2012新题分类汇编:集合与常用逻辑用语(高考真题+模拟新题)
- 格式:doc
- 大小:429.50 KB
- 文档页数:10
北京市2012年高考数学最新联考试题分类大汇编
一、选择题:
2. (2012年3月北京市朝阳区高三一模文科)若集合{}2
1,A m
=,{}3,4B =,则
“2m =”是“{}4=B A ”的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件 【答案】A
7.(北京市西城区2012年4月高三第一次模拟文)设等比数列{}n a 的前n 项和为n S .则“10a >”是“32S S >”的( C ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件
(D )既不充分又不必要条件
【答案】A
(2)(北京市东城区2012年4月高考一模文科)若集合},0{2
m A =,}2,1{=B
,则
6.(2012年3月北京市丰台区高三一模文科)若函数
1(),0,()2
,0,x
x f x x a x ⎧≤⎪=⎨⎪-+>⎩ 则“a =1”是“函数y =f (x )在R 上单调递减”的 (A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件 (D) 既不充分也不必要条件
【答案】A。
8. (2012年东北三省四市教研协作体第二次调研测试文科)已知函数2,(0)()2,(0)x x f x x x ⎧⎪=⎨⎪<⎩≥,则[()]1f f x ≥≥1的充要条件是 A.x∈(,-∞ B. x∈)+∞C.x ∈(,1][42,)-∞-+∞D.x ∈(,[4,)-∞+∞8.D 当0x ≥时,1[()]4x f f x =≥,所以4x ≥;当0x <时,21[()]2x f f x =≥,所以22x ≥,xx ≤所以x ∈(,[4,)-∞+∞.故选D.3.(东北师大附中、辽宁省实验中学、哈师大附中2012届高三第二次模拟联合考试文科)3、(黑龙江省哈六中2012届高三第三次模拟文科)命题“042,2≤+-∈∀x x R x ”的否定为A 、042,2≥+-∈∀x x R xB 、042,2>+-∈∃x x R xC 、042,2≤+-∉∀x x R xD 、 042,2>+-∉∃x x R x【答案】B3.(东北四校2012届高三第一次高考模拟理科)下列有关命题的说法中,正确的是( D )A .命题“若21x >,则1x >”的否命题为 “若21x >,则1x ≤”B .命题“若,tan tan αβαβ>>则”的逆命题为真命题C .命题“2,10x R x x ∃∈++<使得”的否定是“2,10x R x x ∀∈++>都有”D .“1x >”是“220x x +->”的充分不必要条件6.(东北四校2012届高三第一次高考模拟文科)下列有关命题的说法中,正确的是( B )A .命题“若21x >,则1x >”的否命题为“若21x >,则1x ≤”B . “1x >”是“220x x +->”的充分不必要条件C .命题“2,10x R x x ∃∈++<使得”的否定是“2,10x R x x ∀∈++>都有”D .命题“若,tan tan αβαβ>>则”的逆命题为真命题。
广东省2012年高考数学最新联考试题分类汇编第1部分:集合与常用逻辑用语一、选择题:1.(广东省惠州市2012届高三第三次调研理科)已知R 是实数集,{}21,1M xN y y x x ⎧⎫=<==-⎨⎬⎩⎭,则R N C M ⋂=( )A . ()1,2 B . []0,2 C . ∅ D . []1,2【答案】B 【解析】因为{}[]{}[)2120,0,2,10,R M xx x x C M N y y x x ⎧⎫=<=><===-=+∞⎨⎬⎩⎭或,故R N C M ⋂=[]0,2,选B.1. (广东省惠州市2012届高三第三次调研文科)已知集合{}{}|1,|21x M x x N x =<=>,则M N I = ( )A .∅B .{}|0x x <C .{}|1x x <D .{}|01x x <<【答案】D【解析】{21}x N x =>Q ,{0}N x x ∴=>,{01}M N x x ∴⋂=<<. ∴选D 。
4.(广东省惠州市2012届高三第三次调研文理科)设条件:0p a >;条件2:0q a a +≥,那么p 是q 的什么条件 ( )A .充分非必要条件B .必要非充分条件C .充分且必要条件D .非充分非必要条件【答案】A1.(2012年广东省揭阳市高考一模试题文理科)已知集合{1,2},{,},aA B a b ==若1{}2A B =I ,则A B U 为.A .1{,1,}2bB .1{1,}2-C .1{1,}2D .1{1,,1}2- 【答案】D 【解析】由1{}2A B =I 得1212aa =⇒=-,12b =,故选D. (4)(广东省江门市2012届高三数学理科3月质量检测试题)有关命题的说法错误..的是 ( C ) ()A 命题“若0232=+-x x 则 1=x ”的逆否命题为:“若1≠x , 则0232≠+-x x ”. ()B “1=x ”是“0232=+-x x ”的充分不必要条件.()C 若q p ∧为假命题,则p 、q 均为假命题.()D 对于命题p :x R ∃∈,使得210x x ++<. 则⌝p :x R ∀∈, 均有210x x ++≥. 2.(广东省佛山市顺德区2012年4月普通高中毕业班质量检测试题理科)巳知全集U R =,i 是虚数单位,集合M Z =(整数集)和221(1){,,,}i N i i i i+=的关系韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( B )A . 3个 B.2个 C.1个 D.无穷个3.(广东省佛山市顺德区2012年4月普通高中毕业班质量检测试题理科)在"3""23sin ",π>∠>∆A A ABC 是中的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2012年3月广东省广州市高三一模数学理科试题)已知集合{}1,1A =-,{}10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为 ( D ) A .{}1-B .{}1C .{}1,1-D .{}1,0,1-1.(广东省深圳高级中学2012届高三一模理科)设全集U 是实数集R ,}034|{},22|{2<+-=>-<=x x x N x x x M 或,则图中阴影部分所表示的集合是( C )A .}12|{<≤-x xB .}22|{≤≤-x xC .}21|{≤<x xD .}2|{<x x2.(2012年3月广东省深圳市高三年级第一次调研考试理科)设集合}21|{<-=x x M ,{|(3)0}N x x x =-<,那么“M a ∈”是“N a ∈”的( A )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件1.(2012年3月广东省深圳市高三年级第一次调研考试文科)已知集合{11}A =-,,{|124}x B x =≤<,则A B I 等于( B )A .{101}-,,B .{1}C .{11}-,D .{01},2.(2012年3月广东省深圳市高三年级第一次调研考试文科)已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.A 提示: 0,0022==⇔=+b a b a ,于是220a b +≠就是对0,0==b a 即b a ,都为0的否定, 而“都”的否定为“不都是”或“不全是”,所以应该是“,a b 不全为0”. 二、填空题:9.(2012年广东省揭阳市高考一模试题理科)已知函数lg(4)y x =-的定义域为A ,集合{|}B x x a =<,若P :“x A ∈”是Q :“x B ∈”的充分不必要条件,则实数a 的取值范围 . 【答案】4a > 【解析】{|4}A x x =<,由右图易得4a >. 三、解答题16. (广东省佛山市顺德区2012年4月普通高中毕业班质量检测试题理科)(本小题满分12分)已知全集,U R =集合{}062<--=x x x A ,{}0822>-+=x x x B ,{}03422<+-=a ax x x C ,若()U C A B C ⊆U ,求实数a 的取值范围.9. 设p:实数x 满足22430x ax a -+<,其中0a >,命题:q 实数x 满足2260,280.x x x x ⎧--≤⎪⎨+->⎪⎩.(Ⅰ)若1,a =且p q ∧为真,求实数x 的取值范围; (Ⅱ)若p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 9.解: 由22430x ax a -+<得(3)()0x a x a --<,又0a >,所以3a x a <<,当1a =时,1<3x <,即p 为真时实数x 的取值范围是1<3x <.由2260280x x x x ⎧--≤⎪⎨+->⎪⎩,得23x <≤,即q 为真时实数x 的取值范围是23x <≤. 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<. (Ⅱ) p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝,设A ={|}x p ⌝,B ={|}x q ⌝,则AB ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={23x x ≤>或}, 则0<2a ≤,且33a >所以实数a 的取值范围是12a <≤.10.已知命题p: 1x 和2x 是方程022=--mx x 的两个实根,不等式21235x x a a -≥-- 对任意实数[]1,1-∈m 恒成立;命题q:不等式0122>-+x ax 有解,若命题p 是真命题,命题q 是假命题,求a 的取值范围.10. 解:∵1x ,2x 是方程022=--mx x 的两个实根∴⎩⎨⎧-==+22121x x mx x∴84)(22122121+=-+=-m x x x x x x∴当{}1,1-∈m 时,3max 21=-x x由不等式21235x x a a -≥--对任意实数{}1,1-∈m 恒成立可得:3352≥--a a ∴6≥a 或1-≤a∴命题p 为真命题时6≥a 或1-≤a命题q :不等式0122>-+x ax 有解①当0>a 时,显然有解②当0=a 时,012>-x 有解③当0<a 时,∵ 0122>-+x ax 有解 ∴044>+=∆a ∴01<<-a从而命题q :不等式0122>-+x ax 有解时1->a 又命题q 是假命题 ∴1-≤a故命题p 是真命题且命题q 是假命题时,a 的取值范围为1-≤a .。
A 集合与常用逻辑用语A1 集合及其运算1.A1[2012·某某卷] 设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( ) A .{0} B .{0,1}C .{-1,1}D .{-1,0,1}1.B [解析] 本题考查集合的运算,意在考查考生对集合交集的简单运算. 解得集合N ={ x |0≤x ≤1},直接运算得M ∩N ={0,1}.2.A1[2012·某某卷] 设集合U ={1,2,3,4,5,6},M ={1,2,4},则∁U M =( ) A .U B .{1,3,5}C .{3,5,6}D .{2,4,6}2.C [解析] 因为U ={1,2,3,4,5,6},M ={1,2,4},所以∁UM ={3,5,6},所以选择C.1.A1[2012·卷] 已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( )A .(-∞,-1) B.⎩⎨⎧⎭⎬⎫-1,-23 C.⎝ ⎛⎭⎪⎫-23,3 D .(3,+∞)1.D [解析] 因为A ={x |3x +2>0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-23 =⎝ ⎛⎭⎪⎫-23,+∞,B ={x |x <-1或x >3}=(-∞,-1)∪(3,+∞),所以A ∩B =(3,+∞),答案为D. 2.A1[2012·全国卷] 已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或 3 B .0或3C .1或 3D .1或32.B [解析] 本小题主要考查集合元素的性质和集合的关系.解题的突破口为集合元素的互异性和集合的包含关系.由A ∪B =A 得B ⊆A ,所以有m =3或m =m .由m =m 得m =0或1,经检验,m =1时B ={1,1}矛盾,m =0或3时符合,故选B.1.A1[2012·某某卷] 已知集合A ={1,2,4},B ={2,4,6},则A ∪B =________.1.{1,2,4,6} [解析] 考查集合之间的运算.解题的突破口为直接运用并集定义即可.由条件得A ∪B ={1,2,4,6}.1.A1[2012·某某卷] 若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( )A .5B .4C .3D .21.C [解析] 考查集合的含义与表示;解题的突破口为列出所有结果,再检验元素的互异性.当x =-1,y =0时,z =-1,当x =-1,y =2时,z =1,当x =1,y =0时,z =1,当x =1,y =2时,z =3,故集合{z |z =x +y ,x ∈A ,y ∈B }中的元素个数为3,故选C.1.A1[2012·课标全国卷] 已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .101.D [解析] 对于集合B ,因为x -y ∈A ,且集合A 中的元素都为正数,所以x >y .故集合B ={(5,1),(5,2),(5,3),(5,4),(4,1),(4,2),(4,3),(3,1),(3,2),(2,1)},其含有10个元素.故选D.1.A1[2012·某某卷] 已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁∪B )=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}1.B [解析] 本小题主要考查集合的概念及基本运算.解题的突破口为弄清交集与补集的概念以及运算性质.法一:∵∁U A ={}2,4,6,7,9,∁U B ={}0,1,3,7,9,∴(∁U A )∩(∁U B )={}7,9. 法二:∵A ∪B ={}0,1,2,3,4,5,6,8,∴(∁U A )∩(∁U B )=∁U ()A ∪B ={}7,9. 2.A1[2012·某某卷] 已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}2.C [解析] 本题考查集合间的关系及交、并、补的运算,考查运算能力,容易题. ∵U ={}0,1,2,3,4,A ={}1,2,3,B ={}2,4, ∴∁U A ={}0,4,(∁UA )∪B ={}0,2,4.1.A1[2012·某某卷] 集合M ={x |lg x >0},N ={x |x 2≤4},则M ∩N =( ) A .(1,2) B .[1,2) C .(1,2] D .[1,2]1.C [解析] 本小题主要考查集合的概念及基本运算以及对数函数的性质、一元二次不等式的解法.解题的突破口为解对数不等式以及一元二次不等式.对于lg x >0可解得x >1;对于x 2≤4可解得-2≤x ≤2,根据集合的运算可得1<x ≤2,故选C.2.A1[2012·某某卷] 若集合A ={x |2x +1>0},B ={x ||x -1|<2},则A ∩B =________.2.⎝ ⎛⎭⎪⎫-12,3 [解析] 考查集合的交集运算和解绝对值不等式,解此题的关键是解绝对值不等式,再利用数轴求解.解得集合A =⎝ ⎛⎭⎪⎫-12,+∞,集合B =(-1,3),求得A ∩B =⎝ ⎛⎭⎪⎫-12,3. 13.A1[2012·某某卷] 设全集U ={a ,b ,c ,d },集合A ={a ,b },B ={b ,c ,d },则(∁U A )∪(∁U B )=________.13.{a ,c ,d } [解析] 法一:由已知,∁U A ={c ,d },∁U B ={a },故(∁U A )∪(∁U B )={a ,c ,d }.法二:(∁U A )∪(∁U B )=∁U (A ∩B )=∁U {b }={a ,c ,d }.1.A1、E3[2012·某某卷] 设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(∁R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)1.B [解析] 本题主要考查不等式的求解、集合的关系与运算等.由于B ={x |x 2-2x -3≤0}={x |-1≤x ≤3},则∁R B ={x |x <-1或x >3},那么A ∩(∁R B )={x |3<x <4}=(3,4),故应选B.[点评] 不等式的求解是进一步处理集合的关系与运算的关键.A2 命题及其关系、充分条件、必要条件2.A2[2012·某某卷] 设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 本题考查命题及充要条件,考查推理论证能力,容易题.当φ=0时,f (x )=cos(x +φ)=cos x 为偶函数成立;但当f (x )=cos(x +φ)为偶函数时,φ=k π,k ∈Z, φ=0不一定成立.3.A2、H2[2012·某某卷] 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.A [解析] 本题主要考查直线的平行关系与充要条件的判断等基础知识和基本方法. 法一:直接推理:分清条件和结论,找出推出关系即可.当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行,所以条件具有充分性;若直线l 1与直线l 2平行,则有:a 1=2a +1,解之得:a =1 或 a =-2,经检验,均符合,所以条件不具有必要性.故条件是结论的充分不必要条件.法二:把命题“a =1”看作集合M ={1},把命题“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”看作集合N ={1,-2},易知M ⊆N ,所以条件是结论的充分不必要条件,答案为A.3.A2、L4[2012·某某卷] 设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.B [解析] 本小题主要考查充要条件的概念以及复数的相关知识,解题的突破口为弄清什么是纯虚数,然后根据充要条件的定义去判断.a +b i =a -b i ,若a +bi 为纯虚数,a=0且b ≠0,所以ab =0不一定有a +b i 为纯虚数,但a +bi 为纯虚数,一定有ab =0,故“ab=0”是复数a +bi为纯虚数”的必要不充分条件,故选B.7.A2、B4[2012·某某卷] 已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A .既不充分也不必要的条件B .充分而不必要的条件C .必要而不充分的条件D .充要条件7.D [解析] 由于f (x )是R 的上的偶函数,当f (x )在[0,1]上为增函数时,根据对称性知f (x )在[-1,0]上为减函数.根据函数f (x )的周期性将f (x )在[-1,0]上的图象向右平移2个周期即可得到f (x )在[3,4]上的图象,所以f (x )在[3,4]上为减函数;同理当f (x )在[3,4]上为减函数时,根据函数的周期性将f (x )在[3,4]上的图象向左平移2个周期即可得到f (x )在[-1,0]上的图象,此时f (x )为减函数,又根据f (x )为偶函数知f (x )在[0,1]上为增函数(其平移与对称过程可用图表示,如图1-1所示),所以“f (x )为[0,1]上的减函数”是“f (x )为[3,4]上的减函数”的充要条件,选D.3.A2、B3[2012·某某卷] 设a >0且a ≠1,则“函数f (x )=a x在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.A [解析] 本题考查充分必要条件及函数的单调性,考查推理论证能力,容易题.当f ()x =a x 为R 上的减函数时,0<a <1,2-a >0,此时g (x )=(2-a )x 3在R 上为增函数成立;当g (x )=(2-a )x 3为增函数时,2-a >0即a <2,但1<a <2时,f ()x =a x为R 上的减函数不成立,故选A.4.A2[2012·某某卷] 已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<04.C [解析] 本小题主要考查存在性命题与全称命题的关系.解题的突破口为全称命题的否定是存在性命题,存在性命题的否定是全称命题.故∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0的否定是∃x 1,x 2∈R ,(f (x 2)-f (x 1))<0,故而答案选C.2.A2[2012·某某卷] 命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1 B.若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π42.C [解析] 本题考查命题的逆否命题,意在考查考生对命题的逆否命题的掌握,是基础题;解题思路:根据定义,原命题:若p 则q ,逆否命题:若綈q 则綈p ,从而求解.命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”,故选C.[易错点] 本题易错一:对四种命题的概念不清,导致乱选;易错二:把命题的逆否命题与命题的否定混淆.14.A2、A3、B3、E3[2012·卷] 已知f (x )=m (x -2m )(x +m +3),g (x )=2x-2,若同时满足条件:①∀x ∈R ,f (x )<0或g (x )<0; ②∃x ∈(-∞,-4),f (x )g (x )<0. 则m 的取值X 围是________.14.(-4,-2) [解析] 本题考查函数图像与性质、不等式求解、逻辑、二次函数与指数函数等基础知识和基本技能.满足条件①时,由g (x )=2x-2<0,可得x <1,要使∀x ∈R ,f (x )<0或g (x )<0,必须使x ≥1时,f (x )=m (x -2m )(x +m +3)<0恒成立,当m =0时,f (x )=m (x -2m )(x +m +3)=0不满足条件,所以二次函数f (x )必须开口向下,也就是m <0,要满足条件,必须使方程f (x )=0的两根2m ,-m -3都小于1,即⎩⎪⎨⎪⎧2m <1,-m -3<1,可得m ∈(-4,0).满足条件②时,因为x ∈(-∞,-4)时,g (x )<0,所以要使∃x ∈(-∞,-4)时,f (x )g (x )<0,只要∃x 0∈(-∞,-4)时,使f (x 0)>0即可,只要使-4比2m ,-m -3中较小的一个大即可,当m ∈(-1,0)时,2m >-m -3,只要-4>-m -3,解得m >1与m ∈(-1,0)的交集为空集;当m =-1时,两根为-2;-2>-4,不符合;当m ∈(-4,-1)时,2m <-m -3,所以只要-4>2m ,所以m ∈(-4,-2).综上可知m ∈(-4,-2).3.A2、L4[2012·卷] 设a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.B [解析] ∵若a =0,则复数a +b i 是实数(b =0)或纯虚数(b ≠0).若复数a +b i 是纯虚数则a =0.综上,a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的必要而不充分条件.6.A2、G5[2012·某某卷] 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.A [解析] 本题考查线面关系的判断,证明,充要条件的判断.由题知命题是条件命题为“α⊥β”,命题“a ⊥b ”为结论命题,当α⊥β时,由线面垂直的性质定理可得a ⊥b ,所以条件具有充分性;但当a ⊥b 时,如果a ∥m ,就得不出α⊥β,所以条件不具有必要性,故条件是结论的充分不必要条件.15.A2、C8、E6、E9[2012·某某卷] 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,则下列命题正确的是________(写出所有正确命题的编号).①若ab >c 2,则C <π3;②若a +b >2c ,则C <π3;③若a 3+b 3=c 3,则C <π2;④若(a +b )c <2ab ,则C >π2;⑤若(a 2+b 2)c 2<2a 2b 2,则C >π3.15.①②③ [解析] 本题考查命题真假的判断,正、余弦定理,不等式的性质,基本不等式等.对于①,由c 2=a 2+b 2-2ab cos C <ab 得2cos C +1>a 2+b 2ab =b a +a b ≥2,则cos C >12,因为0<C <π,所以C <π3,故①正确;对于②,由4c 2=4a 2+4b 2-8ab cos C <a 2+b 2+2ab 得ab ()8cos C +2>3()a 2+b 2即8cos C +2>3⎝ ⎛⎭⎪⎫a b +b a ≥6,则cos C >12,因为0<C <π,所以C <π3,故②正确; 对于③,a 3+b 3=c 3可变为⎝ ⎛⎭⎪⎫a c 3+⎝ ⎛⎭⎪⎫b c 3=1,可得0<a c <1,0<b c <1,所以1=⎝ ⎛⎭⎪⎫a c 3+⎝ ⎛⎭⎪⎫b c 3<⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2,所以c 2<a 2+b 2,故C <π2,故③正确;对于④,()a +b c <2ab 可变为2×1c >1a +1b≥2ab,可得ab >c ,所以ab >c 2,因为a 2+b 2≥2ab >ab >c 2,所以C <π2,④错误;对于⑤,()a 2+b 2c 2<2a 2b 2可变为1a 2+1b 2<2c 2,即1c 2>1ab ,所以c 2<ab ≤a 2+b 22,所以cos C >a 2+b 222ab≥12,所以C <π3,故⑤错误.故答案为①②③. 21.A2、D5 [2012·某某卷] 数列{x n }满足x 1=0,x n +1=-x 2n +x n +c (n ∈N *). (1)证明:{x n }是递减数列的充分必要条件是c <0; (2)求c 的取值X 围,使{x n }是递增数列.21.解:(1)证明:先证充分性,若c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,故{x n }是递减数列;再证必要性,若{x n }是递减数列, 则由x 2<x 1可得c <0.(2)(i)假设{x n }是递增数列,由x 1=0,得x 2=c ,x 3=-c 2+2c , 由x 1<x 2<x 3,得0<c <1.由x n <x n +1=-x 2n +x n +c 知, 对任意n ≥1都有x n <c .①注意到c -x n +1=x 2n -x n -c +c = (1-c -x n )(c -x n ).②由①式和②式可得1-c -x n >0即x n <1-c .由②式和x n ≥0还可得,对任意n ≥1都有c -x n +1≤(1-c )(c -x n ).③ 反复运用③式,得c -x n ≤(1-c )n -1(c -x 1)<(1-c )n -1, x n <1-c 和c -x n <(1-c )n -1两式相加,知2c -1<(1-c )n -1对任意n ≥1成立.根据指数函数y =(1-c )x的性质,得2c -1≤0,c ≤14,故0<c ≤14.(ii)若0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =-x 2n +c >0.即证x n <c 对任意n ≥1成立.下面用数学归纳法证明当0<c ≤14时,x n <c 对任意n ≥1成立.(1)当n =1时,x 1=0<c ≤12,结论成立.(2)假设当n =k (k ∈N *)时结论成立,即:x k <c .因为函数f (x )=-x 2+x +c 在区间⎝⎛⎦⎥⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立.故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.由(i)(ii)知,使得数列{x n }单调递增的c 的X 围是⎝ ⎛⎦⎥⎤0,14.A3 基本逻辑联结词及量词5.A3[2012·某某卷] 下列命题中,假命题为( ) A .存在四边相等的四边形不.是正方形 B .z 1,z 2∈C ,z 1+z 2为实数的充分必要条件是z 1,z 2互为共轭复数 C .若x ,y ∈R ,且x +y >2,则x ,y 至少有一个大于1D .对于任意n ∈N *,C 0n +C 1n +…+C nn 都是偶数5.B [解析] 考查命题的真假的判断、含量词命题真假的判断、组合数性质以及逻辑推理能力等;∵菱形四边相等,但不是正方形,∴A 为真命题;∵z 1,z 2为任意实数时,z 1+z 2为实数,∴B 为假命题;∵x ,y 都小于等于1时,x +y ≤2,∴C 为真命题;∵C 0n +C 1n +C 2n +…+C n n =2n ,又n ∈N *,∴D 为真命题.故选B.2.A3[2012·某某卷] 命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0∉∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30∉QC .∀x ∉∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3∉Q2.D [解析] 本命题为特称命题,写其否定的方法是:先将存在量词改为全称量词,再否定结论,故所求否定为“∀x ∈∁R Q ,x 3∉Q ”. 故选D.14.A2、A3、B3、E3[2012·卷] 已知f (x )=m (x -2m )(x +m +3),g (x )=2x-2,若同时满足条件:①∀x ∈R ,f (x )<0或g (x )<0; ②∃x ∈(-∞,-4),f (x )g (x )<0.则m 的取值X 围是________.14.(-4,-2) [解析] 本题考查函数图像与性质、不等式求解、逻辑、二次函数与指数函数等基础知识和基本技能.满足条件①时,由g (x )=2x-2<0,可得x <1,要使∀x ∈R ,f (x )<0或g (x )<0,必须使x ≥1时,f (x )=m (x -2m )(x +m +3)<0恒成立,当m =0时,f (x )=m (x -2m )(x +m +3)=0不满足条件,所以二次函数f (x )必须开口向下,也就是m <0,要满足条件,必须使方程f (x )=0的两根2m ,-m -3都小于1,即⎩⎪⎨⎪⎧2m <1,-m -3<1,可得m ∈(-4,0). 满足条件②时,因为x ∈(-∞,-4)时,g (x )<0,所以要使∃x ∈(-∞,-4)时,f (x )g (x )<0,只要∃x 0∈(-∞,-4)时,使f (x 0)>0即可,只要使-4比2m ,-m -3中较小的一个大即可,当m ∈(-1,0)时,2m >-m -3,只要-4>-m -3,解得m >1与m ∈(-1,0)的交集为空集;当m =-1时,两根为-2;-2>-4,不符合;当m ∈(-4,-1)时,2m <-m -3,所以只要-4>2m ,所以m ∈(-4,-2).综上可知m ∈(-4,-2).A4 单元综合3.A4[2012·某某卷] 下列命题中,真命题是( ) A .∃x 0∈R ,e x 0≤0B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab=-1D .a >1,b >1是ab >1的充分条件3.D [解析] A 是假命题,根据指数函数的性质不存在x 0,使得e x 0≤0;B 也是假命题,当x =2时,2x=x 2;C 是假命题,当a +b =0时,不一定满足a b=-1,如a =b =0;显然D 是真命题. 2012模拟题1.[2012·某某一模] 已知命题p :∀x ∈R ,ln(e x+1)>0, 则綈p 为( )A .∃x ∈R ,ln(e x+1)<0B .∀x ∈R ,ln(e x+1)<0C .∃x ∈R ,ln(e x+1)≤0D .∀x ∈R ,ln(e x+1)<01.C [解析] 本题主要考查全称命题的否定.属于基础知识、基本运算的考查.全称命题的否定是特称命题,p :∀x ∈R ,ln(e x +1)>0,綈p :∃x ∈R ,ln(e x+1)≤0.2.[2012·某某十校联考] 已知集合A ={x ||x |≤2,x ∈Z },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x +1>0,x ∈R ,则A ∩B =( )A .(-1,2]B .[0,2]C .{-1,0,1,2}D .{0,1,2}2.D [解析] A ={x ||x |≤2,x ∈Z }={-2,-1,0,1,2}, B ={x |x >-1},所以A ∩B ={0,1,2},答案选D.3.[2012·天门、仙桃、潜江中学联考] 设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分必要条件B .必要而不充分条件C .充分不必要条件D .既不充分也不必要条件3.C [解析] 本题主要考查充要条件的判断.属于基础知识、基本运算的考查.“x ≥2且y ≥2”可以得到x 2+y 2≥4,反之不然,故选C.4.[2012·某某重点中学一模] 给出以下四个命题: ①“x >1”是“|x |>1”的充分不必要条件;②若命题p :“∃x ∈R ,使得x 2+x +1<0”,则綈p :“∀x ∈R ,均有x 2+x +1≥0”;③如果实数x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,则z =|x +2y -4|的最大值为21;④在△ABC 中,若AB →·BC →3=BC →·CA →2=CA →·AB→1,则tan A ∶tan B ∶tan C =3∶2∶1.其中真命题的个数为( ) A .1 B .24.C [解析] 本题主要综合考查基本概念.属于基础知识、基本运算的考查. |x |>1⇒x >1或x <-1,所以①正确;特称命题的否定是全称命题,所以②正确;作出⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0的可行域可得目标函数过点(7,9)时z =|x +2y -4|取最大值21,所以③正确;由AB →·BC →3=BC →·CA →2=CA →·AB→1,不能得到tan A ∶tan B ∶tan C =3∶2∶1,所以④错.5.[2012·某某中学期末] 设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素个数是( )A .7B .10C .25D .525.B [解析] A ∩B ={0,1},A ∪B {-1,0,1,2,3},x 有2种取法,y 有5种取法,由乘法原理得2×5=10,故选B.。
《人民解放战争的胜利 》 班级 姓名 小组 编号 一、学习目标:1.重庆谈判双方的主要代表及签订的文件;2.刘邓大军挺进大别山,人民解放战争转入反攻;3.三大战役、渡江战役的基本情况及示意图;4.人民解放战争胜利的主要原因。
二、课堂目标重难点: 1.重点:重庆谈判;三大战役和渡江战役。
2.难点:人民军解放战争胜利的主要原因。
三、自主学习教材第94---99 页,完成下列练习: 1. 重庆谈判:时间:1945年8月-10月;代表:共产党---毛泽东、( )、王若飞。
国民党----张治中、邵力子。
结果:签订《 》。
2全面内战爆发:时间:1946年6月;标志:国民党军队围攻( )解放区。
3. 粉碎敌人重点进攻:时间:1947年3月;指挥者及战术:( )“蘑菇战术”; 结果:粉碎了敌人对陕北的重点进攻。
4. 刘、邓大军挺进( ):1947年夏,影响:揭开了战略反攻的序幕。
5. 三大战役:( )战役:解放东北全境;( )战役:基本上解放了长江以北的华东和中原地区;( )战役:解放华北全境。
6. 渡江战役:时间:1949年2月,战线:东起( ),西至( );结果:统治中国22年的南京国民党政权垮台。
四 课堂练习: 材料 毛泽东于1949年4月的一首七律:钟山风雨起苍黄,百万雄师过大江。
虎踞龙盘今胜昔,天翻地覆慨而慷。
宜将剩勇追穷寇,不可沽名学霸王。
天若有情天亦老,人间正道是沧桑。
请回答:1.“百万雄师过大江”指的是什么历史事件?此事件得以发动的军事基础是什么? 2.诗中“宜将剩勇追穷寇,不可沽名学霸王”中的“霸王”是指谁?诗句的寓意是什么? 3.“百万雄师过大江”的结果是什么? 初中学习网,资料共分享!我们负责传递知识!。
一、集合与常用逻辑用语一、选择题1.(重庆理2)“”是“”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要【答案】A2.(天津理2)设则“且”是“”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件 【答案】A3.(浙江理7)若为实数,则“”是的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A4.(四川理5)函数,在点处有定义是在点处连续的 A .充分而不必要的条件 B .必要而不充分的条件 C .充要条件 D .既不充分也不必要的条件 【答案】B【解析】连续必定有定义,有定义不一定连续。
5.(陕西理1)设是向量,命题“若,则∣∣= ∣∣”的逆命题是A .若,则∣∣∣∣B .若,则∣∣∣∣C .若∣∣∣∣,则D .若∣∣=∣∣,则= -【答案】D6.(陕西理7)设集合M={y|y=x —x|,x ∈R},N={x||x —,i 为虚数单位,x ∈R},则M ∩N 为 A .(0,1) B .(0,1]C .[0,1)D .[0,1]【答案】C7.(山东理1)设集合 M ={x|},N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .( 2,3]D .[2,3] 【答案】A8.(山东理5)对于函数,“的图象关于y 轴对称”是“=是奇函数”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要【答案】B9.(全国新课标理10)已知a ,b 均为单位向量,其夹角为,有下列四个命题x <-1x 2-1>0,,x y R ∈2x ≥2y ≥224x y +≥,a b 01m ab <<11a b b a <或>()f x 0x x =()f x 0x x=,a b a b =-a b a b ≠-a ≠b a b =-a ≠b a ≠b a b ≠-a b a b 2cos 2sin 1i 260x x +-<(),y f x x R =∈|()|y f x =y ()f x θ12:||1[0,)3p a b πθ+>⇔∈22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈4:||1(,]3p a b πθπ->⇔∈其中真命题是 (A ) (B ) (C ) (D )【答案】A10.(辽宁理2)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若,则(A )M (B )N(C )I(D )【答案】A11.(江西理8)已知,,是三个相互平行的平面.平面,之间的距离为,平面,之间的距离为.直线与,,分别相交于,,,那么“=”是“”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C12.(湖南理2)设集合则 “”是“”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】A13.(湖北理9)若实数a,b 满足且,则称a 与b 互补,记,那么是a 与b 互补的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .即不充分也不必要的条件【答案】C14.(湖北理2)已知,则=A .B .C .D .【答案】A15.(广东理2)已知集合∣为实数,且,为实数,且,则的元素个数为A .0B .1C .2D .3【答案】C16.(福建理1)i 是虚数单位,若集合S=,则A .B . C.D .【答案】B17.(福建理2)若a R ,则a=2是(a-1)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件14,p p 13,p p 23,p p 24,p p N ð=M I∅=N M ∅1a 2a 3a 1a 2a 1d 2a 3a 2d l 1a 2a 3a 1p 2p 3p 12PP 23P P 12d d ={}{}21,2,,M N a ==1a =N M ⊆0,0,a b ≥≥0ab=(,),a b a b ϕ=-(),0a b ϕ={}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭U C P 1[,)2+∞10,2⎛⎫ ⎪⎝⎭()0,+∞1(,0][,)2-∞+∞(){,A x y =,x y }221x y +=(){,B x y =,x y}y x =A B ⋂}{1.0.1-i S ∈2i S ∈3i S ∈2S i ∈∈【答案】A 18.(北京理1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P ,则a 的取值范围是 A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞) 【答案】C 19.(安徽理7)命题“所有能被2整聊的整数都是偶数”的否定是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个能被2整除的数都不是偶数 【答案】D 20.(广东理8)设S 是整数集Z 的非空子集,如果有,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,且有有,则下列结论恒成立的是A .中至少有一个关于乘法是封闭的B .中至多有一个关于乘法是封闭的C .中有且只有一个关于乘法是封闭的D .中每一个关于乘法都是封闭的 【答案】A 二、填空题 21.(陕西理12)设,一元二次方程有正数根的充要条件是=【答案】3或4 22.(安徽理8)设集合则满足且的集合为 (A )57 (B )56(C )49(D )8【答案】B23.(上海理2)若全集,集合,则 。
绝密★启用前2012届高三数学二轮精品专题卷:专题一 集合与常用逻辑用语考试范围:集合与常用逻辑用语一、选择题(本大题共15小题;每小题5分,共75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.将集合{{}512),(=+=-y x y x y x 用列举法表示,正确的是 ( ) A .}{3,2 B .()}{3,2 C .}{3,2==y x D .()3,22.设集合=U R ,{|2011}M x x =>,集合}10|{<<=x x N ,则下列关系中正确的是( )A .()R N C M U =B .{}10<<x x N M =C .()M C N U ⊆D .φ≠N M3.已知集合{}9|7|<-=x x M ,{|N x y =,且N M 、都是全集U 的子集,则下图韦恩图中阴影部分表示的集合 A .{}23-≤-<x x B .}{23-≤≤-x xC .}{16≥x xD .}{16>x x 4.定义集合}{n x x x A ,...,,21=,{}()+∈=N m n y y y B m ,,,...,21,若m n y y y x x x +++=+++......2121则称集合A 、B 为等和集合。
已知以正整数为元素的集合M ,N 是等和集合,其中集合}{3,2,1=M ,则集合N 的个数有 ( )A .3B .4C .5D .65.命题“所有能被5整除的数都是偶数”的否定形式是 ( )A .所有不能被5整除的数都是偶数B .所有能被5整除的数都不是偶数C .存在一个不能被5整除的数都是偶数D .存在一个能被5整除的数不是偶数6.若集合22310.5|25|1{|3},{|log (44)0},{|2}252x x x A x B x x x C x x -+-=<=-+>=<-,则“B A x ∈”是“C x ∈” ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 (1)(理)非负整数a ,b 满足1=+-ab b a ,记集合(){}b a M ,=,则M 的元素的个数为( )A .1个B .2个C .3个D .4个(文)下列特称命题中,假命题是 ( )A .∃x ∈R ,x 2-2x -3=0B .至少有一个x ∈Z ,x 能被2和3整除C .存在两个相交平面垂直于同一直线D .∃x ∈{x |x 是无理数},使x 2是有理数8.(理)下列命题中的真命题是 ( )A .3是有理数B .22是实数C .2e 是有理数D .{}R x x =是小数|(文)若三角方程cos 0x =与cos 20x =的解集分别为E,F ,则 ( )A .E ⊃≠ FB .E ⊂≠FC .E=FD .φ=F E9.已知平面向a ,b 满足1=a ,2=b ,a 与b 的夹角为 60,则1=m 是()a b m a ⊥-的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条10.在下列结论中,正确的结论为 ( )①“q p 且”为真是“q p 或”为真的充分不必要条件;②“q p 且”为假是“q p 或”为真的充分不必要条件;③“q p 或”为真是“p ⌝”为假的必要不充分条件;④“p ⌝”为真是“q p 且”为假的必要不充分条件.A .①②B .①③C .②④D .③④11.设有两个命题,命题p :对a ,b 均为单位向量,其夹角为θ,>b a +1是⎪⎭⎫⎢⎣⎡∈32,0πθ的充要条件,命题q :若函数28y kx kx =--的值恒小于0,则320k -<<,那么( )A .“p 且q ”为真命题B .“p 或q ”为真命题C .“﹁p ”为真命题D .“﹁q ”为假命题 12.已知⎩⎨⎧>-≤-=0,230,2)(2x x x x x f ,试求[1,1]x ∀∈-,ax x f ≥|)(|成立的充要条件 ( ) A .(][)+∞--∞∈,01, aB .[]0,1-∈aC .[]1,0∈aD .[)0,1-∈a 13.对于数列{}n a ,“)3,2,1(,,21⋯=++n a a a n n n 成等比数列”是“221++=n n n a a a ”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件14.在四棱锥V-ABCD 中,B 1,D 1分别为侧棱VB ,VD 上的点,则命题P :“若B 1,D 1分别为侧棱VB ,VD 的中点,则四面体AB 1CD 1的体积与四棱锥V-ABCD 的体积之比为1:4”和它的逆命题,否命题,逆否命题中真命题的个数为 ( )A .1B .2C .3D .415.(理)设M 为平面内一些向量组成的集合,若对任意正实数t 和向量M a ∈ ,都有M a t ∈ ,则称M 为“点射域”.现有下列平面向量的集合:①2{(,)|}x y x y ≥;②0(,)|0x y x y x y ⎧-≥⎫⎧⎨⎨⎬+≤⎩⎩⎭; ③22{(,)|20}x y x y x +-≥; ④22{(,)|3260}x y x y +-<;上述为“点射域”的集合的个数是 ( )A .1B .2C .3D .4(文)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n+k n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4]④“整数a ,b 属于同一“类”的充要条件是“b a -∈[0]”.其中正确的个数为 ( )A .1B .2C .3D .4二、填空题(本大题共15小题;每小题5分,共75分。
精品解析:北京市2012年高考数学最新联考试题分类大汇编(2)常
用逻辑用语试题解析
一、选择题:
2. (2012年3月北京市朝阳区高三一模文科)若集合{}2
1,A m
=,{}3,4B =,则
“2m =”是“{}4=B A ”的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件 【答案】A
7.(北京市西城区2012年4月高三第一次模拟文)设等比数列{}n a 的前n 项和为n S .则“10a >”是“32S S >”的( C ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件
(D )既不充分又不必要条件
【答案】A
(2)(北京市东城区2012年4月高考一模文科)若集合},0{2
m A =,}2,1{=B
,则
6.(2012年3月北京市丰台区高三一模文科)若函数
1(),0,()2
,0,x
x f x x a x ⎧≤⎪=⎨⎪-+>⎩ 则“a =1”是“函数y =f (x )在R 上单调递减”的 (A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件 (D) 既不充分也不必要条件
【答案】A。
2012年高考理科数学试题选编1-集合与常用逻辑用语虢镇中学 数学教研组2 2012年高考理科数学试题选编1-集合与简易逻辑一、选择题 集合 1.全国新课标(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;则B 中所含元素的个数为( ) ()A 3 ()B 6 ()C 8 ()D 102.北京1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B=A (-∞,-1)B (-1,-23)C (-23,3)D (3,+∞) 3.广东 2.设集合U {1,23,4,5,6}=,,M {1,2,4}=则M U =ð A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}4.湖南1.设集合M={-1,0,1},N={x|x 2≤x},则M ∩N= A.{0} B.{0,1} C.{-1,1} D.{-1,0,0} 5.辽宁1. 已知全集{}=0,1,2,3,4,5,6,7,8,9U ,集合{}=0,1,3,5,8A ,集合{}=2,4,5,6,8B ,则()()=U U C A C B IA .{}5,8B .{}7,9C .{}0,1,3D .{}2,4,66.陕西1. 集合{|lg 0}Mx x =>,2{|4}N x x =≤,则M N =I ( )A . (1,2) B. [1,2) C. (1,2] D. [1,2] 7.全国大纲2.已知集合{}{1,3,,1,,A m B m A B A ==⋃=,则m =A .0或3B .0或3C .1或3D .1或38.浙江1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2) 9.山东2 已知全集U ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA )U B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}10.江西 1.若集合A={-1,1},B={0,2},则集合{z ︱z =x +y ,x ∈A,y ∈B}中的元素的个数为( )A .5 B.4 C.3 D.2简易逻辑11.福建 3.下列命题中,真命题是( )A .0,00≤∈∃x e R x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 12.天津 (2)设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的(A )充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件虢镇中学 数学教研组3 13.湖北 2.命题“∈∃0x Q ,Q x ∈3”的否定是 A .∉∃0x Q ,Q x ∈3B .∈∃0x Q ,Q x ∉30 C .∉∀0x Q ,Q x ∈3D .∉∀0x Q ,Q x ∉314.湖南 2.命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π15. 辽宁 4. 已知命题()()()()122121:,,--0p x x R f x f x x x ∀∈≥,则p ⌝是A .()()()()122121,,--0x x R f x f x x x ∃∈≤B .()()()()122121,,--0x x R f x f x x x ∀∈≤C .()()()()122121,,--<0x x R f x f x x x ∃∈ D .()()()()122121,,--<0x x R f x f x x x ∀∈16.江西 5.下列命题中,假命题为( ) A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,nn n n n N C C C ∈+++L 都是偶数二、填空题 集合 1.天津(11)已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -I ,则=m ,=n .2. 江苏 1.已知集合{124}A =,,,{246}B =,,,则A B =U .3.四川13、设全集{,,,}Ua b c d =,集合{,}A a b =,{,,}B b c d =,则=)()(B C A C U U Y _______。
一、几何与常用逻辑用语课标文数2.A1[2011·安徽卷] 集合U ={1,2,3,4,5,6},S ={1,4,5},T ={2,3,4},则S ∩(∁U T )等于( ) A .{1,4,5,6} B .{1,5} C .{4} D .{1,2,3,4,5} 课标文数2.A1[2011·安徽卷] B 【解析】 S ∩(∁U T )={1,4,5} ∩{1,5,6}={1,5}.课标理数8.A1[2011·安徽卷] 设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( )A .57B .56C .49D .8 课标理数8.A1[2011·安徽卷] B 【解析】 集合S 的个数为26-23=64-8=56.课标理数1.A1,E3[2011·北京卷] 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .(-∞,-1] B .[1,+∞) C .[-1,1] D .(-∞,-1]∪[1,+∞) 课标理数1.A1,E3[2011·北京卷] C 【解析】 由P ∪M =P ,可知M ⊆P ,而集合P ={x |-1≤x ≤1},所以-1≤a ≤1,故选C.课标文数1.A1,E3[2011·北京卷] 已知全集U =R ,集合P ={x |x 2≤1},那么∁U P =( ) A .(-∞,-1) B .(1,+∞) C .(-1,1) D .(-∞,-1)∪(1,+∞) 课标文数1.A1,E3[2011·北京卷] D 【解析】 因为集合P ={x |-1≤x ≤1},所以∁U P ={x |x <-1或x >1},故选D.大纲文数1.A1[2011·全国卷] 设集合U ={1,2,3,4},M ={1,2,3},N ={2,3,4},则∁U (M ∩N )=( ) A .{1,2} B .{2,3} C .{2,4} D .{1,4} 大纲文数1.A1[2011·全国卷] D 【解析】 ∵M ∩N ={2,3},∴∁U (M ∩N )={1,4},故选D.课标理数1.A1,L4[2011·福建卷] i 是虚数单位,若集合S ={-1,0,1},则( )A .i ∈SB .i 2∈SC .i 3∈S D.2i∈S课标理数1.A1、L4[2011·福建卷] B 【解析】 由i 2=-1,而-1∈S ,故选B.课标文数1.A1[2011·福建卷] 若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于( ) A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2} 课标文数1.A1[2011·福建卷] A 【解析】 由已知M ={-1,0,1},N ={0,1,2},得M ∩N ={0,1},故选A.课标文数12.A1,M1[2011·福建卷] 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2011∈[1]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4]; ④“整数a ,b 属于同一…类‟”的充要条件是“a -b ∈[0]”. 其中,正确结论的个数是( ) A .1 B .2 C .3 D .4 课标文数12.A1,M1[2011·福建卷] C 【解析】 因为2011=5×402+1,则2011∈[1],结论①正确; 因为-3=5×(-1)+2,则-3∈[2],结论②不正确;因为所有的整数被5除的余数为0,1,2,3,4五类,则Z =[0]∪[1]∪[2]∪[3]∪[4],结论③正确; 若整数a ,b 属于同一“类”[k ],可设a =5n 1+k ,b =5n 2+k (n 1,n 2∈Z ),则 a -b =5(n 1-n 2)∈[0];反之,若a -b ∈[0],可设a =5n 1+k 1,b =5n 2+k 2(n 1,n 2∈Z ),则 a -b =5(n 1-n 2)+(k 1-k 2)∈[0]; ∴k 1=k 2,则整数a ,b 属于同一“类”,结论④正确,故选C.课标理数2.A1[2011·湖北卷] 已知U ={y |y =log 2x ,x >1},P =⎩⎨⎧⎭⎬⎫y |y =1x ,x >2,则∁U P =( )A.⎣⎡⎭⎫12,+∞B.⎝⎛⎭⎫0,12 C.()0,+∞ D.(]-∞,0∪⎣⎡⎭⎫12,+∞ 课标理数2.A1[2011·湖北卷] A 【解析】 因为U ={y |y =log 2x ,x >1}={y |y >0},P =⎩⎨⎧⎭⎬⎫y |y =1x ,x >2=⎩⎨⎧⎭⎬⎫y ⎪⎪ 0<y <12,所以∁U P =⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥12=⎣⎡⎭⎫12,+∞.课标文数1.A1[2011·湖北卷] 已知U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={2,4,5},则 ∁U (A ∪B )=( ) A .{6,8} B .{5,7}C .{4,6,7}D .{1,3,5,6,8}课标文数1.A1[2011·湖北卷] A 【解析】 因为A ∪B ={}1,2,3,4,5,7,所以∁U ()A ∪B ={}6,8.课标文数1.A1[2011·湖南卷] 设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =( ) A .{1,2,3} B .{1,3,5} C .{1,4,5} D .{2,3,4} 课标文数1.A1[2011·湖南卷] B 【解析】 (排除法)由M ∩∁U N ={2,4},说明N 中一定不含有元素2,4,故可以排除A 、C 、D ,故选B.课标文数2.A1[2011·江西卷] 若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( ) A .M ∪N B .M ∩N C .(∁U M )∪∁U N ) D .(∁U M )∩(∁U N ) 课标文数2.A1[2011·江西卷] D 【解析】 方法一: ∵M ∪N ={1,2,3,4}, ∴(∁U M )∩(∁U N )=∁U (M ∪N )={5,6}.故选D. 方法二:∵∁U M ={1,4,5,6},∁U N ={2,3,5,6}, ∴(∁U M )∩(∁U N )={5,6}.故选D.课标理数2.A1[2011·辽宁卷] 已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩∁I M =∅,则M ∪N =( )A .MB .NC .ID .∅ 课标理数2.A1[2011·辽宁卷] A 【解析】 N ∩∁I M =∅⇒N ⊆M ,所以M ∪N =M ,故选A.课标文数1.A1[2011·辽宁卷] 已知集合A ={x |x >1},B ={x |-1<x <2},则A ∩B =( ) A .{x |-1<x <2} B .{x |x >-1} C .{x |-1<x <1} D .{x |1<x <2} 课标文数1.A1[2011·辽宁卷] D 【解析】 由图1-1知A ∩B ={x |1<x <2},故选D.课标文数1.A1[2011·课标全国卷] 已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个 课标文数1.A1[2011·课标全国卷] B 【解析】 因为M ={}0,1,2,3,4,N ={}1,3,5,所以P =M ∩N ={}1,3,所以集合P 的子集共有∅,{}1,{}3,{}1,34个.课标理数1.A1[2011·山东卷] 设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N =( ) A .[1,2) B .[1,2] C .(2,3] D .[2,3]课标理数1.A1[2011·山东卷] A 【解析】 由解不等式知识知M ={x |-3<x <2},又N ={x |1≤x ≤3}, 所以M ∩N ={x |1≤x <2}.课标理数7.A1[2011·陕西卷] 设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N =x ⎪⎪⎪⎪⎪⎪x -1i <2,i 为虚数单位,x ∈R ,则M ∩N 为( )A .(0,1)B .(0,1]C .[0,1)D .[0,1] 课标理数7.A1[2011·陕西卷] C 【解析】 对于M ,由基本不等式得y =|cos 2x -sin 2x |=|cos2x |,故0≤y ≤1.对于N ,因为x -1i=x +i ,由⎪⎪⎪⎪x -1i <2,得x 2+1<2,所以-1<x <1,故M ∩N =[0,1),故答案为C.课标文数8.A1,L4[2011·陕西卷] 设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪⎪⎪x i <1,i 为虚数单位,x ∈R ,则M ∩N 为( ) A .(0,1) B .(0,1] C .[0,1) D .[0,1] 课标文数8.A1,L4[2011·陕西卷] C 【解析】 对M ,由基本不等式得y =|cos 2x -sin 2x |=|cos2x |,故0≤y ≤1.对N ,⎪⎪⎪⎪x i <1,即|-x i|<1,所以-1<x <1,故M ∩N =[0,1),故答案为C.课标数学1.A1[2011·江苏卷] 已知集合A ={-1,1,2,4},B ={-1,0,2}, 则A ∩B =________. 课标数学1.A1[2011·江苏卷] {-1,2} 【解析】 因为集合A ,B 的公共元素为-1,2,故A ∩B ={-1,2}.课标数学1.A1[2011·江苏卷] 已知集合A ={-1,1,2,4},B ={-1,0,2}, 则A ∩B =________. 课标数学1.A1[2011·江苏卷] {-1,2} 【解析】 因为集合A ,B 的公共元素为-1,2,故A ∩B ={-1,2}.大纲文数1.A1[2011·四川卷] 若全集M ={1,2,3,4,5},N ={2,4},则∁M N =( ) A .∅ B .{1,3,5}C .{2,4}D .{1,2,3,4,5} 大纲文数1.A1[2011·四川卷] B 【解析】 ∁M N ={1,3,5},所以选B.课标理数13.A1[2011·天津卷] 已知集合A ={x ∈R ||x +3|+|x -4|≤9},B =x ∈R ⎪⎪x =4t +1t -6,t ∈(0,+∞),则集合A ∩B =________.课标理数13.A1[2011·天津卷] {x |-2≤x ≤5} 【解析】 ∵A ={}x ∈R ||x +3|+|x -4|≤9 ={}x ∈R |-4≤x ≤5, B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x =4t +1t -6,t ∈()0,+∞ =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪x ≥24t ×1t -6,t ∈()0,+∞ ={x ∈R |x ≥-2} ∴A ∩B ={x ∈R |-4≤x ≤5}∩{x |x ≥-2}={x |-2≤x ≤5}.课标文数9.A1[2011·天津卷] 已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.课标文数9.A1[2011·天津卷] 3 【解析】 A ={x ∈R ||x -1|<2}={x |-1<x <3}.∴A ∩Z ={0,1,2}, 即0+1+2=3.课标文数1.A1[2011·浙江卷] 若P ={x |x <1},Q ={x |x >-1},则( ) A .P ⊆Q B .Q ⊆PC .∁R P ⊆QD .Q ⊆∁R P 课标文数1.A1[2011·浙江卷] C 【解析】 P ={x |x <1},∴∁R P ={x |x ≥1}.又∵Q ={x |x >-1},∴Q ⊇∁R P ,故选C.大纲文数2.A1[2011·重庆卷] 设U=R,M={x|x2-2x>0},则∁U M=()A.[0,2] B.(0,2)C.(-∞,0)∪(2,+∞) D.(-∞,0]∪[2,+∞)大纲文数2.A1[2011·重庆卷] A【解析】解不等式x2-2x>0,得x>2或x<0.即集合M={x|x>2或x<0},∴∁U M={x|0≤x≤2}.故选A.课标理数7.A2[2011·安徽卷] 命题“所有能被2整除的整数都是偶数”的否定..是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数课标理数7.A2[2011·安徽卷] D【解析】本题是一个全称命题,其否定是特称命题,同时将命题的结论进行否定,答案为D.课标文数20.D2,A2[2011·北京卷] 若数列A n:a1,a2,…,a n(n≥2)满足|a k+1-a k|=1(k=1,2,…,n-1),则称A n为E数列.记S(A n)=a1+a2+…+a n.(1)写出一个E数列A5满足a1=a3=0;(2)若a1=12,n=2000,证明:E数列A n是递增数列的充要条件是a n=2011;(3)在a1=4的E数列A n中,求使得S(A n)=0成立的n的最小值.课标文数20.D2,A2[2011·北京卷] 【解答】(1)0,1,0,1,0是一个满足条件的E数列A5.[来源:学#科#网] (答案不唯一,0,-1,0,1,0;0,±1,0,1,2;0,±1,0,-1,-2;0,±1,0,-1,0都是满足条件的E数列A5)(2)必要性:因为E数列A n是递增数列,所以a k+1-a k=1(k=1,2,…,1999).所以A n是首项为12,公差为1的等差数列.所以a2000=12+(2000-1)×1=2011,充分性:由于a2000-a1999≤1.a1999-a1998≤1.……a2-a1≤1.所以a2000-a1≤1999,即a2000≤a1+1999.又因为a1=12,a2000=2011.所以a2000=a1+1999.故a k+1-a k=1>0(k=1,2,…,1999),即E数列A n是递增数列.综上,结论得证.(3)对首项为4的E数列A n,由于a2≥a1-1=3,a3≥a2-1≥2,……a8≥a7-1≥-3,……所以a1+a2+…+a k>0(k=2,3,…,8).所以对任意的首项为4的E数列A n,若S(A n)=0,则必有n≥9.又a1=4的E数列A9:4,3,2,1,0,-1,-2,-3,-4满足S(A9)=0,所以n的最小值是9.课标理数2.A2[2011·福建卷] 若a∈R,则“a=2”是“(a-1)(a-2)=0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件课标理数2.A2[2011·福建卷] A【解析】若a=2,则(a-1)(a-2)=0成立;若(a-1)(a-2)=0,则a=2或a=1,则a=2是(a-1)(a-2)=0的充分而不必要条件,故选A.课标文数3.A2[2011·福建卷] 若a∈R,则“a=1”是“|a|=1”的()A.充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 课标文数3.A2[2011·福建卷] A 【解析】 若a =1,则|a |=1成立;若|a |=1,则a =-1或a =1, 则a =1是|a |=1的充分而不必要条件,故选A.课标理数9.A2[2011·湖北卷] 若实数a ,b 满足a ≥0,b ≥0,且ab =0,则称a 与b 互补.记φ(a ,b )=a 2+b 2-a -b ,那么φ(a ,b )=0是a 与b 互补的( )A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件 课标理数9.A2[2011·湖北卷] C 【解析】 若φ(a ,b )=0,则a 2+b 2=a +b ,两边平方整理得ab =0,且a ≥0,b ≥0,所以a ,b 互补;若a ,b 互补,则a ≥0,b ≥0,且ab =0,所以a +b ≥0,此时有φ()a ,b =()a +b 2-2ab-()a +b =()a +b 2-()a +b =()a +b -()a +b =0,所以“φ()a ,b =0”是a 与b 互补的充要条件.课标文数10.A2[2011·湖北卷] 若实数a ,b 满足a ≥0,b ≥0,且ab =0,则称a 与b 互补.记φ(a ,b )=a 2+b 2-a -b ,那么φ(a ,b )=0是a 与b 互补的( )A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件 课标文数10.A2[2011·湖北卷] C 【解析】 若φ(a ,b )=0,则a 2+b 2=a +b ,两边平方整理得ab =0,且a ≥0,b ≥0,所以a ,b 互补;若a ,b 互补,则a ≥0,b ≥0,且ab =0,所以a +b ≥0,此时有φ()a ,b =()a +b 2-2ab-()a +b =()a +b 2-()a +b =()a +b -()a +b =0,所以“φ()a ,b =0”是a 与b 互补的充要条件.课标理数2.A2[2011·湖南卷] 设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件 课标理数2.A2[2011·湖南卷] A 【解析】 当a =1时,N ={1},此时有N ⊆M ,则条件具有充分性;当N ⊆M 时,有a 2=1或a 2=2得到a 1=1,a 2=-1,a 3=2,a 4=-2,故不具有必要性,所以“a =1”是“N ⊆M ”的充分不必要条件, 故选A.课标文数3.A2[2011·湖南卷] “x >1”是“|x |>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 课标文数3.A2[2011·湖南卷] A 【解析】 由不等式||x >1得x <-1或x >1.当x >1时,一定有||x >1成立,则条件具有充分性;当||x >1不一定有x >1,则不具有必要性,故选A.课标理数8.A2[2011·江西卷] 已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d 1,平面α2,α3之间的距离为d 2,直线l 与α1,α2,α3分别相交于P 1,P 2,P 3,那么“P 1P 2=P 2P 3”是“d 1=d 2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件课标理数5.A2[2011·山东卷] 对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件课标理数5.A2[2011·山东卷] B【解析】由判定充要条件方法之一——定义法知,由“y=f(x)是奇函数”可以推出“y=|f(x)|的图象关于y轴对称”,反过来,逆推不成立,所以选B.课标文数5.A2[2011·山东卷] 已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是() A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3课标文数5.A2[2011·山东卷] A【解析】命题的否命题是原命题的条件与结论分别否定后组成的命题,所以选择A.课标理数1.A2[2011·陕西卷] 设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是()A.若a≠-b,则|a|≠|b| B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-b D.若|a|=|b|,则a=-b课标理数1.A2[2011·陕西卷] D【解析】利用原命题和逆命题之间的关系“如果第一个命题的条件和结论分别是第二个命题的结论和条件,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做原命题的逆命题.即原命题:若p,则q;逆命题:若q,则p”,故答案为D.课标文数1.A2[2011·陕西卷] 设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是()A.若a≠-b,则|a|≠|b|B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-b D.若|a|=|b|,则a=-b课标文数1.A2[2011·陕西卷] D【解析】利用原命题和逆命题之间的关系“如果第一个命题的条件和结论分别是第二个命题的结论和条件,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做原命题的逆命题.即原命题:若p,则q;逆命题:若q,则p”,故答案为D.大纲文数5.A2[2011·四川卷] “x=3”是“x2=9”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件大纲文数5.A2[2011·四川卷] A【解析】x=3⇒x2=9,但x2=9⇒x=±3,所以“x=3”是“x2=9”的充分不必要条件.大纲理数5.A2[2011·四川卷] 函数f (x )在点x =x 0处有定义是f (x )在点x =x 0处连续的( ) A .充分而不必要的条件 B .必要而不充分的条件 C .充要条件D .既不充分也不必要的条件 大纲理数5.A2[2011·四川卷] B 【解析】 在x =x 0处连续不仅需要有定义,还需要在该点处的极限值与函数值相等,所以函数在x =x 0处有定义是在该点处连续的必要不充分条件.所以选B.课标理数2.A2[2011·天津卷] 设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )[来源:学+科+网] A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 课标理数2.A2[2011·天津卷] A 【解析】 当x ≥2且y ≥2时,一定有x 2+y 2≥4;反过来当x 2+y 2≥4,不一定有x ≥2且y ≥2,例如x =-4,y =0也可以,故选A.课标文数 4.A2[2011·天津卷] 设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 课标文数4.A2[2011·天津卷] C 【解析】 ∵A ={x ∈R | x -2>0},B ={x ∈R |x <0}, ∴A ∪B ={x ∈R |x <0或x >2}.又∵C ={x ∈R |x (x -2)>0}={x ∈R |x <0或x >2}, ∴A ∪B =C ,即“x ∈A ∪B ”是“x ∈C ”的充分必要条件.课标理数7.A2[2011·浙江卷] 若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a”的( )[来源:学科网]A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件课标理数7.A2[2011·浙江卷] A 【解析】 当a >0,b >0时,由0<ab <1两边同除b 可得a <1b成立;当a <0,b <0时,两边同除以a 可得b >1a 成立,∴“0<ab <1”是“a <1b 或b >1a”的充分条件.反过来,若ab <0,由a <1b 或b >1a 得不到0<ab <1.大纲理数2.A2[2011·重庆卷] “x <-1”是“x 2-1>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 大纲理数2.A2[2011·重庆卷] A 【解析】 解不等式x 2-1>0,得x <-1或x >1, 因此当x <-1成立时,x 2-1>0成立;而当x <-1或x >1成立时,x <-1不一定成立.故选A.课标理数20.D5,A3[2011·北京卷] 若数列A n :a 1,a 2,…,a n (n ≥2)满足|a k +1-a k |=1(k =1,2,…,n -1),则称A n 为E 数列.记S (A n )=a 1+a 2+…+a n .(1)写出一个满足a 1=a 5=0,且S (A 5)>0的E 数列A 5;(2)若a 1=12,n =2000.证明:E 数列A n 是递增数列的充要条件是a n =2011;(3)对任意给定的整数n (n ≥2),是否存在首项为0的E 数列A n ,使得S (A n )=0?如果存在,写出一个满足条件的E 数列A n ;如果不存在,说明理由.课标理数20.D5,A3[2011·北京卷] 【解答】 (1)0,1,2,1,0是一个满足条件的E 数列A 5. (答案不唯一,0,1,0,1,0也是一个满足条件的E 数列A 5) (2)必要性:因为E 数列A n 是递增数列, 所以a k +1-a k =1(k =1,2,…,1999).所以A n是首项为12,公差为1的等差数列.[来源:学§科§网]所以a2000=12+(2000-1)×1=2011.充分性:由于a2000-a1999≤1,a1999-a1998≤1,……a2-a1≤1,所以a2000-a1≤1999,即a2000≤a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999,故a k+1-a k=1>0(k=1,2,…,1999),即E数列A n是递增数列.综上,结论得证.(3)令c k=a k+1-a k(k=1,2,…,n-1),则c k=±1,因为a2=a1+c1,a3=a1+c1+c2,……a n=a1+c1+c2+…+c n-1,所以S(A n)=na1+(n-1)c1+(n-2)c2+(n-3)c3+…+c n-1=(n-1)+(n-2)+…+1-[(1-c1)(n-1)+(1-c2)·(n-2)+…+(1-c n-1)]=n n-12-[(1-c1)(n-1)+(1-c2)(n-2)+…+(1-c n-1)].因为c k=±1,所以1-c k为偶数(k=1,2,…,n-1),所以(1-c1)(n-1)+(1-c2)(n-2)+…+(1-c n-1)为偶数,所以要使S(A n)=0,必须使n n-12为偶数,即4整除n(n-1),亦即n=4m或n=4m+1(m∈N*).当n=4m(m∈N*)时,E数列A n的项满足a4k-1=a4k-3=0,a4k-2=-1,a4k=1(k=1,2,…,m)时,有a1=0,S(A n)=0;当n=4m+1(m∈N*)时,E数列A n的项满足a4k-1=a4k-3=0,a4k-2=-1,a4k=1(k=1,2,…,m),a4m +1=0时,有a1=0,S(A n)=0;当n=4m+2或n=4m+3(m∈N*)时,n(n-1)不能被4整除,此时不存在E数列A n,使得a1=0,S(A n)=0.课标文数4.A3[2011·北京卷] 若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.綈p是真命题D.綈q是真命题课标文数4.A3[2011·北京卷] D【解析】p是真命题,则綈p是假命题;q是假命题,则綈q是真命题,故应选D.课标文数4.A3[2011·辽宁卷] 已知命题p:∂n∈N,2n>1000,则綈p为()A.∀n∈N,2n≤1000 B.∀n∈N,2n>1000C.∂n∈N,2n≤1000 D.∂n∈N,2n<1000课标文数4.A3[2011·辽宁卷] A【解析】命题p用语言叙述为“存在正整数n,使得2n>1000成立”,所以它的否定是“任意的正整数n,使得2n≤1000成立”,用符号表示为“∀n∈N,2n≤1000”课标理数2.A4[2011·广东卷] 已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.3课标理数2.A4[2011·广东卷] C【解析】集合A表示以原点为圆心的单位圆,集合B表示过原点的直线,显然有两个交点,故选C.课标理数8.A4[2011·广东卷] 设S是整数集Z的非空子集,如果∀a,b∈S,有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz ∈V ,则下列结论恒成立的是( )A .T ,V 中至少有一个关于乘法是封闭的B .T ,V 中至多有一个关于乘法是封闭的C .T ,V 中有且只有一个关于乘法是封闭的D .T ,V 中每一个关于乘法都是封闭的 课标理数8.A4[2011·广东卷] A 【解析】 T 全部是偶数,V 全部是奇数,那么T ,V 对乘法是封闭的,但如果T 是全部偶数和1,3,那么此时T ,V 都符合题目要求,但是在V 里面,任意取的数是-1和-3,那么相乘等于3,而V 里面没有3,所以V 对乘法不封闭.排除B 、C 、D 选项,所以“至少一个”是对的.课标文数2.A4[2011·广东卷] 已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且x +y =1},则A ∩B 的元素个数为( )A .4B .3C .2D .1 课标文数2.A4[2011·广东卷] C 【解析】 集合A 表示以原点为圆心的单位圆,集合B 表示过点(1,0),(0,1)的直线,显然有两个交点,故选C.课标理数2.A4[2011·江西卷] 若集合A ={x |-1≤2x +1≤3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -2x ≤0,则A ∩B =( )A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x|0≤x ≤2} D .{x |0≤x ≤1} 课标理数2.A4[2011·江西卷] B 【解析】 ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}.故选B.[2011·广东广雅中学期末] 下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“存在x ∈R ,使得x 2+x +1<0”的否定是:“对任意x ∈R, 均有x 2+x +1<0”D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题[2011·湖南六校联考] 已知命题p :“∀x ∈R ,∂m ∈R,4x -2x +1+m =0”,且命题綈p 是假命题,则实数m 的取值范围为________.[2011·丰台期末] 若X是一个集合,τ是一个以X的某些子集为元素的集合,且满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X上的一个拓扑.已知集合X={a,b,c},对于下面给出的四个集合τ:①τ={∅,{a}, {c}, {a, b, c}};②τ={∅,{b}, {c}, {b, c}, {a, b, c}};③τ={∅,{a}, {a, b}, {a, c}};④τ={∅,{a, c}, {b, c}, {c}, {a, b, c}}.其中是集合X上的拓扑的集合τ的序号是________.。