伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第5~9章【圣才出品】
- 格式:pdf
- 大小:4.31 MB
- 文档页数:162
伍德里奇-计量经济学(第4版)答案计量经济学答案第二章2.4 (1)在实验的准备过程中,我们要随机安排小时数,这样小时数(hours )可以独立于其它影响SAT 成绩的因素。
然后,我们收集实验中每个学生SAT 成绩的相关信息,产生一个数据集{}n i hours sat i i ,...2,1:),(=,n 是实验中学生的数量。
从式(2.7)中,我们应尽量获得较多可行的i hours 变量。
(2)因素:与生俱来的能力(天赋)、家庭收入、考试当天的健康状况①如果我们认为天赋高的学生不需要准备SAT 考试,那天赋(ability )与小时数(hours )之间是负相关。
②家庭收入与小时数之间可能是正相关,因为收入水平高的家庭更容易支付起备考课程的费用。
③排除慢性健康问题,考试当天的健康问题与SAT 备考课程上的小时数(hours )大致不相关。
(3)如果备考课程有效,1β应该是正的:其他因素不变情况下,增加备考课程时间会提高SAT 成绩。
(4)0β在这个例子中有一个很有用的解释:因为E (u )=0,0β是那些在备考课程上花费小时数为0的学生的SAT平均成绩。
2.7(1)是的。
如果住房离垃圾焚化炉很近会压低房屋的价格,如果住房离垃圾焚化炉距离远则房屋的价格会高。
(2)如果城市选择将垃圾焚化炉放置在距离昂贵的街区较远的地方,那么log(dist)与房屋价格就是正相关的。
也就是说方程中u包含的因素(例如焚化炉的地理位置等)和距离(dist)相关,则E(u︱log(dist))≠0。
这就违背SLR4(零条件均值假设),而且最小二乘法估计可能有偏。
(3)房屋面积,浴室的数量,地段大小,屋龄,社区的质量(包括学校的质量)等因素,正如第(2)问所提到的,这些因素都与距离焚化炉的远近(dist,log(dist))相关2.11(1)当cigs(孕妇每天抽烟根数)=0时,预计婴儿出生体重=110.77盎司;当cigs(孕妇每天抽烟根数)=20时,预计婴儿出生体重(bwght)=109.49盎司。
第12章 时间序列回归中的序列相关和异方差12.1 复习笔记一、含序列相关误差时OLS 的性质 1.无偏性和一致性在时间序列回归的前3个高斯-马尔可夫假定(TS.1~TS.3)之下,OLS 估计量是无偏的。
特别地,只要解释变量是严格外生的,无论误差中的序列相关程度如何,ˆj β都是无偏的。
这类似于误差中的异方差不会造成ˆjβ产生偏误。
把严格外生性假定放松到()0t t E u X =,并证明了当数据是弱相关的时候,ˆjβ仍然是一致的(但不一定无偏)。
这一结论不以对误差中序列相关的假定为转移。
2.效率和推断高斯-马尔可夫定理要求误差的同方差性和序列无关性,所以,在出现序列相关时,OLS 便不再是BLUE 的了。
通常的OLS 标准误和检验统计量也不再确当,而且连渐近确当都谈不上。
在序列相关的时候,通常的方差估计量都是()1ˆVar β的有偏估计。
因为ˆj β的标准误是ˆjβ的标准差的估计值,所以在出现序列相关的时候,使用通常的OLS 标准误就不再确当。
因此,检验单个假设的t 统计量也不再确当。
因为较小的标准误意味着较大的t 统计量,所以当ρ>0时,通常的统计量常常过大。
用于检验多重假设的通常的F 统计量和LM 统计量也不再可靠。
3.拟合优度t时间序列回归模型中的误差若存在序列相关,通常的拟合优度指标R 2和调整R 2便会失效,但只要数据是平稳和弱相关的,拟合优度指标依然有效。
在横截面背景中将总体R 2定义为221/u y σσ-。
在使用平稳而又弱相关数据的时间序列回归背景中,这个定义依然确当:误差和因变量的方差都不随时间而变化。
根据大数定律,R 2和调整R 2都是总体R 2的一致估计。
拟合优度指标仍是总体参数的一致估计量。
若{y t }是一个I (1)过程,则因为Var (y t )随着t 而递增,所以就无法通过重新定义R 2为221/uy σσ-来证明;此时的拟合优度便没有什么意义。
4.出现滞后因变量时的序列相关回归中出现滞后因变量时,误差有序列相关的危险。
伍德⾥奇《计量经济学导论》笔记和课后习题详解(⼀个经验项⽬的实施)【圣才出品】第19章⼀个经验项⽬的实施19.1 复习笔记⼀、问题的提出提出⼀个⾮常明确的问题,其重要性不容忽视。
如果没有明确阐述假设和将要估计的模型类型,那么很可能会忘记收集某些重要变量的信息,或是从错误的总体中取样,甚⾄收集错误时期的数据。
1.查找数据的⽅法《经济⽂献杂志》有⼀套细致的分类体系,其中每篇论⽂都有⼀组标识码,从⽽将其归于经济学的某⼀⼦领域之中。
因特⽹(Internet)服务使得搜寻各种主题的已发表论⽂更为⽅便。
《社会科学引⽤索引》(Social Sciences Citation Index)在寻找与社会科学各个领域相关的论⽂时⾮常有⽤,包括那些时常被其他著作引⽤的热门论⽂。
⽹络搜索引擎“⾕歌学术”(Google Scholar)对于追踪各类专题研究或某位作者的研究特别有帮助。
2.构思题⽬时⾸先应明确的⼏个问题(1)要使⼀个问题引起⼈们的兴趣,并不需要它具有⼴泛的政策含义;相反地,它可以只有局部意义。
(2)利⽤美国经济的标准宏观经济总量数据来进⾏真正原创性的研究⾮常困难,尤其对于⼀篇要在半个或⼀个学期之内完成的论⽂来说更是如此。
然⽽,这并不意味着应该回避对宏观或经验⾦融模型的估计,因为仅增加⼀些更新的数据便对争论具有建设性。
⼆、数据的收集1.确定适当的数据集⾸先必须确定⽤以回答所提问题的数据类型。
最常见的类型是横截⾯、时间序列、混合横截⾯和⾯板数据集。
有些问题可以⽤任何⼀种数据结构进⾏分析。
确定收集何种数据通常取决于分析的性质。
关键是要考虑能够获得⼀个⾜够丰富的数据集,以进⾏在其他条件不变下的分析。
同⼀横截⾯单位两个或多个不同时期的数据,能够控制那些不随时间⽽改变的⾮观测效应,⽽这些效应通常使得单个横截⾯上的回归失效。
2.输⼊并储存数据⼀旦你确定了数据类型并找到了数据来源,就必须把数据转变为可⽤格式。
通常,数据应该具备表格形式,每次观测占⼀⾏;⽽数据集的每⼀列则代表不同的变量。
第19章一个经验项目的实施19.1 复习笔记一、问题的提出提出一个非常明确的问题,其重要性不容忽视。
如果没有明确阐述假设和将要估计的模型类型,那么很可能会忘记收集某些重要变量的信息,或是从错误的总体中取样,甚至收集错误时期的数据。
1.查找数据的方法《经济文献杂志》有一套细致的分类体系,其中每篇论文都有一组标识码,从而将其归于经济学的某一子领域之中。
因特网(Internet)服务使得搜寻各种主题的已发表论文更为方便。
《社会科学引用索引》(Social Sciences Citation Index)在寻找与社会科学各个领域相关的论文时非常有用,包括那些时常被其他著作引用的热门论文。
网络搜索引擎“谷歌学术”(Google Scholar)对于追踪各类专题研究或某位作者的研究特别有帮助。
2.构思题目时首先应明确的几个问题(1)要使一个问题引起人们的兴趣,并不需要它具有广泛的政策含义;相反地,它可以只有局部意义。
(2)利用美国经济的标准宏观经济总量数据来进行真正原创性的研究非常困难,尤其对于一篇要在半个或一个学期之内完成的论文来说更是如此。
然而,这并不意味着应该回避对宏观或经验金融模型的估计,因为仅增加一些更新的数据便对争论具有建设性。
二、数据的收集1.确定适当的数据集首先必须确定用以回答所提问题的数据类型。
最常见的类型是横截面、时间序列、混合横截面和面板数据集。
有些问题可以用任何一种数据结构进行分析。
确定收集何种数据通常取决于分析的性质。
关键是要考虑能够获得一个足够丰富的数据集,以进行在其他条件不变下的分析。
同一横截面单位两个或多个不同时期的数据,能够控制那些不随时间而改变的非观测效应,而这些效应通常使得单个横截面上的回归失效。
2.输入并储存数据一旦你确定了数据类型并找到了数据来源,就必须把数据转变为可用格式。
通常,数据应该具备表格形式,每次观测占一行;而数据集的每一列则代表不同的变量。
(1)不同类型数据的输入要求①对时间序列数据集来说,只有一种合理的方式来进行数据的输入和存储:即以时间为序,最早的时期列为第一次观测,最近的时期列为最后一次观测。
第18章时间序列高深专题18.1 复习笔记一、无限分布滞后模型1.无限分布滞后模型令{(y t,z t):t=…,-2,-1,0,1,2,…}代表一个双变量时间序列过程。
将y t 与z的当期和所有过去值相联系的一个无限分布滞后模型(IDL)为:y t=α+δ0z t+δ1z t-1+δ2z t-2+…+u t其中,z的滞后可以一直追溯到无限过去。
与有限分布滞后模型不同的是,IDL模型不要求在某个特定时刻截断滞后。
随着j趋于无穷大,滞后系数δj必须趋于0。
z t-1对y t的影响必须随着j无限递增而最终变得很小。
在大多数实际应用中,它也有相应的经济含义:遥远过去的z对y的解释能力不如新近过去的z。
不能估计无限分布滞后的原因:只能观察到数据的有限历史。
(1)无限分布滞后模型的短期倾向y t=α+δ0z t+δ1z t-1+δ2z t-2+…+u t的短期倾向就是δ0。
假设s<0时,z s=0;s>0时z s=1,z1=0。
也就是说,z在t=0时期暂时性地增加一个单位,然后又回到它的初始值0。
对所有h≥0,都有y h=α+δh+u h,所以有E(y h)=α+δh。
给定z在0时期的一个单位的暂时变化,δh就是E(y h)的改变值。
z的一个暂时变化对y的期望值没有长期影响:随着h→∞,E(y h)=α+δh→α。
滞后分布显示了给定z 暂时增加一个单位,未来的y 所服从的期望路径。
(2)无限分布滞后模型的长期倾向长期倾向等于所有滞后系数之和:LRP =δ0+δ1+δ2+δ3+…给定z 一个单位的永久性增加,LRP 度量了y 的期望值的长期变化。
(3)严格外生性假定假定任何时期z 的变化都不会对u t 的期望值有影响。
这就是严格外生性假定的无限分布滞后型。
规范的表述是它使得u t 的期望值不依赖于任何时期的z 。
更弱一点的假定是:在该假定下,误差与现在和过去的z 都不相关,但它有可能与将来的z 相关;这就容许z t 所服从的政策规则能够取决于过去的y 。