(完整版)计量经济学(伍德里奇第三版中文版)课后习题答案
- 格式:doc
- 大小:172.51 KB
- 文档页数:42
第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。
也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。
对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。
(二)呈负相关关系意味着,较大的一类大小是与较低的性能。
因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。
然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。
例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。
另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。
或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。
(三)鉴于潜在的混杂因素- 其中一些是第(ii)上市- 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。
在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。
1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B公司的不同?(二)公司很可能取决于工人的特点选择在职培训。
一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。
企业甚至可能歧视根据年龄,性别或种族。
也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。
此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。
(iii)该金额的资金和技术工人也将影响输出。
所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。
管理者的素质也有效果。
(iv)无,除非训练量是随机分配。
许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。
第7章含有定性信息的多元回归分析:二值(或虚拟)变量7.1复习笔记考点一:带有虚拟自变量的回归★★★★★1.对定性信息的描述定性信息是指通常以二值信息(0-1)的形式出现的信息,如性别、是否结婚等。
在计量经济学中,二值变量又称为虚拟变量。
2.只有一个虚拟自变量(1)只有一个虚拟自变量的简单模型考虑决定小时工资的简单模型:wage=β0+δ0female+β1educ+u。
根据多元回归的解释方式,δ0表示控制educ不变时,female变化1单位给wage带来的变化。
假定零条件均值假定E(u|female,educ)=0成立,那么:δ0=E(wage|female=1,educ)-E(wage|female=0,educ),其中female=1表示女性,female=0表示男性。
可以发现,在任意教育水平下,男性与女性的工资差异是固定的,女性工资比男性工资多δ0。
除了β0之外,模型中只需要引入一个虚拟变量。
因为female+male=1,所以引入两个虚拟变量会导致完全多重共线性,即虚拟变量陷阱。
(2)当因变量为log(y)时,对虚拟解释变量系数的解释当变量中有一个或多个虚拟变量,且因变量以对数的形式存在时,虚拟变量的系数可以理解为百分比的变化。
将虚拟变量的系数乘以100,表示的是在保持所有其他因素不变时y 的百分数差异,精确的百分数差异为:100·[exp(∧β1)-1]。
其中∧β1是一个虚拟变量的系数。
3.使用多类别虚拟变量(1)在方程中包括虚拟变量的一般原则如果回归模型具有g 组或g 类不同截距,一种方法是在模型中包含g-1个虚拟变量和一个截距。
基组的截距是模型的总截距,某一组的虚拟变量系数表示该组与基组在截距上的估计差异。
如果在模型中引入g 个虚拟变量和一个截距,将会导致虚拟变量陷阱。
另一种方法是只包括g 个虚拟变量,而没有总截距。
这种方法存在两个实际的缺陷:①对于相对基组差别的检验变得更繁琐;②在模型不包含总截距时,回归软件通常都会改变R 2的计算方法。
使用普通最小二乘法,此时最小化的残差平方和为()211niii y x β=-∑利用一元微积分可以证明,1β必须满足一阶条件()110niiii x y x β=-=∑从而解出1β为:1121ni ii nii x yxβ===∑∑当且仅当0x =时,这两个估计值才是相同的。
2.2 课后习题详解一、习题1.在简单线性回归模型01y x u ββ=++中,假定()0E u ≠。
令()0E u α=,证明:这个模型总可以改写为另一种形式:斜率与原来相同,但截距和误差有所不同,并且新的误差期望值为零。
证明:在方程右边加上()0E u α=,则0010y x u αββα=+++-令新的误差项为0e u α=-,因此()0E e =。
新的截距项为00αβ+,斜率不变为1β。
2(Ⅰ)利用OLS 估计GPA 和ACT 的关系;也就是说,求出如下方程中的截距和斜率估计值01ˆˆGPA ACT ββ=+^评价这个关系的方向。
这里的截距有没有一个有用的解释?请说明。
如果ACT 分数提高5分,预期GPA 会提高多少?(Ⅱ)计算每次观测的拟合值和残差,并验证残差和(近似)为零。
(Ⅲ)当20ACT =时,GPA 的预测值为多少?(Ⅳ)对这8个学生来说,GPA 的变异中,有多少能由ACT 解释?试说明。
答:(Ⅰ)变量的均值为: 3.2125GPA =,25.875ACT =。
()()15.8125niii GPA GPA ACT ACT =--=∑根据公式2.19可得:1ˆ 5.8125/56.8750.1022β==。
根据公式2.17可知:0ˆ 3.21250.102225.8750.5681β=-⨯=。
因此0.56810.1022GPA ACT =+^。
此处截距没有一个很好的解释,因为对样本而言,ACT 并不接近0。
如果ACT 分数提高5分,预期GPA 会提高0.1022×5=0.511。
(Ⅱ)每次观测的拟合值和残差表如表2-3所示:根据表可知,残差和为-0.002,忽略固有的舍入误差,残差和近似为零。
第一章 绪论(一)基本知识类题型1-1. 什么是计量经济学?1-2. 简述当代计量经济学发展的动向。
1-3. 计量经济学方法与一般经济数学方法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
1-5.为什么说计量经济学是一门经济学科?它在经济学科体系中的作用和地位是什么?1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。
1-8.建立计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1-10.试分别举出五个时间序列数据和横截面数据,并说明时间序列数据和横截面数据有和异同?1-11.试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
1-12.模型的检验包括几个方面?其具体含义是什么?1-13.常用的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
1-15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题?1-16.经济数据在计量经济分析中的作用是什么?1-17.下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?⑴ t 年农村居民储蓄增加额(亿元)t 年城镇居民可支配收入总额(亿元)。
⑵ (1-t )年底农村居民储蓄余额为第t 年农村居民纯收入总额(亿元)。
1-18.指出下列假想模型中的错误,并说明理由:(1t 年社会消费品零售总额(亿元)t 年居民收入总额(亿元)(城镇居民可支配收入总额与农村居民纯收入总额之和)t 年全社会固定资产投资总额(亿元)。
(2)t t Y C 2.1180+=其中,C 、Y 分别是城镇居民消费支出和可支配收入。
(3)t t t L K Y ln 28.0ln 62.115.1ln -+=其中,Y 、K 、L 分别是工业总产值、工业生产资金和职工人数。
计量经济学第三版版课后答案全第⼆章(1)①对于浙江省预算收⼊与全省⽣产总值的模型,⽤Eviews分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/03/14 Time: 17:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.??XCR-squaredMean dependent var Adjusted R-squared. dependent var. of regression Akaike info criterionSum squared residSchwarz criterionLog likelihood Hannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)②由上可知,模型的参数:斜率系数,截距为—③关于浙江省财政预算收⼊与全省⽣产总值的模型,检验模型的显着性:1)可决系数为,说明所建模型整体上对样本数据拟合较好。
2)对于回归系数的t检验:t(β2)=>(31)=,对斜率系数的显着性检验表明,全省⽣产总值对财政预算总收⼊有显着影响。
④⽤规范形式写出检验结果如下:Y=—t= ()R2= F= n=33⑤经济意义是:全省⽣产总值每增加1亿元,财政预算总收⼊增加亿元。
(2)当x=32000时,①进⾏点预测,由上可知Y=—,代⼊可得:Y= Y=*32000—=②进⾏区间预测:∑x 2=∑(X i —X )2=δ2x (n —1)= ? x (33—1)= (X f —X)2=(32000—?2当Xf=32000时,将相关数据代⼊计算得到:即Yf 的置信区间为(—, +)(3) 对于浙江省预算收⼊对数与全省⽣产总值对数的模型,由Eviews 分析结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/03/14 Time: 18:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficien t Std. Error t-Statistic Prob.?? LNXCR-squared Mean dependent var Adjusted R-squared . dependent var. of regression Akaike infocriterion Sum squared resid Schwarz criterionLog likelihood Hannan-Quinncriter. F-statistic Durbin-Watson statProb(F-statistic)①模型⽅程为:lnY=由上可知,模型的参数:斜率系数为,截距为③关于浙江省财政预算收⼊与全省⽣产总值的模型,检验其显着性: 1)可决系数为,说明所建模型整体上对样本数据拟合较好。
第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:Dependent Variable: YMethod: Least SquaresDate: 12/23/15 Time: 14:37Sample: 1 22Included observations: 22Variable Coefficient Std. Errort-Statistic Prob.C56.64794 1.96082028.889920.0000X10.1283600.027242 4.7118340.0001R-squared0.526082 Mean dependent var62.50000 Adjusted R-squared0.502386 S.D. dependent var10.08889S.E. of regression7.116881 Akaike infocriterion 6.849324Sum squared resid1013.000 Schwarz criterion 6.948510Log likelihood-73.34257 Hannan-Quinncriter. 6.872689F-statistic22.20138 Durbin-Watson stat0.629074 Prob(F-statistic)0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/15 Time: 15:01Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C38.79424 3.53207910.983400.0000X20.3319710.0466567.1153080.0000R-squared0.716825 Mean dependent var62.50000 Adjusted R-squared0.702666 S.D. dependent var10.08889S.E. of regression 5.501306 Akaike infocriterion 6.334356Sum squared resid605.2873 Schwarz criterion 6.433542 Log likelihood-67.67792 Hannan-Quinn 6.357721criter.F-statistic50.62761 Durbin-Watson stat 1.846406 Prob(F-statistic)0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/14 Time: 15:20Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C31.79956 6.536434 4.8649710.0001X30.3872760.080260 4.8252850.0001R-squared0.537929 Mean dependent var62.50000 Adjusted R-squared0.514825 S.D. dependent var10.08889S.E. of regression7.027364 Akaike infocriterion 6.824009Sum squared resid987.6770 Schwarz criterion 6.923194Log likelihood-73.06409 Hannan-Quinncriter. 6.847374F-statistic23.28338 Durbin-Watson stat0.952555Prob(F-statistic)0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:Dependent Variable: YMethod: Least SquaresDate: 12/27/14 Time: 21:00Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 56.64794 1.960820 28.88992 0.0000X1 0.128360 0.027242 4.711834 0.0001R-squared 0.526082 Mean dependent var 62.50000 Adjusted R-squared 0.502386 S.D. dependent var 10.08889 S.E. of regression 7.116881 Akaike info criterion 6.849324 Sum squared resid 1013.000 Schwarz criterion 6.948510 Log likelihood -73.34257 Hannan-Quinn criter. 6.872689 F-statistic 22.20138 Durbin-Watson stat 0.629074 Prob(F-statistic) 0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:10Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 38.79424 3.532079 10.98340 0.0000X2 0.331971 0.046656 7.115308 0.0000R-squared 0.716825 Mean dependent var 62.50000 Adjusted R-squared 0.702666 S.D. dependent var 10.08889 S.E. of regression 5.501306 Akaike info criterion 6.334356 Sum squared resid 605.2873 Schwarz criterion 6.433542 Log likelihood -67.67792 Hannan-Quinn criter. 6.357721 F-statistic 50.62761 Durbin-Watson stat 1.846406 Prob(F-statistic) 0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:14Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 31.79956 6.536434 4.864971 0.0001X3 0.387276 0.080260 4.825285 0.0001R-squared 0.537929 Mean dependent var 62.50000Adjusted R-squared 0.514825 S.D. dependent var 10.08889S.E. of regression 7.027364 Akaike info criterion 6.824009Sum squared resid 987.6770 Schwarz criterion 6.923194Log likelihood -73.06409 Hannan-Quinn criter. 6.847374F-statistic 23.28338 Durbin-Watson stat 0.952555Prob(F-statistic) 0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
2.10(iii) From (2.57), Var(1ˆβ) = σ2/21()n i i x x =⎛⎫- ⎪⎝⎭∑. 由提示:: 21n ii x =∑ ≥ 21()n i i x x =-∑, and so Var(1β) ≤ Var(1ˆβ). A more direct way to see this is to write(一个更直接的方式看到这是编写) 21()ni i x x =-∑ = 221()n i i x n x =-∑, which is less than21n i i x=∑unless x = 0.(iv)给定的c 2i x 但随着x 的增加, 1ˆβ的方差与Var(1β)的相关性也增加.0β小时1β的偏差也小.因此, 在均方误差的基础上不管我们选择0β还是1β要取决于0β,x ,和n 的大小 (除了 21n i i x=∑的大小).3.7We can use Table 3.2. By definition, 2β > 0, and by assumption, Corr(x 1,x 2) < 0. Therefore, there is a negative bias in 1β: E(1β) < 1β. This means that, on average across different random samples, the simpleregression estimator underestimates the effect of the training program. It is even possible that E(1β) isnegative even though 1β > 0. 我们可以使用表3.2。
根据定义,> 0,由假设,科尔(X1,X2)<0。
因此,有一个负偏压为:E ()<。
这意味着,平均在不同的随机抽样,简单的回归估计低估的培训计划的效果。
第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。
也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。
对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。
(二)呈负相关关系意味着,较大的一类大小是与较低的性能。
因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。
然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。
例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。
另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。
或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。
(三)鉴于潜在的混杂因素- 其中一些是第(ii)上市- 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。
在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。
1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B公司的不同?(二)公司很可能取决于工人的特点选择在职培训。
一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。
企业甚至可能歧视根据年龄,性别或种族。
也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。
此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。
(iii)该金额的资金和技术工人也将影响输出。
所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。
管理者的素质也有效果。
(iv)无,除非训练量是随机分配。
许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。
1.3没有任何意义,提出这个问题的因果关系。
经济学家会认为学生选择的混合学习和工作(和其他活动,如上课,休闲,睡觉)的基础上的理性行为,如效用最大化的约束,在一个星期只有168小时。
然后我们可以使用统计方法来衡量之间的关联学习和工作,包括回归分析,我们覆盖第2章开始。
但我们不会声称一个变量“使”等。
他们都选择学生的变量。
第2章解决问题的办法2.1(I)的收入,年龄,家庭背景(如兄弟姐妹的人数)仅仅是几个可能性。
似乎每个可以与这些年的教育。
(收入和教育可能是正相关,可能是负相关,年龄和受教育,因为在最近的同伙有妇女,平均而言,更多的教育和兄弟姐妹和教育的人数可能呈负相关)。
(ii)不会(i)部分中列出的因素,我们与EDUC。
因为我们想保持这些因素不变,它们的误差项的一部分。
但是,如果u与EDUC那么E(U | EDUC)0,所以SLR.4失败。
2.2方程Y =0 +1X + U,加减0的右边,得到y =(0 +0)+1X +(U0)。
调用新的错误E =ü0,故E(E)= 0。
新的拦截0 +0,但斜率仍然是1。
2.3(一)让易= GPAI,XI = ACTI,和n = 8。
= 25.875,=3.2125,(十一- )(艺- )= 5.8125,(十一- )2 = 56.875。
从公式(2.9),我们得到了坡度为= 5.8125/56.875 0.1022,四舍五入至小数点后四个地方。
(2.17)= - 3.2125 - 0.1022 25.875 0.5681。
因此,我们可以这样写= 0.5681 + 0.1022 ACT每组8只。
拦截没有一个有用的解释,因为使不接近零的人口的利益。
,如果ACT是高5点,增加0.1022(5)= .511。
(二)观察数i和GPA的拟合值和残差- 四舍五入至小数点后四位- 随着于下表:íGPA1 2.8 2.7143 0.08572 3.4 3.0209 0.37913 3.0 3.2253 - 0.22534 3.5 3.3275 0.17255 3.6 3.5319 0.06816 3.0 3.1231 - 0.12317 2.7 3.1231 - 0.42318 3.7 3.6341 0.0659您可以验证的残差,表中报告,总结到.0002,这是非常接近零,由于固有的舍入误差。
(ⅲ)当ACT = 20 = 0.5681 + 0.1022(20)2.61。
(iv)本残差平方和,大约是0.4347(四舍五入至小数点后四位),正方形的总和,(YI - )2,大约是1.0288。
因此,R-平方的回归R2 = 1 - SSR / SST 1 - (.4347/1.0288).577的。
因此,约57.7%的GPA的变化解释使学生在这个小样本。
2.4(I)的CIGS = 0,预测出生体重是119.77盎司。
当CIGS = 20,= 109.49。
这是关于一个8.6%的降幅。
(ii)并非必然。
还有许多其他的因素,可以影响新生儿的体重,尤其是整体健康的母亲和产前护理质量。
这些可以与吸烟密切相关,在分娩期间。
此外,如咖啡因消费的东西可以影响新生儿的体重,也可能与吸烟密切相关。
(三)如果我们想预测125 bwght,然后CIGS =(125 - 119.77)/(- .524)-10.18,或约-10香烟!当然,这完全是无稽之谈,并表明会发生什么,当我们试图预测复杂,出生时体重只有一个单一的解释变量的东西。
最大的预测出生体重必然是119.77。
然而,近700个样品中有出生出生体重高于119.77。
(四)1,176 1,388名妇女没有在怀孕期间吸烟,或约84.7%。
因为我们使用的唯一的的CIGS 解释出生体重,我们只有一个预测出生体重在CIGS = 0。
预测出生体重必然是大致中间观察出生体重在CIGS = 0,所以我们会根据预测高出生率。
2.5(i)本截距意味着,,当INC = 0,缺点被预测为负124.84美元。
,当然,这不可能是真实的,反映了这一事实,在收入很低的水平,这个消费函数可能是一个糟糕的预测消费。
另一方面,在年度基础上,124.84美元至今没有从零。
(二)只需插上30,000入公式:= -124.84 + .853(30,000)= 25,465.16元。
(iii)该MPC和APC的是在下面的图表所示。
尽管截距为负时,样品中的最小的APC是正的。
图开始以每年1,000元(1970美元)的收入水平。
2.6(i)同意。
如果生活密切焚化炉抑制房价过快上涨,然后越远,增加住房价格。
(ii)若选择的城市定位在一个地区焚化炉远离更昂贵的街区,然后登录(区)呈正相关,与房屋质量。
这将违反SLR.4,OLS估计是有失偏颇。
(三)大小的房子,浴室的数量,很多的大小,年龄,家庭,居委会(包括学校质量)质量,都只是极少数的因素。
正如前面提到的(ii)部分,这些肯定会被分派[日志(DIST)]的相关性。
2.7(一)当我们条件的公司在计算的期望,成为一个常数。
所以E(U | INC)= E(E | INC)= E(E | INC)= 0,因为E(E | INC)= E(E)= 0。
(2)同样,当我们条件的公司在计算方差,成为一个常数。
所以V AR(U | INC)= V AR(E | INC)=()2V AR(E | INC)INC,因为V AR(E | INC)=。
(三)家庭收入低没有对消费有很大的自由裁量权,通常情况下,一个低收入的家庭必须花费在食品,服装,住房,和其他生活必需品。
收入高的人有更多的自由裁量权,有些人可能会选择更多的消费,而其他更节省。
此酌情权,建议在收入较高的家庭储蓄之间的更广泛的变异。
第2.8(i)从方程(2.66),= /。
堵在义=0 +1xi + UI给人= /。
标准代数后,分子可以写为。
把这个分母显示,我们可以写=0 / + 1 + /。
西安条件,我们有E()=0 / + 1因为E(UI)对于所有的i = 0。
因此,偏置在这个方程中的第一项由下式给出。
这种偏见显然是零,当0 = 0。
也为零时,= 0,= 0这是相同的。
在后者的情况下,通过原点的回归是回归截距相同。
(ii)从最后一个表达式部分(i)我们有,有条件兮,(VAR)= V AR === /。
(iii)由(2.57),V AR()= 2 /。
从心领神会,,所以无功():V AR()。
看,这是一种更直接的方式来写,这是小于除非= 0 =。
(ⅳ)对于一个给定的样本大小,偏置的增加(保持在固定的总和)的增加。
但增加的方差相对增加(V AR)。
偏置也是小的,小的时候。
因此,无论是我们优选的平均平方误差的基础上取决于大小,和n(除的大小)。
2.9(i)我们按照提示,注意到=(样本均值为C1义的样本平均)=。
当我们:回归c1yi c2xi (包括截距)我们使用公式(2.19)获得的斜率:(2.17),我们得到的截距=(C1)- (C2)=(C1)- [(C1/C2)](C2)= C1(- )= C1),因为拦截从回归毅喜(- )。
(ii)我们使用相同的方法,伴随着一个事实,即(i)部分= C1 + C2 +。
因此,=(C1 +易)- (C1 +)=易- (C2 + XI)- = XI - 。
因此,C1和C2完全辍学的回归(C1 +毅)(C2 + XI)和=的斜率公式。
截距= - =(C1 +)- (C2 +)=()+ C1 - C2 = C1 - C2,这就是我们想向大家展示。
(三),我们可以简单地适用(ii)部分,因为。
换言之,更换C1与日志(C1),易建联与日志(彝族),并设置C2 = 0。
(iv)同样的,我们可以申请C1 = 0和更换C2日志(C2)和xi日志(十一)(ii)部分。
如果原来的截距和斜率,然后。
2.10(一)该推导基本上是在方程(2.52),一旦带内的求和(这是有效的,因为不依赖于i)。
然后,只需定义。
(ⅱ)由于我们表明,后者是零。
但是,从(i)部分,因为是两两相关(他们是独立的),(因为)。
因此,(iii)本的OLS拦截的公式,堵在给(4)因为是不相关的,,这就是我们想向大家展示。
(五)使用提示和替代给2.11(一)我们想要,随机指定小时数,这样在准备课程时间不受其他因素影响性能的SAT。
然后,我们将收集信息为每一个学生的SA T分数在实验中产生的数据集,其中n是我们可以负担得起的学生人数在研究。
从公式(2.7),我们应该试图得到尽可能多的变化是可行的。
(二)这里有三个因素:先天的能力,家庭收入,和一般健康检查当天上。
如果我们认为具有较高的原生智慧的学生认为,他们不需要准备SA T,能力和时间呈负相关。