佛山市近五年中考数学试卷知识点分布
- 格式:xls
- 大小:19.00 KB
- 文档页数:3
佛山中考数学试卷2023【引言】在中考这场重要的选拔赛中,数学试卷历来都是考生们关注的焦点。
尤其是佛山中考数学试卷2023,更是引起了广大考生的高度重视。
本文将为您详细解析这份试卷,帮助您了解试题特点,掌握解题策略,为备考提供有力支持。
【试卷结构】佛山中考数学试卷2023整体保持了一贯的试卷结构,分为选择题、填空题、解答题三个部分。
试卷总分为150分,各部分分值分布如下:1.选择题(共10题,每题4分,总计40分)2.填空题(共10题,每题4分,总计40分)3.解答题(共5题,每题20分,总计100分)【试题特点】1.难度适中:试卷整体难度系数较为适中,既考查了基础知识点,也有一定程度的能力拓展。
2.题型多样:试卷涵盖了多种题型,如几何题、代数题、函数题、统计题等,充分考查了考生的综合能力。
3.注重基础:试卷重视对基础知识点的考查,强调数学运算、数学思维能力的培养。
4.联系实际:试卷中的试题紧密联系生活实际,体现了数学在解决实际问题中的应用价值。
【解题策略】1.审题认真:仔细阅读题目,理解题意,提炼关键信息。
2.答题规范:遵循解题步骤,保持卷面整洁,避免因不规范答题而失分。
3.策略选择:针对不同题型,采用相应的解题策略,如几何题可以使用几何法、代数法等。
4.知识整合:运用所学知识点,进行灵活组合和拓展,提高解题效率。
【备考建议】1.打牢基础:加强对初中数学基础知识的复习,强化记忆和理解。
2.强化训练:多做模拟试题,提高解题速度和正确率。
3.查漏补缺:针对自己的薄弱环节,有针对性地进行学习和提高。
4.调整心态:保持良好的学习状态和心态,积极应对中考挑战。
【结语】面对佛山中考数学试卷2023,相信只要广大考生按照以上建议认真备考,积极应对,定能在考试中取得优异成绩。
广东数学中考知识点归纳广东数学中考涵盖了初中数学的核心知识点,以下是对这些知识点的归纳总结:数与代数1. 有理数:包括正数、负数、零的概念,有理数的四则运算法则。
2. 实数:实数的分类,包括有理数和无理数,以及实数的运算。
3. 代数式:代数式的基本概念,如单项式、多项式,以及它们的加减乘除运算。
4. 方程与不等式:一元一次方程、一元二次方程的解法,不等式的基本性质和解法。
5. 函数:函数的概念,自变量与因变量的关系,线性函数、二次函数的基本性质。
几何1. 平面图形:点、线、面、角的基本性质,特殊角的计算,平行线的性质。
2. 三角形:三角形的分类,三角形的内角和定理,全等三角形的判定和性质。
3. 四边形:四边形的分类,特殊四边形的性质,如平行四边形、矩形、菱形、正方形。
4. 圆:圆的基本性质,圆周角定理,切线的性质,弧长和扇形面积的计算。
5. 图形的变换:包括平移、旋转、反射等几何变换。
统计与概率1. 数据的收集与处理:数据的收集方法,数据的整理和描述。
2. 统计图表:条形图、折线图、饼图的绘制和解读。
3. 概率:概率的基本概念,事件的独立性,概率的计算方法。
解题技巧1. 审题:仔细阅读题目,理解题意,明确已知条件和求解目标。
2. 画图:对于几何题,画图可以帮助直观理解问题,找到解题思路。
3. 公式运用:熟练掌握各类数学公式,灵活运用于解题中。
4. 逻辑推理:运用逻辑推理能力,分析问题,得出结论。
结束语通过以上的知识点归纳,我们可以看出,广东数学中考不仅要求学生掌握基础的数学知识,还要求具备一定的解题技巧和逻辑思维能力。
希望同学们能够系统复习,查漏补缺,为中考做好充分的准备。
2010佛山市中考数学试题及答卷情况分析第一模块(第二题和16、17题)一、模块构成及得分情况:第一块板包括第11~17题,其中第11~15题为填空题,第16题为分式化简题,第17题为几何证明题(平行四边形的性质和三角形全等的判定). 按不同时间段随机共抽查100份试卷,各部分抽样得分情况如下:(说明:表1-1中“低分率(≤8)”表示小于或等于8分的为低分,下同。
)表1-1(抽样数据):大块板(第11~17题,满分27分):表1-2(全区/全市所评试卷全部数据):二、各部分得分情况及试题评价:1.第11~15题(填空题,满分15分):【得分情况】表2:【试题评价】第11题考查用“提公因式法”分解因式,属于基础题;第12题考查有理数的运算,包括绝对值和最值问题,具有较强的综合性,相对初级中学多数学生而言,难度偏大;第13题考查解不等式组,属于基础题,难度适中;第14题考查反比例函数的图象的画法,自变量的取值范围等,难度中等;第15题考查解直角三角形,以遮阳篷为背景,把知识点融入现实生活中,体现了数学源于生活又应用于生活的特点,但要求学生根据题意构图,而且出现干扰数据,相对初级中学多数学生而言,难度较大。
总的来看,填空题部分本来应该属于基础题,但从抽样数据来看,及格率才65%,看来难度还是偏大了。
其中,第11、13题都是对基本运算能力的考查,很常规;第14题与2009年佛山中考题的第14题(画一次函数的图象)类似;第15题,对学生综合能力的要求还是比较高的,而且具有的较好的区分度。
我们小组认为,第12题和15题,可以选择其中一题,改为更为基础的题目。
【学生答题情况分析】从抽样的情况来看,第11,13题,多数学生答对了,但第12题的得分情况不大乐观,不过,第15题约有43%的学生答对,另外有20%左右的学生答了两个答案,如3或33(或33、334等),可能是受题目的干扰数据影响。
至于第14题,比较多的学生把图象画成了直线或者抛物线,而画成双曲线的,有小部分同学的描点不当(描点不对,统一不给分;描点正确,图象大致,即使变化趋势不当,也给了分)。
2022年广东省佛山市禅城区中考数学五年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A .的B .祖C .国D .我 2、如图,在ABC 中,AB AC =.分别以点A ,B 为圆心,大于12AB 的长为半径画弧.两弧相交于点M 和点N ,作直线MN 分别交BC 、AB 于点D 和点E ,若52C ∠=︒,则CAD ∠的度数是( ) ·线○封○密○外A .22°B .24°C .26°D .28°3、Rt ABC △和Rt CDE △按如图所示的位置摆放,顶点B 、C 、D 在同一直线上,AC CE =,90B D ∠=∠=︒,AB BC >.将Rt ABC △沿着AC 翻折,得到Rt AB C '△,将Rt CDE △沿着CE 翻折,得Rt CD E '△,点B 、D 的对应点B '、D 与点C 恰好在同一直线上,若13AC =,17BD =,则B D ''的长度为( ).A .7B .6C .5D .44、平面直角坐标系中,O 为坐标原点,点A 的坐标为()2,1-,将OA 绕原点按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .()1,2B .()2,1-C .()2,1--D .()1,2--5、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( )A .B .C .D .6、如图所示,AC BD =,AO BO =,CO DO =,30D ∠=︒,则C ∠等于( )A .60︒B .25︒C .30D .35︒ 7、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是( ) A . B .C .D . 8、如图,在梯形ABCD 中,AD ∥BC ,过对角线交点O 的直线与两底分别交于点,EF ,下列结论中,错误的是( )·线○封○密○外A .AE OE FC OF =B .AE BF DE FC = C .AD OE BC OF = D .AD BC DE BF= 9、有理数a 、b 、c 、d 在数轴上对应的点的位置如图所示,则下列结论错误的是( )A .3d >B .0bc <C .0b d +>D .c a c a -+=10、如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,将△ABC 沿AC 翻折,得到△ADC ,再将△ADC 沿AD 翻折,得到△ADE ,连接BE ,则tan∠EBC 的值为( )A .819B .413C .25 D .512第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是两个全等的三角形,图中字母表示三角形的边长,则∠1的度数为________º.2、如果点A (﹣1,3)、B (5,n )在同一个正比例函数的图像上,那么n =___.3、如图,在一条可以折叠的数轴上,A 、B 两点表示的数分别是7-,3,以点C 为折点,将此数轴向右对折,若点A 折叠后在点B 的右边,且AA =2,则C 点表示的数是______.4、已知圆弧所在圆的半径为36cm .所对的圆心角为60°,则该弧的长度为______cm .5、单项式−A 2A 2的系数是______. 三、解答题(5小题,每小题10分,共计50分)1、郑州到西安的路程为480千米,由于西安疫情紧张,郑州物资中心对西安进行支援.甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,已知乙车的速度为每小时80km ,且到郑州后停止行驶,进行消毒.它们离各自出发地的距离()km y 与行驶时间()h x 之间的关系如下图所示. (1)m =______,n =______. (2)请你求出甲车离出发地郑州的距离()km y 与行驶时间()h x 之间的函数关系式. ·线○封○密○外(3)求出点P的坐标,并说明此点的实际意义.(4)直接写出甲车出发多长时间两车相距40千米.2、小明根据学习函数的经验,对函数y=﹣|x|+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题.(1)如表y与x的几组对应值:①a=;②若A(b,﹣7)为该函数图象上的点,则b=;(2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:①该函数有(填“最大值”或“最小值”),并写出这个值为;②求出函数图象与坐标轴在第二象限内所围成的图形的面积.3、如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.4、如图,直线112y x =+与x ,y 轴分别交于点B ,A ,抛物线22y ax ax c =-+过点A . (1)求出点A ,B 的坐标及c 的值; (2)若函数22y ax ax c =-+在14x -≤≤时有最小值为4-,求a 的值; (3)当12a =时,在抛物线上是否存在点M ,使得1ABM S =,若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由. 5、先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中a =,2b = -参考答案- 一、单选题1、B【分析】·线○封○密·○外正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2、B【分析】由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.【详解】,解:∵AB AC∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,由尺规作图痕迹可知:MN垂直平分AB,∴DA=DB,∴∠DAB=∠B=52°,∴∠CAD=∠BAC-∠DAB=76°-52°=24°.故选:B.【点睛】本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键. 3、A【分析】由折叠的性质得ABC AB C '≅,CDE CD E '≅,故ACB ACB '∠=∠,DCE D CE '∠=∠,推出90ACB DCE ∠+∠=︒,由90B D ∠=∠=︒,推出BAC DCE ∠=∠,根据AAS 证明ABC CDE ≅,即可得AB CD CD '==,BC ED CB '==,设BC x =,则17AB x =-,由勾股定理即可求出BC 、AB ,由B D CD CB AB BC ''''=-=-计算即可得出答案. 【详解】 由折叠的性质得ABC AB C '≅,CDE CD E '≅, ∴ACB ACB '∠=∠,DCE D CE '∠=∠, ∴90ACB DCE ∠+∠=︒, ∵90B D ∠=∠=︒, ∴90BAC ACB ∠+∠=︒, ∴BAC DCE ∠=∠, 在ABC 与CDE △中, B D BAC DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CDE AAS ≅, ∴AB CD CD '==,BC ED CB '==, 设BC x =,则17AB x =-, ∴222(17)13x x +-=, 解得:5x =, ·线○封○密·○外∴5BC =,12AB =,∴1257B D CD CB AB BC ''''=-=-=-=.故选:A .【点睛】本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.4、D【分析】如图过点A 作AC 垂直于y 轴交点为C ,过点B 作BD 垂直于y 轴交点为D ,909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,A BOD ∠=∠,故有AOC OBD ≌,21OD AC BD OC ====,,进而可得B 点坐标.【详解】解:如图过点A 作AC 垂直于y 轴交点为C ,过点B 作BD 垂直于y 轴交点为D∵909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,∴A BOD ∠=∠在AOC △和OBD 中90A BODACO ODB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩ ∴()AOC OBD AAS ≌ ∴21OD AC BD OC ====, ∴B 点坐标为(1,2)-- 故选D . 【点睛】 本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示. 5、A 【分析】 由平面图形的折叠及图形的对称性展开图解题. 【详解】 由第一次对折后中间有一个矩形,排除B 、C ; 由第二次折叠矩形正在折痕上,排除D ; 故选:A . 【点睛】 本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图形的折叠及图形的对称性展开图解答. 6、C 【分析】 根据“SSS”证明△AOC ≌△BOD 即可求解. 【详解】·线○封○密○外解:在△AOC 和△BOD 中AC BD AO BO CO DO =⎧⎪=⎨⎪=⎩, ∴△AOC ≌△BOD ,∴∠C =∠D ,∵30D ∠=︒,∴C ∠=30°,故选C .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.7、C【分析】根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案.【详解】解:A 、是轴对称图形,不是中心对称图形,故错误;B 、是轴对称图形,不是中心对称图形,故错误;C 、既是轴对称图形,又是中心对称图形,故正确;D 、既不是轴对称图形,也不是中心对称图形,故错误.故选:C .【点睛】本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8、B【分析】根据AD ∥BC ,可得△AOE ∽△COF ,△AOD ∽△COB ,△DOE ∽△BOF ,再利用相似三角形的性质逐项判断即可求解. 【详解】解:∵AD ∥BC ,∴△AOE ∽△COF ,△AOD ∽△COB ,△DOE ∽△BOF , ∴AE AO OE FC CO OF ==,故A 正确,不符合题意; ∵AD ∥BC , ∴△DOE ∽△BOF , ∴DE OE DO BF OF BO ==, ∴AE DE FC BF =, ∴AE FC DE BF=,故B 错误,符合题意; ∵AD ∥BC , ∴△AOD ∽△COB , ∴AD AO DO BC CO BO ==, ∴AD OE BC OF =,故C 正确,不符合题意; ∴DE AD BF BC = , ∴AD BC DE BF =,故D 正确,不符合题意; 故选:B·线○封○密○外【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.9、C【分析】根据有理数a ,b ,c ,d 在数轴上对应的点的位置,逐个进行判断即可.【详解】解:由有理数a ,b ,c ,d 在数轴上对应的点的位置可得,-4<d <-3<-1<c <0<1<b <2<3<a <4, ∴3d >,0bc <,0b d +<,c a c c a c a -+=-++=,故选:C .【点睛】本题考查数轴表示数的意义,根据点在数轴上的位置,确定该数的符号和绝对值是正确判断的前提.10、A【分析】解:如图,连接CE ,交AD 于,H 过E 作EM BD ⊥于,M 先求解1224,,55CHCE 设,,DM x EM y 再利用勾股定理构建方程组{A 2+A 2=9(3+A )2+A 2=(245)2 ,再解方程组即可得到答案.【详解】解:如图,连接CE ,交AD 于,H 过E 作EM BD ⊥于,M由对折可得:3,4,90,BC CD DE AC AE ACB ACD AED∴AA =AA =5,AA ⊥AA ,AA =AA , ∵12AAAA =12AAAA , ∴AA =125,AA =245, 设,,DMx EM y ∴{A 2+A 2=9(3+A )2+A 2=(245)2 解得:{A =2125A =7225 或{A =2125A =−7225 (舍去) ∴AA =6+2125=17125, ∴AAA ∠AAA =722517125=72171=819. 故选A 【点睛】 本题考查的是轴对称的性质,勾股定理的应用,一元二次方程的解法,锐角的正切,作出适当的辅助线构建直角三角形是解本题的关键. 二、填空题1、70【分析】·线○封○密○外如图(见解析),先根据三角形的内角和定理可得∠2=70°,再根据全等三角形的性质即可得.【详解】解:如图,由三角形的内角和定理得:∠2=180°−50°−60°=70°,∵图中的两个三角形是全等三角形,在它们中,边长为A和A的两边的夹角分别为∠2和∠1,∴∠1=∠2=70°,故答案为:70.【点睛】本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.2、−15【分析】设过A(−1,3)的正比例函数为:A=AA,求解A的值及函数解析式,再把A(5,A)代入函数解析式即可.【详解】解:设过A(−1,3)的正比例函数为:A=AA,∴−A=3,解得:A=−3,所以正比例函数为:A=−3A,当A=5时,A=A=−3×5=−15,故答案为:−15【点睛】本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.3、1【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.【详解】解:∵A,B表示的数为-7,3,∴AB=3-(-7)=4+7=10,∵折叠后AB=2,∴BC=10−22=4,∵点C在B的左侧,∴C点表示的数为3-4=-1.故答案为:-1.【点睛】本题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.4、12A【分析】根据弧长公式直接计算即可.【详解】∵圆的半径为36cm.所对的圆心角为60°,∴弧的长度为:AAA180=60×A×36180=12π,·线○封○密○外故答案为:12π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式及其使用条件是解题的关键.5、−12##【分析】单项式中的数字因数是单项式的系数,根据概念直接作答即可.【详解】解:单项式−A 2A 2的系数是−12, 故答案为:−12【点睛】本题考查的是单项式的系数的概念,掌握“单项式的系数的概念求解单项式的系数”是解本题的关键.三、解答题1、(1)8,6.5(2)()()1200496012048x x y x x ⎧≤≤⎪=⎨-<≤⎪⎩ (3)点P 的坐标为(5,360),点P 的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米(4)当甲车出发2.4小时或2.8小时或233小时两车相距40千米 【分析】(1)先根据题意判断出直线的函数图像时乙车的,折线的函数图像时甲车的,然后求出甲车的速度即可求出甲返回郑州的时间,即可求出m ;然后算出乙车从西安到郑州需要的时间即可求出n ;(2)分甲从郑州到西安和从西安到郑州两种情况求解即可;(3)根据函数图像可知P 点代表的实际意义是:在P 点时,甲乙两车距自己的出发地的距离相同,由此列出方程求解即可; (4)分情况:当甲车在去西安的途中,甲乙两车相遇前,当甲车在去西安的途中,甲乙两车相遇后,当甲车在返回郑州的途中,乙未到郑州时,当甲车在返回郑州的途中,乙已经到郑州时,四种情况讨论求解即可. (1) 解:∵甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,乙车到底郑州后立即停止, ∴直线的函数图像是乙车的,折线的函数图像是甲车的, 由函数图像可知,甲车4小时从郑州行驶到西安走了480千米, ∴甲车的速度=480÷4=120千米/小时, ∴甲车从西安返回郑州需要的时间=480÷120=4小时, ∴m =4+4=8; ∵乙车的速度为80千米/小时, ∴乙车从西安到达郑州需要的时间=480÷80=6小时, ∵由函数图像可知乙车是在甲车出发0.5小时后出发, ∴n =0.5+6=6.5, 故答案为:8,6.5; (2) 解:当甲车从郑州去西安时, ∵甲车的速度为120千米/小时, ·线○封○密·○外∴甲车与郑州的距离()12004y x x =≤≤,当甲车从西安返回郑州时,∵甲车的速度为120千米/小时,∴甲车与郑州的距离()()480120496012048y x x x =--=-<≤,∴()()1200496012048x x y x x ⎧≤≤⎪=⎨-<≤⎪⎩; (3)解:根据函数图像可知P 点代表的实际意义是:在P 点时,甲乙两车距自己的出发地的距离相同, ∵此时甲车处在返程途中,∴()960120800.5x x -=-,解得5x =,∴9601205360y =-⨯=,∴点P 的坐标为(5,360),∴点P 的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米;(4)解:当甲车在去西安的途中,甲乙两车相遇前,由题意得:()120800.548040x x +-=-,解得 2.4x =;当甲车在去西安的途中,甲乙两车相遇后,由题意得:()120800.548040x x +-=+,解得 2.8x =;当甲车在返回郑州的途中,乙未到郑州时, 由题意得:()960120480800.540x x ----=⎡⎤⎣⎦ 解得10x =(不符合题意,舍去), 当甲车在返回郑州的途中,乙已经到郑州时, 由题意得:96012040x -= 解得233x =; 综上所述,当甲车出发2.4小时或2.8小时或233小时两车相距40千米. 【点睛】本题主要考查了从函数图像获取信息,一元一次方程的应用,正确理解题意是解题的关键. 2、(1)①0;②±10;(2)见解析;①最大值,3;②92 【分析】 (1)①根据表中对应值和对称性即可求解;②将点A 坐标代入函数解析式中求解即可; (2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.(1) 解:①由表可知,该函数图象关于y 轴对称,∵当x =-3时,y =0,∴当x =3时,a =0,·线○封○密○外故答案为:0;②将A(b,-7)代入y=﹣|x|+3中,得:-7=﹣|b|+3,即|b|=10,解得:b=±10,故答案为:±10;(2)解:函数y=﹣|x|+3的图象如图所示:①由图象可知,该函数有最大值,最大值是3,故答案为:最大值,3;②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为193322⨯⨯=.【点睛】本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键.3、48AC=,28AB=【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =. 【详解】 由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=∵2AC BC =,D 为BC 中点∴244AC BC CD BD === ∴156044AC CD AC AC AC +=+== 即460485AC =⨯= 则BC =24,CD =BD =12 则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.4、(1)A (0,1),B (-2,0),c =1. (2)5或58-. (3)1112M ⎛⎫ ⎪⎝⎭,,()221M ,,34M M ⎝⎭⎝⎭, 【分析】 (1)根据两轴的特征可求y =12x +1与x 轴,y 轴的交点坐标,然后将点A 坐标代入抛物线解析式即可; ·线○封○密○外(2)将抛物线配方为顶点式,根据抛物线开口向上与向下两种情况,当a >0,在—1≤x ≤4时,抛物线在顶点处取得最小值,当x =1时,y 有最小值, 当a <0,在—1≤x ≤4时,离对称轴越远函数值越小,即可求解;(3)存在符合条件的M 点的坐标, 当12a =时,抛物线解析式为:2112y x x =-+,设点P 在y 轴上,使△ABP 的面积为1,点P (0,m ),12112ABP Sm =⨯⨯-=, 求出点P 2(0,0),或P 1(0,2),ABM ABP S S =,可得点M 在过点P 与AB 平行的两条直线上,①过点P 2与 AB 平行直线的解析式为:12y x =,联立方程组212112y x y x x ⎧=⎪⎪⎨⎪=-+⎪⎩,解方程组得出1112M ⎛⎫ ⎪⎝⎭,,()221M ,,②过点P 1与AB 平行的直线解析式为:122y x =+,联立方程组2122112y x y x x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解方程组得出34M M ⎝⎭⎝⎭,即可. (1)解:在y =12x +1中,令y =0,得x =-2;令x =0,得y =1,∴A (0,1),B (-2,0).∵抛物线y =ax 2-2ax +c 过点A ,∴c =1.(2)解:y =ax 2-2ax +1=a (x 2-2x +1-1)+1=a (x -1)2+1-a ,∴抛物线的对称轴为x =1,当a >0,在—1≤x ≤4时,抛物线在顶点处取得最小值,∴当x =1时,y 有最小值,此时1-a=—4,解得a=5;当a<0,在—1≤x≤4时,∵4-1=3>1-(-1)=2,离对称轴越远函数值越小,∴当x=4时,y有最小值,此时9a+1-a=—4,解得a=58 -,综上,a的值为5或58 -.(3)解:存在符合条件的M点的坐标,分别为11 1 2M ⎛⎫⎪⎝⎭,,()221M,,34M M⎝⎭⎝⎭,,当12a=时,抛物线解析式为:2112y x x=-+,设点P在y轴上,使△ABP的面积为1,点P(0,m),∵12112ABPS m=⨯⨯-=,∴11m-=,解得122,0m m==,∴点P2(0,0),或P1(0,2),∴ABM ABPS S=,∴点M在过点P与AB平行的两条直线上,·线○封○密○外①过点P 2与 AB 平行直线的解析式为:12y x =, 将12y x =代入2112y x x =-+中, 212112y x y x x ⎧=⎪⎪⎨⎪=-+⎪⎩, 解得112x y =⎧⎪⎨=⎪⎩,21x y =⎧⎨=⎩, ∴1112M ⎛⎫ ⎪⎝⎭,,()221M , ②过点P 1与AB 平行的直线解析式为:122y x =+, 将122y x =+代入2112y x x =-+中, 2122112y x y x x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得x x y y ⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩∴ 34M M ⎝⎭⎝⎭,,综上所述,存在符合条件的M点的坐标,分别为11 1 2M ⎛⎫⎪⎝⎭,,()221M,,34M M⎝⎭⎝⎭,.【点睛】本题考查一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立方程组,三角形面积,掌握一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立解方程组,三角形面积公式是解题关键.5、ab,1【分析】根据分式的减法和除法可以化简题目中的式子,然后将a,b的值代入化简后的式子即可解答本题.【详解】解:222a ab b a ba b a b ab⎛⎫---÷⎪--⎝⎭222+=a ab b a ba b ab--÷-2()=a b aba b a b---=ab;当a=2b==(2431=-=【点睛】本题考查分式的化简求值、分式的混合运算,需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.·线○封○密○外。
近五年中考数学试卷分析⼀、考点对⽐⼆、试卷分析数学中考主要考察学⽣对基本⽅法、基本知识、基本技能的考查,因此较少偏、怪、难的题⽬,⼤多数题⽬都来源于课本或者课本⽴体的改编,解法都能从课本上找到影⼦。
因此解题的关键就是要回归课本,掌握典型例题、课后习题的规律及解法,这样考试时才能得⼼应⼿,沉着应对。
把2015-2019这五年的中考数学试卷进⾏分析我们可得到以下结论:1、试卷满分都是150分,考试时间120分钟;2、题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分);3、试卷难度不⼤,基础题占有122分(82%),有难度拔⾼题占有28分(18%);4、代数部分考查分数⼤概是80~90分(),⼏何部分考查分数60~70分%);5、知识点的考查⽐较有规律,常规题型的变化不⼤三、题型探究1、代数部分(1)函数函数部分是代数部分的重点内容,也是难点内容,考查的对象主要是:⼀次函数、反⽐例函数、⼆次函数。
考查重点在于以下⼏点:函数解析式的求法,难度较低,熟悉待定系数法等⽅法即可;三种函数图像的基本性质的应⽤,难度中等;函数的实际应⽤,常出现在试卷难度最⼤的代数综合题、代⼏综合题中,分值在20-40分不等。
(2015)14.某⽔库的⽔位在5⼩时内持续上涨,初始的⽔位⾼度为6⽶,⽔位以每⼩时⽶的速度匀速上升,则⽔库的⽔位⾼度y ⽶与时间x ⼩时0≤x≤5的函数关系式为 . (2016?⼴州)⼀司机驾驶汽车从甲地去⼄地,他以平均80千⽶/⼩时的速度⽤了4个⼩时到达⼄地,当他按原路匀速返回时.汽车的速度v 千⽶/⼩时与时间t ⼩时的函数关系是()A .v=320tB .v=C .v=20tD .v=(2016)若⼀次函数y=ax+b 的图象经过第⼀、⼆、四象限,则下列不等式中总是成⽴的是() A .ab >0B .a ﹣b >0C .a 2+b >0 D .a+b >0(2017)关于的⼀元⼆次⽅程有两个不相等的实数根,则的取值范围是A.B.C. D.(2019)若点),1(1y A -,),2(2y B ,),3(3y C 在反⽐例函数xy 6=的图像上,则321,,y y y 的⼤⼩关系是()(A )123y y y << (B )312y y y << (C )231y y y << (D )321y y y << (2)不等式与⽅程不等式与⽅程的复习,要以基础为主,不要只研究难题,要注重过程以及⽅法的总结。
近五年中考数学题型设置与分值参考常见题型部分第一部分实数1.以倒数、相反数、绝对值、实数的概念为知识点来命制试题,常以选择、填空题的形式出现,3分;2.以科学记数法与有效数字为知识点来命制试题,常以选择、填空题的形式出现,3分;3.以考察对基本公式的识记情况为基础来命制试题,多与整式运算相结合,只以判断类型的选择题出现,3分;4.数式计算,常以计算题的形式出现,5分。
第二部分整式1.以整式的基本运算来命制试题,偶见与实数运算相结合,多以判断类型的选择题出现,3分;2.以整式的基本计算来命制试题,一般以填空或化简求值的形式出现.以填空形式出现时较为简单,3分;以化简求值形式出现时有一定难度,6分;3.探索规律型,偶见选择或填空题,3分.第三部分分解因式与分式1.以分解因式的基本方法来命制试题,偶以选择或填空题的形式命制试题,3分;2.以分式的基本概念、基本运算为基础并与分解因式相结合来命制试题.偶见对基本概念的考查只以选择或填空题的形式出现,3分;多以分式化简的形式来命制选择或填空题,3分,常见以简答题的形式来命制化简求值型的试题,6分.第四部分解方程(组)1.在选择、填空题中,多以考察方程(组)的基本概念、基本解法和列方程(组)解运用题,常见知识点如根与系数的关系、不解方程列方程组或分式方程解运用题,3分;2.在简答题中,常见解二元一次方程组或分式方程,6分,解以二元一次方程组或分式方程的运用题,7~8分;3.在函数中主要应用于求函数的解析式,一般常见于解简单的二元或三元一次方程组.第五部分方程型运用题1.以列方程组或分式方程但不解方程的形式命题,常见选择、填空题,3分;2.以方程组或分式方程的形式命制各种类型的运用题,以简答形式出现,7~8分.第六部分一元一次不等式(组)1.以不等式的基本性质为考点命制选择或填空题,一般难度较低,易得分,3分;2.以不等式的基本性质为考点命制计算题,难度不大,易得分,5分;3.以不等式(组)为工具命制简答题,用于解决实际生产、生活或以民生相关的运用问题,多见于方案设计类型,8~9分.第七部分一次函数与反比例函数1.以反比例函数的基本性质作为考点命制选择或填空题,多以面积相关,3分;2.以待定系数法作为考点命制简答题,主要考察一次函数的基本性质、二元一次方程组的解法与自变量的取值范围,多与反比例函数相结合,有时也考察一次函数的简单运用,7分.第八部分二次函数1.以实际问题或与面积相关的材料为背景命制选择或填空题,多与求二次函数的表达式有关,不常见,3分;2.以二次函数的基本性质作为工具命制综合性较强的简答题,通常放在压轴题中,常与圆、三角形、四边形相结合来求二次函数的表达式、最值或探究存在性问题,选拔性强,难度大,一般最后一至二问不易得分,12分.第九部分统计与概率1.以数据的代表和概率的简单计算为基本考点命制选择或填空题,易得分,3分;2.以统计表、条形统计图和扇形统计图作为载体,通过分析数据间的关系解决问题,并对其作出合理判断或预测的形式命制简答题,一般难度不大,易得分,7~8分;3.以求概率的两种基本方法及运用所求结果判断游戏的公平性或据此修改游戏规则为考点命制简答题,难度不大,易得分,6~8分.第十部分线与角1.点、线、面是构成几何图形的基本元素,点动成线、线动成面、面动成体,一般不作为单独考查内容;2.线通常研究两条直线有无交点的情况,命题时主要用于考查学生对平行线的性质与判定的掌握情况,通常放在简答题中并结合证明题来考查;3.角作为几何图形中的基本图形,一般不对其进行单独考查,命题时通常只涉及角平分线的性质与判定,放在简答题中或与其它内容相结合进行考查.第十一部分三角形1.以三角形的三边关系、角的关系及特殊三角形的性质为考点命制选择或填空题,3分;2.以三角形全等的性质及判定条件为依据命制证明题,6~7分;3.以三角形或是能转化为三角形的四边形的周长及面积相关的计算,或是特殊三角形与实际问题相结合并利用直角三角形的有关知识进行的相关计算等来命制简答题,一般在8分左右.第十二部分三角函数1.偶以三角函数的基本概念为基础命制选择填空题,3分;2.常以三角函数的基本知识来命制各类与测量相关的运用问题,7分.第十三部分四边形1.常见多边形内角和定理的运用,平行四边形的判定和性质及特殊平行四边形的判定和性质,等腰梯形的性质,三角形及梯形的中位线定理为基础命制选择、填空题和简单的推理题;2.多以函数、三角函数、全等形、相似形相结合命制综合题;2.偶见等腰梯形的证明、梯形辅助线的添法及有关面积方面的简答题.第十四部分相似形1.以相似形的基本概念为基础来命制选择、填空题,不常见,3分;2.多以三角形相似的性质及判定为基础,结合多边形、圆、函数的相关知识来命制简答题,常与切线证明相结合或放在压轴题的探索证明中.第十五部分圆1.多以点与圆、直线与圆、圆与圆的位置关系,垂径定理,同弧或等弧所对的圆周角相等,同弧所对的圆周角等于圆心角的一半,与圆锥的侧面展开图相关的知识来命制选择、填空题,难度不大,3分;2.常以切线长定理、切线的性质与判定为知识点来命制相关的证明题,多与相似的判定与性质相结合来考查,7分.第十六部分视图与投影常以三视图、中心投影及平行投影的概念来命制选择题,内容简单易于撑握,3分;偶见于简答题。
题号
指数运算指数定义补角指数运算指数运算
3整式运算余角图形的平移与旋转有理数运算
4对称三视图列不等式圆心角与圆周角平面直角坐标系5统计不等式的简单应用直线与圆乘方运算几何体的侧面展开图6概率解分式方程概率多边形对称
7对称数与式的运算尺规作图图形平移和旋转统计
8整式与分式的定义与概率概率圆柱侧面积与三视图综合函数的增减性四边形
9圆锥的侧面积与三视图旋转多项式三视图解一元二次方程10开放性应用题(与高中知识接轨)概率统计命题旋转与扇形面积综合11因式分解近似数因式分解科学计数法解分式方程
12四边形轴对称绝对值(综合)线段多边形
13分数的比较(相除)统计解不等式组四边形反比例函数(单调性)14概率与统计一次函数反比例函数统计一元二次方程应用题15反比例函数图像三角形三边关系和圆与圆的位置关系综合锐角三角函数应用题循环问题四边形面积
16二元一次方程组的解法整式运算(分式)整式运算(分式)整式运算(分式)整式运算
17整式及其运算概率与统计(传统典型大题)四边形与三角形全等综合解不等式组三角形全等
18锐角三角函数应用题三角形全等一元一次不等式应用题三角形相似解不等式组
19概率与统计(传统典型大题)二次函数与图像平移黄金分割(比例列方程)统计(条形图)统计(平均数众数等)20因式分解拔高题实数(根式运算)多项式与一元二次方程圆与解直角三角形概率
21尺规作图不等式与面积结合的应用题概率与统计(典型的概率问题)二次函数(图像)尺规作图
22解不等式组的应用题平面直角坐标系和圆二次函数尺规作图二次函数
23三角形与多边形最短路径问题圆与三角函数的综合应用题概率与统计圆与解直角三角形。