABP =AP AB =2﹣1, 故答案为:2﹣1.【点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.13.如图,在Rt △ABC 中,∠B=90°,∠A=30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点E ,连接AE ,DE ,则∠EAD 的余弦值是______.【答案】36【解析】利用特殊三角形的三边关系,求出AM,AE 长,求比值.【详解】解:如图所示,设BC=x ,∵在Rt △ABC 中,∠B=90°,∠A=30°,∴AC=2BC=2x ,AB=3BC=3x ,根据题意得:AD=BC=x ,AE=DE=AB=3x ,如图,作EM ⊥AD 于M ,则AM=12AD=12x , 在Rt △AEM 中,cos ∠EAD=3263XAM AE x==, 故答案为:3 6.【点睛】特殊三角形:30°-60°-90°特殊三角形,三边比例是1:3:2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.14.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_____.【答案】12 x【解析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x,x=12,此时无输出值当x>12时,数值越来越大,会有输出值;当x<12时,数值越来越小,不可能大于10,永远不会有输出值故x≤12,故答案为x≤12.【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.15.如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.【答案】4 5【解析】如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x ),∠FEG=∠CEG;同理可证AF=AD=5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.【详解】连接EG ;∵四边形ABCD 为矩形,∴∠D =∠C =90°,DC =AB =4;由题意得:EF =DE =EC =2,∠EFG =∠D =90°;在Rt △EFG 与Rt △ECG 中,EF EC EG EG =⎧⎨=⎩, ∴Rt △EFG ≌Rt △ECG (HL ),∴FG =CG (设为x ),∠FEG =∠CEG ;同理可证:AF =AD =5,∠FEA =∠DEA ,∴∠AEG =12×180°=90°, 而EF ⊥AG ,可得△EFG ∽△AFE,∴2EF AF FG =∴22=5•x ,∴x =45, ∴CG =45, 故答案为:45. 【点睛】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.16.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____. 【答案】512【解析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】抬头看信号灯时,是绿灯的概率为2553025512=++. 故答案为:512. 【点睛】 此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.(2)P (必然事件)=1.(3)P (不可能事件)=2. 17.如图,⊙O 的半径为2,AB 为⊙O 的直径,P 为AB 延长线上一点,过点P 作⊙O 的切线,切点为C .若PC=23,则BC 的长为______.【答案】2【解析】连接OC ,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB 是等边三角形,从而得结论.【详解】连接OC ,∵PC 是⊙O 的切线,∴OC ⊥PC ,∴∠OCP=90°,∵3OC=2,∴22OC PC +222(23)+=4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB 是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。
初中数学人教版九年级下册同步说课稿29-3 课题学习《制作立体模型》一. 教材分析《制作立体模型》是人教版九年级下册数学教材中的一个课题,这一课题是在学生学习了立体几何的基本知识之后进行的。
通过这一课题的学习,学生可以进一步巩固立体几何的基本知识,提高空间想象能力,培养动手操作能力。
教材中提供了多种立体模型的制作方法,以及制作过程中的注意事项。
二. 学情分析九年级的学生在经历了多年的数学学习后,已经具备了一定的数学基础,对立体几何的概念和性质有一定的了解。
但是,由于立体几何的抽象性较强,学生在这一部分的知识掌握上还存在一定的困难。
此外,学生的动手操作能力参差不齐,部分学生可能对制作立体模型这一活动感到陌生和恐惧。
三. 说教学目标1.知识与技能目标:学生能够掌握立体模型的制作方法,提高空间想象能力。
2.过程与方法目标:通过动手制作立体模型,培养学生的动手操作能力和创新能力。
3.情感态度与价值观目标:学生能够体验到数学与实际生活的联系,提高学习数学的兴趣。
四. 说教学重难点1.教学重点:立体模型的制作方法和过程。
2.教学难点:立体模型的创新设计和制作技巧。
五. 说教学方法与手段1.教学方法:采用小组合作、讨论交流的教学方法,引导学生主动参与,提高学生的动手操作能力和团队协作能力。
2.教学手段:利用多媒体课件展示立体模型的制作过程,直观地呈现教学内容。
同时,为学生提供丰富的实物材料,让学生亲自动手操作,提高学生的实践能力。
六. 说教学过程1.导入新课:通过展示一些生活中的立体模型,如魔方、乐高积木等,激发学生的学习兴趣,引导学生进入课题。
2.讲解示范:教师利用多媒体课件,展示立体模型的制作过程,讲解制作方法和注意事项。
同时,教师亲自示范制作过程,让学生直观地了解制作方法。
3.学生动手制作:学生分组进行制作,教师巡回指导,解答学生在制作过程中遇到的问题。
4.展示评价:学生将制作好的立体模型进行展示,互相评价,教师对学生的作品进行点评,给予肯定和鼓励。
人教版九年级数学下册:29.3《课题学习制作立体模型》说课稿1一. 教材分析《人教版九年级数学下册:29.3《课题学习制作立体模型》》这一章节,是在学生已经掌握了立体几何的基本知识,如点、线、面的基础上进行讲解的。
通过这一章节的学习,学生能够了解并掌握立体模型的制作方法,培养学生的动手操作能力和空间想象能力。
同时,这一章节还与实际生活紧密相连,让学生能够感受到数学在生活中的应用,提高学生的学习兴趣。
二. 学情分析九年级的学生已经具备了一定的立体几何知识,对立体图形的认知也有了一定的基础。
但是,由于学生的学习基础和学习能力各不相同,对于立体模型的制作方法和技巧可能还存在疑惑。
因此,在教学过程中,需要关注学生的个体差异,因材施教,尽可能让每一个学生都能够掌握制作立体模型的方法。
三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生了解并掌握制作立体模型的方法,提高学生的动手操作能力和空间想象能力。
2.过程与方法目标:通过小组合作,培养学生团队协作的能力,提高学生解决问题的能力。
3.情感态度与价值观目标:让学生感受到数学与生活的紧密联系,提高学生学习数学的兴趣。
四. 说教学重难点1.教学重点:制作立体模型的方法和技巧。
2.教学难点:如何让学生理解和掌握立体模型的制作方法,并能够运用到实际生活中。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件、模型教具等辅助教学。
六. 说教学过程1.导入:通过展示一些生活中的立体模型,如建筑模型、玩具等,激发学生的学习兴趣,引出课题。
2.新课导入:讲解立体模型的定义和制作方法,让学生初步了解立体模型的制作过程。
3.案例分析:分析一些典型的立体模型案例,让学生了解不同材料的制作方法和技巧。
4.动手实践:让学生分组进行立体模型的制作,教师巡回指导,解答学生的疑问。
5.成果展示:让学生展示自己的作品,相互评价,教师给予点评和指导。
29.3课题学习制作立体模型第一课时说课稿一,说教材:(一)说教学目标1、通过根据三视图制作主体模型的实践活动,体验平面图形向立体图形转化的过程。
体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
2、通过自主探索、合作探究讨论,使学生加深以投影和视图的认识。
3、通过动手实践,培养学生创新精神与创造发明的意识。
(二),说教学重点让学生亲身经历发现规律,深入研究、应用所学知识的过程。
(三),说教学难点学生通过手工制作,实现理论与实践的结合;在探索解决实际问题的过程中培养科学的研究态度。
(四),说教学准备刻度尺、剪刀、胶水、胶带、硬纸板、马铃薯(或萝卜)等。
二,说教法多媒体展示,理论与实践相结合。
三,说学法通过自主探索,合作研究讨论,制作立体图形,从而加深投影和视图的认识。
四,说教学过程(1)创设情境,导出课题。
由生活中的真实建筑物导出课题。
从而增强学生学数学的兴趣。
(2)明确目标,有的放矢。
课题学习的目的:通过由三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系.只有明确目标,才能有的放矢。
(3)复旧引新,为新课架设桥梁。
1,画出正方体的三视图。
2,画出圆锥的三视图。
由现成的立体图形画出三视图,为后面的三视图想象出立体图形做准备。
(4)动画演示,感受平面图形向立体图形的转换。
感受由平面图形向立体图形转换的方法。
(5)实践操作,体验成功与快乐。
观察三视图,并综合考虑各视图所表示的意思以及视图间的联系,可以想象出三视图所表示的立体图形的现状,这是由视图转化为立体图形的过程,下面我们通过动手实践来体会一下这个过程.1、以硬纸板为主要材料,分别做出下面的两组视图所示的立体模型。
活动形式:学生小组交流物体的形状,然后动手制作。
2、按照下面给出的两组视图,用马铃薯(或萝卜)做出相应的实物模型。
活动方式:小组交流三视图所表示的物体是什么形状的,然后动手制作。