当前位置:文档之家› 拉氏变换、传递函数、数学模型18页word文档

拉氏变换、传递函数、数学模型18页word文档

拉氏变换、传递函数、数学模型18页word文档
拉氏变换、传递函数、数学模型18页word文档

拉普拉斯变换的数学方法

一、拉氏变换与拉氏及变换的定义

1、拉氏变换:设有时间函数()t F ,其中0t ≥,则f(t)的拉氏变换记作: 称L —拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。 f(t)—原函数

拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。 2)当∞→t 时,at Me )t (f ≤,M ,a 为实常数。

2、拉氏反变换:将象函数F (s )变换成与之相对应的原函数f(t)的过程。

1L -—拉氏反变换符号

关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换

在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。

1.单位阶跃函数 2.单位脉冲函数 3.单位斜坡函数

4.指数函数at e 5.正弦函数sinwt

由欧拉公式:wt sin j wt cos e jwt += 所以,)e e (j

21wt sin jwt jwt

--=

6.余弦函数coswt

其它的可见表2-1:拉氏变换对照表

三、拉氏变换的性质

1、线性性质 若有常数k 1,k 2,函数f 1(t),f 2(t),且f 1(t),f 2(t)的拉氏变换为F 1(s),F 2(s), 则

F

k )s (F k )]t (f k )t (f k [L 2112211+=+,此式可由定义证明。

2、位移定理

??

?复数域的位移定理实数域的位移定理

(1)实数域的位移定理

若f(t)的拉氏变换为F(s),则对任一正实数a 有

)

s (F e )]a t (f [L as -=-, 其中,当t<0时,f(t)=0,f(t-a)表

f(t)延迟时间a.

证明:?∞

--=-0st dt e )a t (f )]a t (f [L ,

令t-a=τ,则有上式=?∞

-τ+-=ττ0

as )a (s )s (F e d e )(f

例:)T t (1T

1

T 1)t (f --=

, 求其拉氏变换 (2)复数域的位移定理

若f(t)的拉氏变换为F(s),对于任一常数a,有

证:)a s (F dt e )t (f dt e )t (f e )]t (f e [L 0

t )s a (st at at +===??∞

+----

例:求wt cos e at -的拉氏变换 3、微分定理

设f(t)的拉氏变换为F(s), 则)0(f )s (sF )]t (f [L ]dt

)

t (df [

L '+-== 其中f(0+)由正向使0t →的f(t)值。 证:

同理可推

广到n 阶:

初始条件为0时,即

f (0)f '(0)0===L 则有(n)n L[f '(t)]sF(s)L[f (t)]s F(s)==

4、积分定理

设f(t)的拉氏变换为F(s),则

)0(f s

1s )s (F ]dt )t (f [L )1(t

0+

-+=?,其中?+→t 00t dt )t (f 是在时的值。

证明: 同理可得n

阶积分的拉氏变换: 当初始条件为0时,f(t)的各重积分在

+

→0t 时,均为0,则有 5、初值定理

设f(t)的拉氏变换为F(s),则函数f(t)的初值定理表示为: 证明:由微分定理知:

)0(f s

1s )s (F ]

dt )t (f e e dt )t (f [s 1dt

e dt )t (

f ]dt )t (f [L )1(t 00

st

0st 0

t

st t 0

+-∞-∞-∞

-+=-?-=?=???

?

?st st 00st st 00

df (t)df (t)L[

]e dt e df (t)

dt dt

e f (t)s f (t)e dt sF(s)f (0)

∞∞--∞

-∞

-+===+=-???

对等式两边取极限:,s ∞→ 则有

知 a s 1)s (F +=,求f(0+) 例:已定理知:1a s 1

s lim )s (sF lim )0(f s s =+?

==∞→∞→+ 由初值6、终值定理:

若f(t)的拉氏变换为F(s),则终值定理表示为: 证明:由微分定理知: 令0s →,对上式两边取极限, 这个定理在稳态误差中常用。 例:已知:a

s 1

)s (F )]t (f [L +==,求f(∞) 7、卷积定理

设f(t)的拉氏变换为F(s),g(t)的拉氏变换为G(s),

则有t

0L f (t )g()d F(s)G(s)??-λλλ=????

?

式中,t

f (t )g()d f (t)g(t)-λλλ=*?称为f(t)与g(t)的卷积。此定理不要求证明。

课堂练习: 1) 求L[t 2]

2)求图示正弦波半波函数的拉氏变换

3)已知f(t)的拉氏变换为F(s),求at L[e f (t)(t a)]-*δ- 4)已知f(t)的拉氏变换为F(s),求L[f(at)] 四、拉氏反变换的数学方法

在已知象函数F(s),求f(t)时,对于简单的象函数,可直接利用表2-1来查,但对于复杂的,可利用部分分式展开法,即通过代数运算将一个复杂的象函数化为数个简单的部分分式之和,再求出各个分式的原函数,从而求出总的原函数。

部分分式展开法:

对于象函数F(s),常可写成如下形式:

)s (sF lim )t (f lim )0(f )

0(f )s (sF lim 0)]

0(f )s (sF [lim dt e dt )t (df lim s 0t s 0s st

s ∞→→++∞

→∞

+∞→-∞→==-=-=+

?

式中,p1,p2…,pn 称为F(s)的极点,p1,p2…,pn 称为F(s)的零点。一般A(s)的阶次大于B(s),若B(s)>A(s),可化为多项式+真分式的形式。 下面分两种情况,研究分式展开法。 1、F(s)无重极点的情况

此时,F(s)总能展开成下面的部分分式之和: 其中,分子为待定系数。

例:求F(s)的拉氏变换 解一:1s 1

2s 3

k (s 1)

2s 3s 2

=-+=

+=++

解二: 12B(1)

B(2)

k 2k 1A'(1)

A'(2)

--=

==

=---

例2 12

2

2s 12k k F(s)s 2s 5s 12j s 12j

+=

=++++++- 若p 1,p 2 为共轭复数,相应的系数k 1 ,k 2也是共轭复数,故只需求出一个即可。 2、F(s)有重极点的情况

设F(s)有r 个重极点p 1,其余极点均不相同,则

例:求23

s 2s 3F(s)(s 1)

++=+的拉氏反变换 所以:12t t 2t 3

21

f (t)L [

]t e e (t 1)e (s 1)s 1

----=+=+=+++ 2-2 系统的数学模型

一、概述

为了分析、研究系统的动态特性,一般情况下,首先要建立系统的数学模型。 1、数学模型的概念

我们把描述系统或元件的动态特性的数学表达式叫做系统或元件的数学模型。 深入了解元件及系统的动态特性,准确建立它们的数学模型-称建模,只有得到

A'(s)2s 3A'(1)1A'(2)1B(1)2

B(2)1

=+-=-=--=-=

较为准确的数学建模,才能设计出性能良好的控制系统。

动态特性控制系统所采用的元件种类繁多,虽然各自服从的规律,但它们有一共同点:即任何系统或元件总有物质或能量流入,同时又有某些物质或能量流出,系统通常又是有贮存物质或能量的能力,贮存量的多少用状态变量来表示。状态变量是反应系统流入量或流出量之间平衡的物理量,由于外部供给系统的物质或能量的速率是有限的,不可能是无穷大,因此,系统的状态变量有一个状态变到另一个状态不可能瞬间完成,而要经过一段时间。这样,状态变量的变化就有一个过程,这就是动态过程。例如,电路中电容上的电压是一个状态变量,它由一个值变到另一个值不可能瞬间完成。具有一定惯量的物体的转速是一个状态变量,转速的变化也是一个过渡过程,具有一定质量的物体的温度是一个状态变量,它由温度T0变到T,同样有一个动态过程;又如容器中液位也是一个状态变量,液位的变化也要一定的时间。

建立控制系统数学模型的方法有

1)分析法-对系统各部分的运动机理进行分析,依据系统本身所遵循的有关定律列写数学表达式,并在列写过程中进行必要的简化。

建立系统数学模型的几个步骤:

?建立物理模型。

?列写原始方程。利用适当的物理定律—如牛顿定律、基尔霍夫电流和电压定律、能量守恒定律等)

?选定系统的输入量、输出量及状态变量(仅在建立状态模型时要求),消去中间变量,建立适当的输入输出模型或状态空间模型。

2)实验法-是根据系统对某些典型输入信号的响应或其它实验数据建立数学模型。即人为施加某种测试信号,记录基本输出响应。这种用实验数据建立数学模型的方法也称为系统辩识。

数学模型的逼近

1、线性系统和非线性系统

1) 线性系统

可以用线性微分方程描述的系统。如果方程的系数为常数,则为线性定常系统;

例:ax(t)

bx(t)cx(t)dy(t)++=&&&,其中,a,b,c,d 均为常数。 如果方程的系数是时间t 的函数,则为线性时变系统;

线性系统线性是指系统满足叠加原理,即:系统在几个外力作用下所产生的响应等于各个外加作用单独作用时的响应之和。 可加性:1212f (x x )f (x )f (x )+=+ 齐次性:f (ax)af (x)= 或1212f (ax bx )af (x )bf (x )+=+ 2) 非线性系统

用非线性微分方程描述的系统。非线性系统不满足叠加原理。 例:2y(t)x (t)=就是非线性系统。

实际的系统通常都是非线性的,线性只在一定的工作范围内成立。

即在实际系统中,变量之间不同程度地包含有非线性关系,如:间隙、饱合、死区、干磨擦特性等。

非线性系统为分析方便,通常在合理的条件下,可进行如下外理: ①线性化 ②忽略非线性因素 ③用非线性系统的分析方法来处理。 3)线性系统和非线性系统的判别 设某系统的微分方程如下:

①若方程的系数a i ,b j 都既不是x o (t)和x i (t)及它们的导数的函数,又不是时间的函数,则此方程是线性定常的,此系统为线性定常系统。

②若a i ,b j 是时间的函数,则该方程是线性时变的,此系统称为线性时变系统。 ③若a i ,b j 中只要有一个系数依赖于x o (t)和x i (t)或它们的导数,或者在微分方程中出现t r 其它函数形式,该方程为非线性的。

例:12y a (t)y a (t)y u ++=&&&&o o o i x (t)2x (t)4x (t)x (t)++=&&& 线定常

2o o o o i x (t)x (t)x (t)x (t)x (t)++=&&& 非线性

判断下列微分方程表达的系统是线性系统还是非线性系统?

a:y 3y 4y u ++=&&& (线定常) b:23y

yy 2y 5u ++=&&&& (非线性) c:12y a (t)y a (t)y u ++=&

&&& (线时变) 式中:u:输入信号 y:输出信号 a i (t):时变系统 3、本课程涉及的数学模型形式

时间域:微分方程(一阶微分方程组)、差分方程、状态方程 复数域:传递函数、结构图 频率域:频率特性 二、系统微分方程的建立 1、建立微分方程的一般步骤

1)分析系统工作原理和信号传递变换的过程,确定系统和各元件的输入、输出量;

2)从输入端开始,按照信号传递变换过程,依据各变量遵循的物理学定律,依次列写出各元件、部件的动态微分方程;

3)消去中间变量,得到描述元件或系统输入、输出变量之间关系的微分方程; 4)标准化:右端输入,左端输出,导数降幂排 2、机械系统微分方程的列写

机械系统中部件的运动有直线和转动两种。机械系统中以各种形式出现的物理现象,都可简化为质量、弹簧和阻尼三个要素。列写其微分方程通常用 达朗贝尔原理。即:作用于每一个质点上的合力,同质点惯性力形成平衡力系。

用公式表示:i i i

m x (t)f (t)0-+

=∑&&

1)直线运动(机械平移系统)

式中,m 、C 、K 通常均为常数,故机械平移系统可以由二阶常系数微分方程描述。显然,微分方程的系数取决于系统的结构参数,而阶次等于系统中独立储能元件(惯性质量、弹簧)的数量。 2)转动系统

3、电网络系统

电网络系统分析主要根据基尔霍夫电流定律和电压定律写出微分方程式,进而建立系统的数学模型。

1)基尔霍夫电流定律:汇聚到某节点的所有电流之代数和应等于0(即流出节点

的电流之和等于所有流进节点的电流之和)。

A i(t)0

=

2)尔霍夫电压定律

电网络的闭合回路中电势的代数和等于沿回路的电压降的代数和。

电网络系统中三人基本原件是:电阻、电感、电容

电阻:

电容:

电感:

例:

小结

物理本质不同的系统,可以有相同的数学模型,从而可以抛开系统的物理属性,用同一方法进行具有普遍意义的分析研究(信息方法)。

从动态性能看,在相同形式的输入作用下,数学模型相同而物理本质不同的系统其输出响应相似。相似系统是控制理论中进行实验模拟的基础;

通常情况下,元件或系统微分方程的阶次等于元件或系统中所包含的独立储能元(惯性质量、弹性要素、电感、电容、液感、液容等)的个数;因为系统每增加一个独立储能元,其内部就多一层能量(信息)的交换。

系统的动态特性是系统的固有特性,仅取决于系统的结构及其参数。

三、传递函数

微分方程建立后,就可对其求解,得出输出量的运动规律,从而对系统进行分析与研究。但微分方程求解繁琐,且从其本身很难分析系统的动态特性,但若对微分方程进行拉氏变换,即得到代数方程,使求解简化,又便于分析研究系统的动态特性,更直观地表示出系统中各变量间的相互关系。

传递函数就是在用拉氏变换求解线性常微分方程的过程中引申出来的概念。

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ??????-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()() ( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

拉普拉斯变换习题集

1. 求下列函数的拉式变换。 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 3. 求下列函数的拉普拉斯逆变换。 4. 分别求下列函数的逆变换的初值和终值。 5. 如图1所示电路,0=t 以前,开关S 闭合,已进入稳定状态;0=t 时,开关打开,求()t v r 并讨 论R 对波形的影响。 6. 电路如图2所示,0=t 以前开关位于”“1,电路以进入稳定状态,0=t 时开关从” “1倒向”“2,求电流()t i 的表示式。 7. 电路如图3所示,0=t 以前电路原件无储能,0=t 时开关闭合,求电压()t v 2的表示式和波形。 8. 激励信号()t e 波形如图()a 4所示电路如图()b 4所示,起始时刻L 中无储能,求()t v 2得表示式和波形。 9. 电路如图5所示,注意图中()t Kv 2是受控源,试求 (1) 系统函数()() () s V s V s H 13=; (2) 若2=K ,求冲激响应。 10. 将连续信号()t f 以时间间隔T 进行冲激抽样得到()()()()()∑∞ =-= =0 ,n T T s nT t t t t f t f δδδ,求: (1) 抽样信号的拉氏变换()[]t f s L ; (2) 若()()t u e t f t α-=,求()[]t f s L 。 11. 在图6所示网络中,Ω===10,1.0,2R F C H L 。 (1) 写出电压转移函数()() () s E s V s H 2= ; (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。 12. 如图7所示电路, (1) 若初始无储能,信号源为()t i ,为求()t i 1(零状态响应),列出转移函数()s H ; (2) 若初始状态以()01i ,()02v 表示(都不等于0),但()0=t i (开路),求()t i 1(零输入 响应)。

拉氏变换与反变换

拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 拉普拉斯变换的定义 如果有一个以时间 t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,那么 ()t f 的拉普拉斯变换定义为 ()()()0e d st F s L f t f t t ∞ -=?????? 式中, s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0 e st 称为拉 普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 几种典型函数的拉氏变换

1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞→st t 。 所以 []s s s t L st 1)1(00e 1)(1= ??????--=∞-=-()

求下列函数的拉氏变换

B2.1 求下列函数的拉氏变换: B2.2 求下列函数的拉氏反变换: B2.3 求下列矩阵的逆矩阵: B2.4 在图B2.4所示的电路中电压u1(t)为输入量,试以电压u2(t)或u C2(t)作为输出量,分别列写该系统的微分方程。 图B2.4 电路原理图 B2.5 图B2.5是一种地震仪的原理图,其壳体1固定在地基2上,重锤3的质量为m,由装在壳体上的弹簧和阻尼器支承。图中x为壳体相对于惯性空间的位移,z为质量m相对于惯性空间的位移,y=x-z为质量m相对于壳体的位移,可由指针4指示出来。当地震时壳体随地基上下震动,但由于惯性的作用使得重锤的运动幅度很小,故它与壳体之间的相对运动幅度y就近似等于地震的幅度。设重锤的质量为m(kg),弹簧的刚性系数为k(N/m),阻尼器的粘性摩擦系数为f(N·s/m),试列写以指针位移y为输出量时系统的微分方程。(注:z为静平衡时质量m的位移,重力使弹簧产生的变形已经加以考虑了。)

图B2.5 地震仪原理图 图B2.6 机械系统原理图 B2.6 设机械系统如图B2.6所示,图中z i为输入位移,z o为输出位移。试分别列写各系统的微分方程。 B2.7 例A1.2所讨论的液位控制系统(如图1.29所示),设液箱的横截面积为S,希望的液位高度为h 0,若液位高度的变化率与液体流量差(Q1-Q2)成正比,试列写以液位高度为输出量时系统的微分方程。 B2.8 设系统的微分方程为 试用拉氏变换法进行求解。 B2.9 已知控制系统的微分方程(或微分方程组)为

式中r(t)为输入量,y(t)为输出量,z1(t)、z2(t)和z3(t)为中间变量,τ、β、K1和K2均为常数。  试求:(a)各系统的传递函数Y(s)/R(s);(b)各系统含有哪些典型环节? B2.10 求题B2.4~B2.7各系统的传递函数。 B2.11 设控制系统的结构图如图B2.11所示,图中G1(s)和G2(s)所对应环节的微分方程分别为0.125u?+u=e?+3e和0.5y¨+y?=2u,试求该系统的传递函数Y(s)/R(s)和E(s)/R(s)。   图B2.11 控制系统方块图 B2.12 已知控制系统在零初始条件下,由单位阶跃输入信号所产生的输出响应为 y(t)=1+e-t-2e-2t试求该系统的传递函数,和零极点的分布并画出在S平面上的分布图。 B2.13 求图B2.13所示无源网络的传递函数U o(s)/U i(s)。 图B2.13 无源网络原理图 B2.14 求图B2.14所示运算放大器的传递函数U o(s)/U i(s)。 图B2.14 有源网络原理图 B2.15 已知控制系统的结构图如图B2.15所示,试应用结构图等效变换法求各系统的传递函数。

拉氏变换与反变换(严选内容)

2.5 拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间 t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,那么 ()t f 的拉普拉斯 变换定义为 ()()()0 e d st F s L f t f t t ∞ -=??????(2.10) 式中, s 是复变数, ωσj +=s (σ、ω均为实数), ? ∞ -0 e st 称为拉普拉斯积分; )(s F 是 函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 2.5.2 几种典型函数的拉氏变换 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 ?? ?≥s ,则 e lim →-∞ →st t 。

拉氏变换和z变换表(精选.)

word. 附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 1()([n n k f t dt s s -+=+∑? 个

2.常用函数的拉氏变换和z变换表 word.

word. 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

拉普拉斯变换和逆变换

第十二章 拉普拉斯变换及逆变换 拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。我们经常应用拉普拉斯变换进行电路的复频域分析。本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。 第一节 拉普拉斯变换 在代数中,直接计算 32 8 .95781 2028.6?? =N 5 3) 164.1(? 是很复杂的,而引用对数后,可先把上式变换为 164 .1lg 53 )20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N 然后通过查常用对数表和反对数表,就可算得原来要求的数N 。 这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。 一、拉氏变换的基本概念 定义 设函数()f t 当0t ≥时有定义,若广义积分 ()pt f t e dt +∞ -? 在P 的某一区域内收 敛,则此积分就确定了一个参量为P 的函数,记作()F P ,即 dt e t f P F pt ? ∞ +-= )()( () 称()式为函数()f t 的拉氏变换式,用记号[()]()L f t F P =表示。函数()F P 称为()f t 的 拉氏变换(Laplace) (或称为()f t 的象函数)。函数()f t 称为()F P 的拉氏逆变换(或称为()F P 象原函数) ,记作 )()]([1t f P F L =-,即)]([)(1P F L t f -=。 关于拉氏变换的定义,在这里做两点说明: (1)在定义中,只要求()f t 在0t ≥时有定义。为了研究拉氏变换性质的方便,以后总假定在0t <时,()0f t =。 (2)在较为深入的讨论中,拉氏变换式中的参数P 是在复数范围内取值。为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。 (3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。 例 求斜坡函数()f t at = (0t ≥,a 为常数)的拉氏变换。 解:00 00[]()[]pt pt pt pt a a a L at ate dt td e e e dt p p p +∞ +∞+∞---+∞-= =- =-+? ?? 2020 ][0p a e p a dt e p a pt pt =-=+ =∞ +-∞+-? ) 0(>p

拉氏变换

控制原理补充讲义——拉氏变换 拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作: 称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。2)当时, ,M,a为实常数。 2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。 —拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。 注意:六大性质一定要记住 1.单位阶跃函数

2.单位脉冲函数 3.单位斜坡函数 4.指数函数 5.正弦函数sinwt 由欧拉公式: 所以,

6.余弦函数coswt 其它的可见下表:拉氏变换对照表

三、拉氏变换的性质 1、线性性质 若有常数k 1,k 2 ,函数f 1 (t),f 2 (t),且f 1 (t),f 2 (t)的拉氏变换为F 1 (s),F 2 (s), 则有:,此式可由定义证明。 2、位移定理 (1)实数域的位移定理 若f(t)的拉氏变换为F(s),则对任一正实数a有 , 其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a. 证明:, 令t-a=τ,则有上式= 例:求其拉氏变换

常用的拉氏变换表

精选资料,欢迎下载 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s) 时间函数e(t) Z 变换E(z) 1 1 δ(t) 1 2 Ts e --11 ∑∞ =-=0)()(n T nT t t δδ 1 -z z 3 s 1 )(1t 1 -z z 4 21s t 2 )1(-z Tz 5 3 1s 2 2t 3 2 )1(2)1(-+z z z T 6 1 1+n s !n t n )(!)1(lim 0aT n n n a e z z a n -→-??- 7 a s +1 at e - aT e z z -- 8 2 )(1a s + at te - 2 )(aT aT e z Tze --- 9 )(a s s a + at e --1 ) )(1()1(aT aT e z z z e ----- 10 ) )((b s a s a b ++- bt at e e --- bT aT e z z e z z ---- - 11 22ω ω +s t ωsin 1 cos 2sin 2+-T z z T z ωω 12 2 2ω+s s t ωcos 1 cos 2)cos (2+--T z z T z z ωω 13 22)(ω ω++a s t e at ωsin - aT aT aT e T ze z T ze 22cos 2sin ---+-ωω 14 2 2)(ω+++a s a s t e at ωcos - aT aT aT e T ze z T ze z 222cos 2cos ---+--ωω 15 a T s ln )/1(1- T t a / a z z -

典型信号的拉普拉斯变换和拉普拉斯逆变换

成绩评定表

课程设计任务书

目录 1.Matlab介绍.............. 错误!未定义书签。 2.利用Matlab实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计 (5) 2.1.拉普拉斯变换曲面图的绘制 (5) 2.2.拉普拉斯变化编程设计及实现 (7) 2.3.拉普拉斯逆变化编程设计及实现 (8) 3.总结 (14) 4.参考文献 (15)

1.Matlab介绍 MATLAB语言是当今国际上在科学界和教育界中最具影响力、也最具活力的软件;它起源于矩阵运算,现已发展成一种高度集成的计算机语言;它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、丰富的交互式仿真集成环境,以及与其他程序和语言便捷接口的功能。 经过多年的开发运用和改进,MATLAB已成为国内外高校在科学计算、自动控制及其他领域的高级研究工具。典型的用途包括以下几个方面: 1)数学计算; 2)新算法研究开发; 3)建模、仿真及样机开发; 4)数据分析、探索及可视化; 5)科技与工程的图形功能; 6)友好图形界面的应用程序开发。 1.1Matlab入门 Matlab7.0介绍 Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。当然也比以前的版本对于软件、硬件提出了更高的要求。 在国内外Matlab已经经受了多年的考验。Matlab7.0功能强大,适用范围很广。其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。 MATLAB7.0提供了丰富的库函数(称为M文件),既有常用的基本库函数,又有种类齐全、功能丰富多样的的专用工具箱Toolbox函数。函数即是预先编制好的子程序。在编制程序时,这些库函数都可以被直接调用。无疑,这会大大提高编程效率。MATLAB7.0的基本数据编程单元是不需要指定维数的复数矩阵,所以在MATLAB环境下,数组的操作都如数的操作一样简单方便。而且,MATLAB7.0界面友好,用户使用方便。首先,MATLAB具有友好的用户

常用函数的拉氏变换[1]

附录A 拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换 习题集

1. 求下列函数的拉式变换。 (1) t t cos 2sin + (2) ()t e t 2sin - (3) ()[]t e t βα--cos 1 (4) ()t e t 732--δ (5) ()t Ω2cos (6) ()()t e t ωαcos +- (7) ()t t αsin 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 (1) ()()()t u e t f t 2--= (2) ()()()12sin -?=t u t t f (3) ()()()()[]211----=t u u u t t f 3. 求下列函数的拉普拉斯逆变换。 (1) () 512+s s (2) ()() 243+++s s s (3) 11 12++s (4) ()RCs s RCs +-11 (5) ()()() 2133+++s s s (6) 22K s A + (7) ()( )[]22βα+++s a s s (8) () 142+-s s e s

(9) ?? ? ??+9ln s s 4. 分别求下列函数的逆变换的初值和终值。 (1) ()()() 526+++s s s (2) ()()()2132+++s s s 5. 如图1所示电路,0=t 以前,开关S 闭合,已进入稳定状态;0=t 时,开关打开,求 ()t v r 并讨论R 对波形的影响。 6. 电路如图2所示,0=t 以前开关位于”“1,电路以进入稳定状态,0=t 时开关从” “1倒向” “2,求电流()t i 的表示式。 7. 电路如图3所示,0=t 以前电路原件无储能,0=t 时开关闭合,求电压()t v 2的表示 式和波形。 8. 激励信号()t e 波形如图()a 4所示电路如图()b 4所示,起始时刻L 中无储能,求()t v 2得 表示式和波形。 9. 电路如图5所示,注意图中()t Kv 2是受控源,试求 (1) 系统函数()()() s V s V s H 13=; (2) 若2=K ,求冲激响应。 10. 将连续信号()t f 以时间间隔T 进行冲激抽样得到 ()()()()()∑∞ =-==0 ,n T T s nT t t t t f t f δδδ,求: (1) 抽样信号的拉氏变换()[]t f s L ; (2) 若()()t u e t f t α-=,求()[]t f s L 。 11. 在图6所示网络中,Ω===10,1.0,2R F C H L 。 (1) 写出电压转移函数()()() s E s V s H 2=; (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。

拉氏变换常用公式

常用拉普拉斯变换总结 1、指数函数 00)(≥

? ? ∞ -∞ -∞ ----==0 d d ][t s e s e t t te t L st st st 2 01d 1s t e s st == ?∞- 6、正弦函数 0sin 0 )(≥

(完整版)拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==----ΛΛ (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b -Λ都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F ΛΛ 式中,Sn 2S 1S ,,,Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1 i i n 1i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为

附表A-2 常用函数的拉氏变换和z变换表

附录A拉普拉斯变换及反变换1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 419

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim ()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []?? ????-==∑=--n i i i s s c L s F L t f 11 1)()(=1i n s t i i c e =∑ (F -4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

控制工程基础习题解答

控制工程基础习题解答 第二章 2-1.试求下列函数的拉氏变换,假定当t<0时,f(t)=0。 (1).()()t t f 3cos 15-= 解:()[]()[]9 553cos 152 +-=-=s s s t L t f L (2). ()t e t f t 10cos 5.0-= 解:()[][ ] ()100 5.05 .010cos 2 5.0+++= =-s s t e L t f L t (3). ()?? ? ? ?+ =35sin πt t f 解:()[]() 252355cos 235sin 2135sin 2 ++=?? ????+=????????? ??+=s s t t L t L t f L π 2-2.试求下列函数的拉氏反变换。 (1).()() 11+= s s s F 解:()[]()??????++=???? ?? +=---11121 111s k s k L s s L s F L ()10111==? ?? ???+=s s s s k ()()111112-=-=+?? ????+=s s s s k ()[]t e s s L s F L ----=?? ????+-=111111 (2).()()() 321 +++= s s s s F 解:()[]()()? ?????+++=???? ?? +++=---3232121 111s k s k L s s s L s F L

()()()122321 1-=-=+??????+++=s s s s s k ()()()233321 2=-=+?? ????+++=s s s s s k ()[]t t e e s s L s F L 231123221-----=?? ????+++-= (3).()()() 2 222 52 2+++++=s s s s s s F 解:()[]()()??????+++++=?? ????+++++=---222222252321 1221 1 s s k s k s k L s s s s s L s F L ()() ()2222222 52 21-=-=+?? ????+++++=s s s s s s s k ()( ) () 3 3 313312 22222 513223222232==-=---=-+---=++?? ????+++++=--=+k k j j j jk k k j s s s s s s s s j s k s k ()[]()()t e e s s s L s s s s L s F L t t cos 32111322223322221211 -----+-=?? ????+++++-=??????+++++- = 2-3.用拉氏变换法解下列微分方程 (1)()()()()t t x dt t dx dt t x d 1862 2=++,其中 ()()00,10===t dt t dx x 解:对方程两边求拉氏变换,得:

机械控制工程基础习题答案

第二章习题答案 2-1试求下列函数的拉氏变换,假设0<≤≤=π π t t t t t f ,00 0sin )( 答案:提示)sin(sin )(π-+=t t t f ,s e s s s F π-+++= 1 111)(2 2 2-3已知) 1(10 )(+= s s s F (1)利用终值定理,求∞→t 时)(t f 值 答案:10) 1(10 lim )(lim )(lim 0 =+==→→∞ →s s s s sF t f s s t (2)通过取)(s F 的拉氏反变换,求∞→t 时)(t f 值

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换习题集

1.求下列函数的拉式变换。 (1) si nt 2 cost (2) e t sin 2t (3) 1 cos t e (4) 2 t 3e 7t (5) 2 cos t (6) t e cos t (7) sin t t 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 (1) ft e 七 2 u t (2) f t sin 2t u t 1 (3) f t t 1 u u 1 u t 2 3. 求下列函数的拉普拉斯逆变换。 (5) (7) s e 4s s 2 1(6) A s 2 K 2 (1) 1 SS 2 5 (2) 3s s 4 s 2 (3) 1 s 2 1 (4) 1 RCs s 1 RCs

(9) ln - s 9 4. 分别求下列函数的逆变换的初值和终值。 s 6 s 2 s 5 s 3 s 1 2 s 2 5. 如图1所示电路,t 0以前,开关S 闭合,已进入稳定状态;t 0时,开关打开,求 v r t 并讨论R 对波形的影响。 6. 电路如图2所示,t 0以前开关位于“1”,电路以进入稳定状态,t 0时开关从“T 倒向“ 2 ,求电流i t 的表示式。 7. 电路如图3所示,t 0以前电路原件无储能,t 0时开关闭合,求电压 V 2 t 的表示 式和波形。 8. 激励信号et 波形如图|4 a 所示电路如图|4 b 所示,起始时刻L 中无储能,求V 2 t 得 表示式和波形。 9. 电路如图5所示,注意图中 KV 2 t 是受控源,试求 (1) 系统函数H S — V 1 s (2) 若K 2,求冲激响应。 10. 将连续信号 ft 以时间间隔T 进行冲激抽样得到 f s t ft T t , T t t nT ,求: n 0 (1) 抽样信号的拉氏变换 L f s t ; (2) 若 ft e t u t ,求 L f s t 。 11. 在图6所示网络中,L 2H,C 0.1F, R 10 。 (1) 写出电压转移函数 H s V2 s ; E s (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。 (1) (2)

拉氏变换表(包含计算公式)

1 拉氏变换及反变换公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑ 1 1 ) 1() 1(1 2 2 2 ) ()() 0()() (0)0()(]) ([) 0()(])([k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L ) ( 初始条件为0时 )(]) ([ s F s dt t f d L n n n = 3 积分定理 一般形式 ∑ ???????????==+-===+=+ + = + = n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 1 1 2 2 2 2 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L )(]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

相关主题
文本预览
相关文档 最新文档